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Abstract

In this paper, we tackle the problem of reduc-
ing discrepancies between multiple domains,
i.e. multi-source domain adaptation, and con-
sider it under the target shift assumption: in
all domains we aim to solve a classification
problem with the same output classes, but
with different labels proportions. This prob-
lem, generally ignored in the vast majority
of domain adaptation papers, is nevertheless
critical in real-world applications, and we the-
oretically show its impact on the success of the
adaptation. Our proposed method is based
on optimal transport, a theory that has been
successfully used to tackle adaptation prob-
lems in machine learning. The introduced ap-
proach, Joint Class Proportion and Optimal
Transport (JCPOT), performs multi-source
adaptation and target shift correction simul-
taneously by learning the class probabilities of
the unlabeled target sample and the coupling
allowing to align two (or more) probability
distributions. Experiments on both synthetic
and real-world data (satellite image pixel clas-
sification) task show the superiority of the
proposed method over the state-of-the-art.
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1 INTRODUCTION

In many real-world applications, it is desirable to use
models trained on largely annotated data sets (or source
domains) to label a newly collected, and therefore unla-
beled data set (or target domain). However, differences
in the probability distributions between them hinder
the success of the direct application of learned models
to the latter. To overcome this problem, recent machine
learning research has devised a family of techniques,
called domain adaptation (DA), that deals with situa-
tions where source and target samples follow different
probability distributions (Quiñonero-Candela et al. ,
2009; Patel et al. , 2015). The inequality between the
joint distributions can be characterized in a variety of
ways depending on the assumptions made about the
conditional and marginal distributions. Among those,
arguably the most studied scenario called covariate shift
(or sample selection bias) considers the situation where
the inequality between probability density functions
(pdfs) is due to the change in the marginal distributions
(Zadrozny et al. , 2003; Bickel et al. , 2007; Huang et al.
, 2007; Liu & Ziebart, 2014; Wen et al. , 2014; Fernando
et al. , 2013; Courty et al. , 2017a).

Despite the large number of methods proposed in the
literature to solve the DA problem under the covari-
ate shift assumption, very few considered the (widely
occurring) situation where the changes in the joint
distribution is caused by a shift in the distribution
of the outputs, a setting that has been referred to as
target shift. In practice, the target shift assumption
implies that a change in the class proportions across
domains is at the base of the shift: such a situation
is also known as choice-based or endogenous stratified
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sampling in econometrics (Manski & Lerman, 1977)
or as prior probability shift (Storkey, 2009). In the
classification context, target shift was first introduced
in (Japkowicz & Stephen, 2002) and referred to as the
class imbalance problem. In order to solve it, several
approaches were proposed. In (Lin et al. , 2002), au-
thors assumed that the shift in the target distribution
was known a priori, while in (Yu & Zhou, 2008), partial
knowledge of the target shift was supposed to be avail-
able. In both cases, the assumption of prior knowledge
about the class proportions in the target domain seems
quite restrictive. More recent methods that avoid mak-
ing this kind of assumptions are (Chan & Ng, 2005;
Zhang et al. , 2013). In the former, authors used a
variation of the Expectation Maximization algorithm,
which relies on a computationally expensive estimation
of the conditional distribution. In the latter, authors
estimate the proportions in both domains directly from
observations. Their approach, however, also relies on
computationally expensive optimization over kernel
embeddings of probability functions. This last line of
work has been extended in (Zhang et al. , 2015) to
the multi-domain setting, and as such constitutes a
relevant baseline for our work. The algorithm proposed
by the authors produces a set of hypotheses with one
hypothesis per domain that can be combined using the
theoretical study on multi-source domain adaptation
presented in (Mansour et al. , 2009b). Despite the
rather small corpus of works in the literature dealing
with the subject, target shift often occurs in practice,
especially in applications dealing with anomaly/novelty
detection (Blanchard et al. , 2010; Scott et al. , 2013;
Sanderson & Scott, 2014), or in tasks where spatially
located training sets are used to classify wider areas,
as in remote sensing image classification (Tuia et al. ,
2015; Zhang et al. , 2015).

In this paper, we propose a new algorithm for correcting
the target shift based on optimal transport (OT). OT
theory is a branch of mathematics initially introduced
by Gaspard Monge for the task of resource allocation
(Monge, 1781). Originally, OT tackled a problem of
aligning two probability measures in a way that min-
imizes the cost of moving a unit mass between them,
while preserving the original marginals. The recent ap-
pearance of efficient formulations of OT (Cuturi, 2013)
has allowed its application in DA, as OT allows to
learn explicitly the transformation of a given source
pdf into the pdf of the target sample. In this work,
we build upon a recent work on DA (Courty et al. ,
2017b), where authors successfully casted the DA prob-
lem as an OT problem, and extend it to deal with the
target shift setting. Our motivation to propose new
specific algorithms for target shift stems from the fact
that many popular DA algorithms designed to tackle
covariate shift cannot handle the target shift equally

well. This is illustrated in Figure 1, where we show that
the DA method based on OT mentioned above fails to
restrict the transportation of mass across instances of
different classes when the class proportions of source
and target domains differ. However, as we show in
the following sections, our Joint Class Proportion and
Optimal Transport (JCPOT) model manages to do it
correctly. Furthermore and contrary to the original con-
tribution, we also consider the much more challenging
case of multi-source domain adaptation, where more
than one source domains with changing distributions
of outputs are used for learning. To the best of our
knowledge, this is the first multi-source DA algorithm
that efficiently leverages the target shift and shows an
increasing performance with the increasing number of
source domains considered.

The rest of the paper is organized as follows: in Sec-
tion 2, we present regularized OT and its application to
DA. Section 3 details the target shift problem and pro-
vides a generalization bound for this learning scenario
and a proof that minimizing the Wasserstein distance
between two distributions with class imbalance leads
to the optimal solution. In Section 4, we present the
proposed JCPOT method for unsupervised DA when
no labels are used for adaptation. In Section 5, we pro-
vide comparisons to state-of-art methods for synthetic
data in the multi-source adaptation scenario and we
report results for a real life case study performed in
remote sensing pixel classification.

2 OPTIMAL TRANSPORT

In this section we introduce key concepts of optimal
transport and some important results used in the fol-
lowing sections.

2.1 Basics and Notations

OT can be seen as the search for a plan that moves
(transports) a probability measure µ1 onto another
measure µ2 with a minimum cost measured by some
function c. In our case, we use the squared Euclidean
distance L2

2, but other domain-specific measures, more
suited to the problem at hand, could be used instead. In
the relaxed formulation of Kantorovitch (Kantorovich,
1942), OT seeks for an optimal coupling that can be
seen as a joint probability distribution between µ1 and
µ2. In other words, if we define Π(µ1, µ2) as the space of
probability distributions over R2 with marginals µ1 and
µ2, the optimal transport is the coupling γ ∈ Π(µ1, µ2),
which minimizes the following quantity:

Wc(µ1, µ2) = inf
γ∈Π(µ1,µ2)

∫
R2

c(x1,x2)dγ(x1,x2),
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Figure 1: Illustration of the importance of proportion estimation for target shift: (a) the data of 2 source and 1
target domains with different class proportions is visualized; (b) DA method based on OT (Courty et al. , 2014)
transports instances across different classes due to class proportions imbalance; (c) the transportation obtained
when the true class proportions are used to reweigh instances; (d) transportation obtained with JCPOT that is
nearly identical to the one obtained with an a priori knowledge about the class proportions.

where c(x1,x2) is the cost of moving x1 to x2 (drawn
from distributions µ1 and µ2, respectively). In the
discrete versions of the problem, i.e. when µ1 and µ2

are defined as empirical measures based on vectors in
Rd, Π(µ1, µ2) denotes the polytope of matrices γ such
that γ1 = µ1, γ

T1 = µ2 and the previous equation
reads:

WC(µ1, µ2) = min
γ∈Π(µ1,µ2)

〈γ,C〉F , (1)

where 〈·, ·〉F is the Frobenius dot product, C ≥ 0 is a
cost matrix ∈ Rn1×n2 , representing the pairwise costs of
transporting bin i to bin j, and γ is a joint distribution
given by a matrix of size n1×n2, with marginals defined
as µ1 and µ2. Solving equation (1) is a simple linear
programming problem with equality constraints, but
its dimensions scale quadratically with the size of the
sample. Alternatively, one can consider a regularized
version of the problem, which has the extra benefit of
being faster to solve.

2.2 Entropic Regularization

In (Cuturi, 2013), the authors added a regularization
term to γ that controls the smoothness of the coupling
through the entropy of γ. The entropy regularized
version of the discrete OT reads:

WC,ε(µ1, µ2) = min
γ∈Π(µ1,µ2)

〈γ,C〉F − εh(γ), (2)

where h(γ) = −
∑
ij γij(log γij − 1) is the entropy of

γ. Similarly, denoting the Kullback-Leibler divergence
(KL) as KL(γ|ρ) =

∑
ij γij(log

γij
ρij
− 1) = 〈γ, log γ

ρ −
1〉F , one can establish the following link between OT
and Bregman projections.

Proposition 1. (Benamou et al. , 2015, Eq.
(6,7)). For ζ = exp

(
−Cε

)
, the minimizer γ? of (2) is

the solution of the following Bregman projection

γ? = arg min
γ∈Π(µ1,µ2)

KL(γ|ζ).

For an undefined µ2, γ? is solely constrained by the
marginal µ1 and is the solution of the following closed-
form projection:

γ? = diag

(
µ1

ζ1

)
ζ, (3)

where the division has to be understood component-wise.

As it follows from this proposition, the entropy reg-
ularized version of OT can be solved with a simple
algorithm based on successive projections over the two
marginal constraints and admits a closed form solution.
We refer the reader to (Benamou et al. , 2015) for more
details on this subject.

2.3 Application to Domain Adaptation

A solution to the two domains adaptation problem
based on OT has been proposed in (Courty et al. ,
2014). It consists in estimating a transformation of
the source domain sample that minimizes their average
displacement w.r.t. target sample, i.e. an optimal
transport solution between the discrete distributions
of the two domains. The success of the proposed algo-
rithm is due to an important advantage offered by OT
metric over other distances used in DA (e.g. MMD):
it preserves the topology of the data and admits a
rather efficient estimation. The authors further added
a regularization term used to encourage instances from
the target sample to be transported to instances of the
source sample of the same class, therefore promoting
group sparsity in γ thanks to the ‖ ·‖pq norm with q = 1

and p = 1
2 (Courty et al. , 2014) or q = 2 and p = 1

(Courty et al. , 2017b).
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3 DOMAIN ADAPTATION UNDER
THE TARGET SHIFT

In this section, we formalize the target shift problem
and provide a generalization bound that shows the key
factors that have an impact when learning under it.

To this end, let us consider a binary classification prob-
lem with K source domains, each being represented
by a sample of size n(k), k = 1, . . . ,K, drawn from
a probability distribution P kS = (1 − πkS)P0 + πkSP1.
Here 0 < πkS < 1 and P0, P1 are marginal distri-
butions of the source data given the class labels 0
and 1, respectively with P0 6= P1. We also possess
a target sample of size n drawn from a probabil-
ity distribution PT = (1 − πT )P0 + πTP1 such that
∃ j ∈ [1, . . . , N ] : πjS 6= πT . This last condition is a
characterization of target shift used in previous theo-
retical works on the subject (Scott et al. , 2013).

Following (Ben-David et al. , 2010), we define a domain
as a pair consisting of a distribution PD on some space
of inputs Ω and a labeling function fD : Ω→ [0, 1]. A
hypothesis class H is a set of functions so that ∀h ∈
H, h : Ω→ {0, 1}. Given a convex loss-function l, the
true risk with respect to the distribution PD, for a
labeling function fD (which can also be a hypothesis)
and a hypothesis h is defined as

εD(h, fD) = Ex∼PD
[l(h(x), fD(x))] . (4)

In the multi-source case, when the source and tar-
get error functions are defined w.r.t. h and f

(k)
S or

fT , we use the shorthand ε
(k)
S (h, f

(k)
S ) = ε

(k)
S (h) and

εT (h, fT ) = εT (h). The ultimate goal of multi-source
DA then is to learn a hypothesis h on K source do-
mains that has the best possible performance in the
target one.

To this end, we define the combined error of source
domains as a weighted sum of source domains error
functions:

εαS =

K∑
k=1

αkε
(k)
S ,

K∑
k=1

αk = 1, αk ∈ [0, 1] ∀k ∈ [1, . . . ,K].

We further denote by fαS the labeling function associ-
ated to the distribution mixture Pα

S =
∑N
k=1 αjP

j
S . In

multi-source scenario, the combined error is minimized
in order to produce a hypothesis that is used on the
target domain. Here different weights αk can be seen as
measures reflecting the proximity of the corresponding
source domain distribution to the target one.

For the target shift setup introduced above, we can
prove the following proposition.
Proposition 2. Let H denote the hypothesis space
of predictors h : Ω → {0, 1} and l be a convex loss

function. Let discl(PS , PT ) = maxh,h′∈H |εS(l(h, h′))−
εT (l(h, h′))| be the discrepancy distance (Mansour et al.
, 2009a) between two probability distributions PS and
PT . Then, for any fixed α and for any h ∈ H the
following holds:

εT (h) ≤ εαS (h) + |πT −
N∑
j=1

αjπ
j
S |discl(P0, P1) + λ,

where λ = min
h∈H

εαS (h) + εT (h) represents the joint error

between the combined source error and the target one1.

The second term in the bound can be minimized for
any αk when πT = πkS , ∀k. This can be achieved by
using a proper reweighting of the class distributions
in the source domains, but requires to have access to
the target proportion which is assumed to be unknown.
In the next section, we propose to estimate optimal
proportions by minimizing the sum of the Wasserstein
distances between all reweighted sources and the target
distribution. In order to justify this idea, we prove
below that the minimization of the Wasserstein distance
between a weighted source distribution and a target
distribution yields the optimal proportion estimation.
To proceed, let us consider the multi-class problem
with C classes, where the target distribution is defined
as

PT =

C∑
i=1

πTi Pi,

with Pi being a distribution of class i ∈ {1, . . . , C}. As
before, the source distribution with weighted classes
can be then defined as

PπS =
∑
i

πiPi,

where π ∈ ∆C are coefficients lying in the probability
simplex ∆C

def
= {α ∈ RC+ :

∑C
i=1 αi = 1} that reweigh

the corresponding classes.

As the proportions of classes in the target distribution
are unknown, our goal is to reweigh source classes distri-
butions by solving the following optimization problem:

π? = arg min
π∈∆C

W (PπS , PT ). (5)

We can now state the following proposition.
Proposition 3. Assume that ∀i,@α ∈ {∆C |αi =
0, Pi =

∑
j αjPj}. Then, for any distribution PT , the

unique solution π∗ minimizing (5) is given by πT .

Note that this result extends straightforwardly to the
multi-source case where the optimal solution of min-
imizing the sum of the Wasserstein distance for all

1Proofs of several theoretical results of this paper can
be found in the Supplementary material.
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source distributions is the target domain proportions.
As real distributions are accessible only through avail-
able finite samples, in practice, we propose to minimize
the Wasserstein distance between the empirical target
distribution P̂T and the empirical source distributions
P̂ kS . The convergence of the exact solution of this prob-
lem with empirical measures can be characterized using
the concentration inequalities established for Wasser-
stein distance in (Bobkov & Ledoux, 2016; Fournier &
Guillin, 2015) where the rate of convergence is inversely
proportional to the number of available instances in
source domains and consequently, to the number of
source domains.

4 JOINT CLASS PROPORTION
AND OPTIMAL TRANSPORT
(JCPOT)

In this section, we introduce the proposed JCPOT
method, that aims at finding the optimal transportation
plan and estimating class proportions jointly. The main
underlying idea behind JCPOT is to reweigh instances
in the source domains in order to compensate for the
discrepancy between the source and target domains
class proportions.

4.1 Data and Class-Based Weighting

We assume to have access to several data sets corre-
sponding to K different domains X(k), k = 1, . . . ,K.
These domains are formed by n(k) instances x(k)

i ∈ Rd
with each instance being associated with one of the C
classes of interest. In the following, we use the super-
script (k) when referring to quantities in one of the
source domains (e.g µ(k)) and the equivalent without
superscript when referring to the same quantity in the
(single) target domain (e.g. µ). Let y(k)

i be the cor-
responding class, i.e. y(k)

i ∈ {1, . . . , C}. We are also
given a target domain X, populated by n instances
defined in Rd. The goal of unsupervised multi-source
adaptation is to recover the classes yi of the target
domain samples, which are all unknown.

JCPOT works under the target shift assumption pre-
sented in Section 3. For every source domain, we as-
sume that its data points follow a probability distribu-
tion function or probability measure µ(k) (

∫
µ(k) = 1).

In real-world situations, µ(k) is only accessible through
the instances x

(k)
i that we can use to define a distri-

bution µ(k) =
∑n(k)

i=1 m
(k)
i δ

x
(k)
i

, where δ
x
(k)
i

are Dirac

measures located at x
(k)
i , and m

(k)
i is an associated

probability mass. By denoting the corresponding vec-
tor of mass as m(k), i.e. m(k) = [m

(k)
i ]i={1,...,n(k)}, and

δX(k) the corresponding vector of Dirac measures, one

can write µ(k) = (m(k))T δX(k) . Note that when the
data set is a collection of independent data points, the
weights of all instances in the sample are usually set to
be equal. In this work, however, we use different weights
for each class of the source domain so that we can adapt
the proportions of classes w.r.t. the target domain. To
this end, we note that the measures can be decomposed
among the C classes as µ(k) =

∑C
c=1 µ

(k)
c . We denote

by h(k)
c =

∫
µ

(k)
c the proportion of class c in X(k). By

construction, we have h(k)
c =

∑n(k)

i=1 δ(y
(k)
i = c)m

(k)
i .

Since we chose to have equal weights in the classes, we
define two linear operators D(k)

1 ∈ RC×n(k)

and D
(k)
2 ∈

Rn(k)×C that allow to express the transformation from
the vector of mass m(k) to the class proportions h(k)

and back:

D
(k)
1 (c, i) =

{
1 if y(k)

i = c,
0 otherwise,

and

D
(k)
2 (i, c) =

{
1

#{y(k)
i =c}

i={1,...,n(k)}

if y(k)
i = c,

0 otherwise.

D
(k)
1 allows to retrieve the class proportions with

h(k) = D
(k)
1 m(k) and D

(k)
2 returns weights for all in-

stances for a given vector of class proportions with
m(k) = D

(k)
2 h(k), where the masses are distributed

equiproportionnally among all the data points associ-
ated to one class. For example, for a source domain
with 5 elements from which first 3 belong to class 1
and the other to class 2,

D1 =

[
1 1 1 0 0
0 0 0 1 1

]
,

m = [ 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ]T so that h = D1m = [ 3

5 ,
2
5 ]. These

are the class proportions of this source domain. On
the other hand,

D2 =

[
1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

]T
,

so that D2h = m and D1D2 = I.

4.2 Multi-Source Domain Adaptation with
JCPOT

As illustrated in Section 1, having matching proportions
between the source and the target domains helps in
finding better couplings, and, as shown in Section 3 it
also enhances the adaptation results.

To this end, we propose to estimate the class propor-
tions in the target domain by solving a constrained
Wasserstein barycenter problem (Benamou et al. , 2015)
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for which we use the operators defined above to match
the proportions to the uniformly weighted target distri-
bution. The corresponding optimization problem can
be written as follows:

arg min
h∈∆C

K∑
k=1

λkWε,C(k)

(
(D

(k)
2 h)T δX(k) , µ

)
, (6)

where regularized Wasserstein distances are defined as

Wε,C(k)(µ(k), µ)
def
= min

γ(k)∈Π(µ(k),µ)
KL(γ(k)|ζ(k)),

provided that ζ(k) = exp
(
−C

(k)

ε

)
with λk being con-

vex coefficients (
∑
k λk = 1) accounting for the relative

importance of each domain. Here, we define the set
Γ = {γ(k)}k=1...K ∈ (Rn(k)×n)K as the set of couplings
between each source and the target domains. This prob-
lems leads to K marginal constraints γTk 1n = 1n/n
w.r.t. the uniform target distribution, and K marginal
constraints D(k)

1 γk1n = h related to the unknown pro-
portions h.

Optimizing for the first K marginal constraints can
be done independently for each k by solving the prob-
lem expressed in Equation 3. On the contrary, the
remaining K constraints require to solve the proposed
optimization problem for Γ and h, simultaneously. To
do so, we formulate the problem as a Bregman projec-
tion with prescribed row sum (∀k D

(k)
1 γ(k)1n = h),

i.e.,

h? = arg min
h∈∆C ,Γ

K∑
k=1

λk KL(γ(k)|ζ(k))

s.t. ∀k D
(k)
1 γ(k)1n = h.

(7)

This problem admits a closed form solution that we
establish in the following result.
Proposition 4. The solution of the projection defined
in Equation 7 is given by:

∀k, γk = diag

(
D

(k)
2 h

ζ(k)1n

)
ζ(k),h = ΠK

k=1(D
(k)
1 (ζ(k)1n))λk .

The initial problem can now be solved through an
Iterative Bregman projections scheme summarized in
Algorithm 1. Note that the updates for coupling matrix
in lines 5 and 7 of the algorithm can be computed in
parallel for each domain.

4.3 Classification in the Target Domain

When both the class proportions and the correspond-
ing coupling matrices are obtained, we need to adapt
source and target samples and classify unlabeled target
instances. Below, we provide two possible ways that
can be used to perform these tasks.

Algorithm 1 Joint Class Proportion and Optimal
Transport (JCPOT)

1: Input: ε, maxIter, ∀k (C(k) and λ(k))
2: cpt← 0,
3: err ←∞
4: for all k = 1, . . . ,K do
5: ζ(k) ← exp

(
−C(k)

ε

)
, ∀ k

6: while cpt < maxIter and err > threshold do
7: for all k = 1, . . . ,K do
8: ζ(k) ← diag( m

ζ(k)1
)ζ(k), ∀ k

9: h(cpt) ← exp
(∑K

k=1 λ
(k) log

(
D

(k)
1 ζ(k)1

))
10: for all k = 1, . . . ,K do
11: ζ(k) ← ζ(k) diag(

D
(k)
2 h

ζ(k)1
), ∀ k

12: err ← ||h(cpt) − h(cpt−1)||2,
13: cpt ← cpt + 1
14: return h, ∀k ζ(k)

Barycentric mapping In (Courty et al. , 2017b),
the authors proposed to use the OT matrices to esti-
mate the position of each source instance as the barycen-
ter of the target instances, weighted by the mass from
the source sample. This approach extends to multi-
source setting and naturally provides a target-aligned
position for each point from each source domain. These
adapted source samples can then be used to learn a
classifier and apply it directly on the target sample. In
the sequel, we denote the variations of JCPOT that
use the barycenter mapping as JCPOT-PT. For this ap-
proach, (Courty et al. , 2017b) noted that too much
regularization has a shrinkage effect on the new po-
sitions, since the mass spreads to all target points in
this configuration. Also, it requires the estimation of
a target classifier, trained on the transported source
samples, to provide predictions for the target sample.

Label propagation We propose alternatively to use
the OT matrices to perform label propagation onto the
target sample. Since we have access to the labels in the
source domains and since the OT matrices provide the
transportation of mass, we can measure for each target
instance the proportion of mass coming from every class.
Therefore, we propose to estimate the label proportions
for the target sample with L =

∑K
k=1 λkD

(k)
1 γ(k) where

the component lc,i in L contains the probability esti-
mate of target sample i to belong to class c. Note
that this label propagation technique can be seen as
boosting, since the expression of L corresponds to a
linear combination of weak classifiers from each source
domain. To the best of our knowledge, this is the first
time such type of approach is proposed in DA. In the
following, we denote it by JCPOT-LP where LP stands
for label propagation.



Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia

5 EXPERIMENTAL RESULTS

In this section, we present the results of our algorithm
for both synthetic and real-world data from the task
of remote sensing classification.

Baseline and state-of-the-art methods We com-
pare the proposed JCPOT algorithm to three other
methods designed to tackle target shift, namely betaEM,
the variation of the EM algorithm proposed in (Chan
& Ng, 2005) betaKMM, an algorithm based on the ker-
nel embeddings proposed in (Zhang et al. , 2013)2 ,
and MDA Causal, a multi-domain adaptation strategy
with a causal view (Zhang et al. , 2015) 3. Note that
despite the existence of several deep learning methods
that deal with covariate shift, e.g. (Ganin & Lempit-
sky, 2015), to the best of our knowledge, none of them
tackle specifically the problem of target shift.

As explained in 4.3, our algorithms can obtain the
target labels in two different ways, either based on
label propagation (JCPOT-LP) or based on transporting
points and applying a standard classification algorithm
after transformation (JCPOT-PT). Furthermore, we also
consider two additional DA algorithms that use OT
(Courty et al. , 2014): OTDA-LP and OTDA-PT that align
the domains based on OT but without considering the
discrepancies in class proportions.

5.1 Synthetic Data

Data generation In the multi-source setup, we sam-
ple 20 source domains, each consisting of 500 instances
and a target domain with 400 instances. We vary the
source domains’ class proportions randomly while keep-
ing the target ones equal to [0.2; 0.8]. For more details
on the generative process and some additional empiri-
cal results regarding the sensitivity of JCPOT to hyper-
parameters tuning and the running times comparison,
we refer the reader to the Supplementary material.

Results Table 2 gives average performances over five
runs for each domain adaptation task when the num-
ber of source domains varies from 2 to 20. As betaEM,
betaKMM and OTDA are not designed to work in the
multi-source scenario, we fusion the data from all source
domains and use it as a single source domain. From
the results, we can see that the algorithm with label
propagation (JCPOT-LP) provides the best results and
outperforms other state-of-the-art DA methods, except
for 20 source domains, where MDA Causal slightly sur-
passes our method. It is worth noting that, all methods

2code available at http://people.tuebingen.mpg.de/
kzhang/Code-TarS.zip.

3code available at https://mgong2.github.io/papers/
MDAC.zip

Number of source domains
2 5 8 11 14 17 20

JCPOT 0.039 0.045 0.027 0.029 0.035 0.033 0.034
Scott et al. (2013) 0.01 0.044 0.06 0.10 0.22 0.033 0.14

Table 1: Accuracy of proportions estimation for simu-
lated data.

addressing specifically the target shift problem perform
better that the OTDA method designed for covariate
shift. This result justifies our claim about the necessity
of specially designed algorithms that take into account
the shifting class proportions in DA.

On the other hand, we also evaluate the accuracy of
proportion estimation of our algorithm and compare
it with the results obtained by the algorithm proposed
in Scott et al. (2013)4. As this latter was designed to
deal with binary classification, we restrict ourselves to
the comparison on simulated data only and present the
deviation of the estimated proportions from their true
value in terms of the L1 distance in Table 1. From this
Table, we can see that our method gives comparable or
better results in most of the cases. Furthermore, our
algorithm provides coupling matrices that allow to align
the source and target domains samples and to directly
classify target instanes using the label propogation
described above.

5.2 Real-World Data From Remote Sensing
Application

Data set We consider the task of classifying super-
pixels from satellite images at very high resolution into
a set of land cover/land use classes (Tuia et al. , 2015).
We use the ‘Zurich Summer’ data set5, composed of
20 images issued from a large image acquired by the
QuickBird satellite over the city of Zurich, Switzer-
land in August 2002 where the features are extracted
as described in (Tuia et al. , 2018, Section 3.B). For
this data set, we consider a multi-class classification
task corresponding to the classes Roads, Buildings,
Trees and Grass shared by all images. The number of
superpixels per class is imbalanced and varies across
images: thus it represents a real target shift prob-
lem. We consider 18 out of the 20 images, since two
images exhibit a very scarce ground truth, making
a reliable estimation of the true classes proportions
difficult. We use each image as the target domain (av-
erage class proportions with standard deviation are
[0.25± 0.07, 0.4± 0.13, 0.22± 0.11, 0.13± 0.11]) while
considering remaining 17 images as source domains.

4code available at http://web.eecs.umich.edu/
~cscott/code/mpe_v2.zip

5https://sites.google.com/site/michelevolpiresearch/data-
/zurich-dataset
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# of source
domains

Average class
proportions

# of
source

instances

No adap-
tation

OTDA
PT

OTDA
LP

beta
EM

beta
KMM

MDA
Causal

JCPOT
PT

JCPOT
LP

Target
only

Multi-source simulated data

2 [0.64 0.36] 1000 0.839 0.75 0.69 0.82 0.86 0.86 0.78 0.87 0.854
5 [0.5 0.5] 2’500 0.80 0.63 0.74 0.84 0.85 0.866 0.813 0.878 0.854
8 [0.47 0.53] 4’000 0.79 0.75 0.65 0.85 0.85 0.866 0.78 0.88 0.854
11 [0.48 0.52] 5’500 0.81 0.53 0.76 0.83 0.85 0.867 0.8 0.874 0.854
14 [0.53 0.47] 7’000 0.83 0.70 0.75 0.87 0.86 0.85 0.77 0.88 0.854
17 [0.52 0.48] 8’500 0.82 0.75 0.76 0.86 0.86 0.86 0.79 0.878 0.854
20 [0.51 0.49] 10’000 0.80 0.77 0.79 0.87 0.854 0.877 0.86 0.874 0.854

Zurich data set

2 [0.168 0.397 0.161 0.273] 2’936 0.61 0.52 0.57 0.59 0.61 0.65 0.59 0.66 0.65
5 [0.222 0.385 0.181 0.212] 6’716 0.62 0.55 0.6 0.58 0.6 0.66 0.58 0.68 0.64
8 [0.248 0.462 0.172 0.118] 16’448 0.63 0.54 0.59 0.59 0.61 0.67 0.63 0.71 0.65
11 [0.261 0.478 0.164 0.097] 21’223 0.63 0.54 0.58 0.59 0.62 0.67 0.58 0.72 0.673
14 [0.256 0.448 0.192 0.103] 27’875 0.63 0.52 0.58 0.59 0.62 0.67 0.59 0.72 0.65
17 [0.25 0.415 0.207 0.129] 32’660 0.63 0.5 0.59 0.59 0.63 0.67 0.6 0.73 0.61

Table 2: Results on multi-source simulated data and pixel classification results obtained on the Zurich Summer
data set. The underline numbers and those in bold correspond to the second and the best performances obtained
for each configuration, respectively.

Figure 2: Original (top row) and ground truths (bottom
row) images from Zurich data set. Class proportions are
highly imbalanced between the images. Color legend
for ground truths: black: roads, gray: buildings, green:
grass; dark green: trees.

Figure 2 presents both the original and the ground
truths of several images from the considered data set.
One can observe that classes of all three images have
very unequal proportions compared to each other.

Results The results over 5 trials obtained on this
data set are reported in the lower part of Table 2. The
proposed JCPOT method based on label propagation
significantly improves the classification accuracy over
the other baselines. The results show an important
improvement over the “No adaptation” case, with an
increase reaching 10% for JCPOT-LP. We also note that
the results obtained by JCPOT-LP outperform the “Tar-
get only" baseline. This shows the benefit brought by
multiple source domains as once properly adapted, they
represent a much larger annotated sample that the tar-

get domain sample alone. This claim is also confirmed
by an increasing performance of our approach with the
increasing number of source domains. Overall, the ob-
tained results show that the proposed method handles
the adaptation problem quite well and thus allows to
avoid manual labeling in real-world applications.

6 CONCLUSIONS

In this paper we proposed JCPOT, a novel method
dealing with target shift: a particular and largely un-
derstudied DA scenario occurring when the difference
in source and target distributions is induced by differ-
ences in their class proportions. To justify the necessity
of accounting for target shift explicitly, we presented a
theoretical result showing that unmatched proportions
between source and target domains lead to inefficient
adaptation. Our proposed method addresses the target
shift problem by tackling the estimation of class propor-
tions and the alignment of domain distributions jointly
in optimal transportation framework. We used the idea
of Wasserstein barycenters to extend our model to the
multi-source case in the unsupervised DA scenario. In
our experiments on both synthetic and real-world data,
JCPOT method outperforms current state-of-the-art
methods and provides a computationally attractive and
reliable estimation of proportions in the unlabeled tar-
get sample. In the future, we plan to extend JCPOT
to estimate proportions in deep learning-based DA
methods suited to for larger datasets.

Acknowledgements. This work was partly funded
through the projects OATMIL ANR-17-CE23- 0012
and LIVES ANR-15-CE23-0026 of the French National
Research Agency (ANR).



Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia

References

Ben-David, Shai, Blitzer, John, Crammer, Koby,
Kulesza, Alex, Pereira, Fernando, & Vaughan, Jen-
nifer. 2010. A theory of learning from different do-
mains. Machine Learning, 79, 151–175.

Benamou, Jean-David, Carlier, Guillaume, Cuturi,
Marco, Nenna, Luca, & Peyré, Gabriel. 2015. It-
erative bregman projections for regularized trans-
portation problems. SIAM Journal on Scientific
Computing, 37(2), A1111–A1138.

Bickel, Steffen, Brückner, Michael, & Scheffer, Tobias.
2007. Discriminative Learning for Differing Training
and Test Distributions. Pages 81–88 of: ICML.

Blanchard, Gilles, Lee, Gyemin, & Scott, Clayton. 2010.
Semi-Supervised Novelty Detection. Journal of Ma-
chine Learning Research, 11, 2973–3009.

Bobkov, S., & Ledoux, M. 2016. One-dimensional
empirical measures, order statistics and Kantorovich
transport distances. To appear in: Memoirs of the
AMS.

Chan, Yee Seng, & Ng, Hwee Tou. 2005. Word Sense
Disambiguation with Distribution Estimation. Pages
1010–1015 of: IJCAI.

Courty, N., Flamary, R., & Tuia, D. 2014. Domain
adaptation with regularized optimal transport. Pages
1–16 of: ECML/PKDD.

Courty, Nicolas, Flamary, Rémi, Habrard, Amaury,
& Rakotomamonjy, Alain. 2017a. Joint distribution
optimal transportation for domain adaptation. Pages
3733–3742 of: NIPS.

Courty, Nicolas, Flamary, Rémi, Tuia, Devis, & Rako-
tomamonjy, Alain. 2017b. Optimal Transport for
Domain Adaptation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(9), 1853–1865.

Cuturi, Marco. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. Pages 2292–2300
of: NIPS.

Fernando, Basura, Habrard, Amaury, Sebban, Marc,
& Tuytelaars, Tinne. 2013. Unsupervised Visual Do-
main Adaptation Using Subspace Alignment. Pages
2960–2967 of: ICCV.

Fournier, Nicolas, & Guillin, Arnaud. 2015. On the
rate of convergence in Wasserstein distance of the
empirical measure. Probability Theory and Related
Fields, 162(3-4), 707.

Ganin, Yaroslav, & Lempitsky, Victor S. 2015. Unsu-
pervised Domain Adaptation by Backpropagation.
Pages 1180–1189 of: ICML, vol. 37.

Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.,
& Schölkopf, B. 2007. Correcting Sample Selection
Bias by Unlabeled Data. In: NIPS, vol. 19.

Japkowicz, Nathalie, & Stephen, Shaju. 2002. The
Class Imbalance Problem: A Systematic Study.
Pages 429–449 of: IDA, vol. 6.

Kantorovich, L. 1942. On the translocation of masses.
Doklady of the Academy of Sciences of the USSR,
37, 199–201.

Lin, Yi, Lee, Yoonkyung, & Wahba, Grace. 2002. Sup-
port Vector Machines for Classification in Nonstan-
dard Situations. Machine Learning, 46(1-3), 191–
202.

Liu, Anqi, & Ziebart, Brian D. 2014. Robust Classifi-
cation Under Sample Selection Bias. Pages 37–45
of: NIPS.

Manski, C., & Lerman, S. 1977. The estimation
of choice probabilities from choice-based samples.
Econometrica, 45, 1977–1988.

Mansour, Yishay, Mohri, Mehryar, & Rostamizadeh,
Afshin. 2009a. Domain Adaptation: Learning
Bounds and Algorithms. In: COLT.

Mansour, Yishay, Mohri, Mehryar, & Rostamizadeh,
Afshin. 2009b. Domain adaptation with multiple
sources. Pages 1041–1048 of: NIPS.

Monge, Gaspard. 1781. Mémoire sur la théorie des
déblais et des remblais. Histoire de l’Academie Royale
des Sciences, 666–704.

Patel, V. M., Gopalan, R., Li, R., & Chellappa, R.
2015. Visual domain adaptation: a survey of recent
advances. IEEE Signal Processing Magazine, 32(3),
53–69.

Quiñonero-Candela, J., Sugiyama, M., Schwaighofer,
A., & Lawrence, N. D. 2009. Dataset Shift in Machine
Learning. MIT Press.

Sanderson, Tyler, & Scott, Clayton. 2014. Class Pro-
portion Estimation with Application to Multiclass
Anomaly Rejection. Pages 850–858 of: AISTATS,
vol. 33.

Scott, Clayton, Blanchard, Gilles, & Handy, Gregory.
2013. Classification with Asymmetric Label Noise:
Consistency and Maximal Denoising. Pages 489–511
of: COLT, vol. 30.

Storkey, Amos J. 2009. When training and test sets
are different: characterising learning transfer. Pages
3–28 of: In Dataset Shift in Machine Learning. MIT
Press.

Tuia, D., Flamary, R., Rakotomamonjy, A., & Courty,
N. 2015. Multitemporal classification without new
labels: a solution with optimal transport. In: 8th
International Workshop on the Analysis of Multitem-
poral Remote Sensing Images.

Tuia, Devis, Volpi, Michele, & Moser, Gabriele. 2018.
Decision Fusion With Multiple Spatial Supports by



Optimal Transport for Multi-source Domain Adaptation under Target Shift

Conditional Random Fields. IEEE Transactions on
Geoscience and Remote Sensing, 1–13.

Wen, Junfeng, Yu, Chun-Nam, & Greiner, Russell. 2014.
Robust Learning under Uncertain Test Distributions:
Relating Covariate Shift to Model Misspecification.
Pages 631–639 of: ICML.

Yu, Yang, & Zhou, Zhi-Hua. 2008. A Framework for
Modeling Positive Class Expansion with Single Snap-
shot. Pages 429–440 of: PAKDD.

Zadrozny, B., Langford, J., & Abe, N. 2003. Cost-
Sensitive Learning by Cost-Proportionate Example
Weighting. Page 435 of: ICDM.

Zhang, Kun, Schölkopf, Bernhard, Muandet, Krikamol,
& Wang, Zhikun. 2013. Domain Adaptation under
Target and Conditional Shift. Pages 819–827 of:
ICML, vol. 28.

Zhang, Kun, Gong, Mingming, & Schölkopf, Bernhard.
2015. Multi-Source Domain Adaptation: A Causal
View. In: AAAI.


