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Abstract—Any information system emits, by conduction or
radiation, compromising signals likely to be intercepted by an
attacker. These leakage signals usually have low signal-to-noise
ratio and the security of information systems depends on the
capacity of an attacker to denoise them. Denoising is a major
topic in signal processing, currently revolutionized by deep
learning methods. In particular, the scope of image denoising
is large and ranges from classical and low footprint techniques
to computationally intensive deep learning techniques. Deep
learning algorithms typically run onto energy costly computers
using Graphics Processing Units (GPUs) and are currently hardly
available in an embedded context. This paper gives an overview
of existing methods for embedded image denoising and proposes
some perspectives. A case study is also presented that motivates
our research on the domain.

I. INTRODUCTION

All systems processing data introduce distortions and noise
while processing. Indeed, noise is inherent to analog electronic
devices and even digital processing introduces rounding and
sampling noises. Although electronic circuits are ever more
accurate, none of them can claim a noiseless processing.
Different sources of noise appear along the stream of data from
sensors to actuators. Denoising is then needed when noise
jeopardizes the data interpretation. Embedded denoising close
to sensors has several advantages when compared to denoising
post-acquisition. However, it also introduces new challenges
because state-of-the-art methods are computationally intensive
and do not fit easily onto embedded platforms.

The paper is organized as follows. Section II overviews
image denoising methods, image quality assessment metrics
and embedded processing platforms. Section III proposes
perspectives on embedding image denoising methods. A mo-
tivating case study requiring such advances, and relative to
information systems protection, is depicted in Section IV
before the conclusion of Section V.

II. RELATED WORK

In this section, we focus on two areas, namely, image
denoising and embedded processing platforms. We present
an overview of both topics and point out both strengths and
weakness of existing models and platforms.

A. Image Denoising

Image denoising by digital signal processing methods has
been extensively studied [1] and is an essential step in many
computer vision applications. It is based on assumptions of
the nature of the target noise. As an example of classical
denoising methods, a well known method for Gaussian white
noise removal in images is Block-Matching 3D (BM3D) [2].
BM3D uses thresholding in the transform domain to remove
data considered as noise.

Deep learning algorithms have recently stood out from the
crowd for solving many signal processing problems. These
trained models have an extreme ability to fit complex prob-
lems. Recent Graphics Processing Unit (GPU) architectures
have been optimized to support deep learning workloads
and have fostered ever deeper networks, extracting structured
information from data and providing results where classical
algorithms fail. The spread of deep learning has occurred in
image denoising and several models initially developed for
other purposes have been turned into denoisers [3]. Denoising
Convolutionnal Neural Networks (DnCNNs) [4] are designed
in this way. DnCNNs make use of Convolutional Neural
Networks (CNNs) to blindly remove Gaussian noise, without
prior knowledge on the noise level.

Supervised learning techniques such as denoising autoen-
coders [5], [6] are able to denoise images without restriction
on the type of noise, as long as datasets are available with
both noisy and reference images. Autoencoders algorithms
learn to map their input image to a latent space (encoding)
and project back the latent representation to the input space
(decoding). Autoencoders learn a denoising model by mini-
mizing a loss function which evaluates the difference between
the autoencoder output and the reference. Recent methods,
such as Noise2Noise [7], infer denoising strategies without
any clean reference data. The Noise2Noise algorithm learns a
representation of the noise by looking only at noisy samples.

B. Embedded Processing Platforms and their Limits

Most state of the art denoising methods currently run only
onto powerful GPUs that consume hundreds of Watts. Porting
these algorithms onto existing embedded platforms with power
consumption typically under 20W is challenging for different
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Fig. 1. Sketching performances versus energy consumption of several
processing platforms when running DNNs. Scales are rough and are only
for illustration purpose as well as the size of the ellipses representing the
programming complexity of platforms.

reasons. These methods are either too large in terms of
memory storage or too computationally intensive, meaning
that system response time explodes.

Figure 1 sketches embedded platforms efficiency based on
their processing performance and energy consumption, when
executing DNNs. The size of the ellipses roughly represents
the programming effort to obtain a functional system. The
general purpose Central Processing Unit (CPU) is easily
programmable but does not really suit DNNs because of a lack
of parallelism. Parallelism can be improved by increasing the
number of cores, leading to multi or many-core CPUs (MC-
PUs). The drawback of these platforms is their programming
complexity that skyrockets with the number of cores.

GPUs are currently the most used platforms to run DNNs.
Indeed, they present an important degree of parallelism and
thus achieve good performances. Furthermore, most deep
learning frameworks propose abstraction layers that allow
developers to design deep learning applications without even
writing a code of GPU-specific programming language. The
main drawback of high-end GPUs is their energy consumption.
These systems require up to several hundred Watts. Moderns
platforms referred as embedded GPUs propose less energy
consuming processing elements while still showing good re-
sults and good programmability.

Recently, authors have proposed to use Field Programmable
Gate Arrays (FPGAs) to perform all or part of DNN computa-
tion. As an example, in [8], Abdelouahab et al. propose some
tactics to map CNNs onto FPGA. They also work on strategies
where only several layers of a networks are mapped on FPGA
as a pre-processing and rest is done using other processing
elements. This can be viewed as a combination of software
and hardware acceleration.

Application-Specific Integrated Circuits (ASICs) are hard-
ware defined circuits tailored for a specific application. Since
they are application-specific, their circuitry is optimized for a
given problem. ASICs can thus achieve orders of magnitudes
better efficiency, both in terms of energy consumption and
performances. On the other hand, an important effort is
required to design an ASIC. It is expensive and no change can

be made once the circuit produced. Because of that, ASICs are
used only for large markets.

III. RESEARCH PERSPECTIVES

In this section, we present some perspectives for embedded
deep learning denoisers that we intend to explore in the next
years. Different strategies are evoked and discussed, assuming
that denoising is performed by a trained neural network.

A. Networks Reductions

A possible way to reduce the needed memory storage and
the computational burden is to reduce the size of the networks.
In [9], Han et al. propose a method to compress neural
networks without significant loss of accuracy. For instance,
they achieve a weight storage reduction of 35, 39 and 49x
on AlexNet, LeNet and VGG-16, respectively. Their method
operates by pruning low impact connections, quantizing the
network by sharing parameters, and finally applying Huffman
Coding. Network quantization is further studied in [10] where
all inputs and weights are binary quantized. Authors main
interest is to run inference of DNNs onto mobile CPUs.

B. New Networks and Strategies

Instead of compressing existing networks, an avenue of
research is to develop new networks. Since DNNs appeared
and started to draw the attention of the image processing
community, the major way of gaining algorithmic performance
has been to make networks larger and choose their size at the
limit of what can reasonably be trained with backpropagation
on GPUs. Additionally to growing networks, new methods
have significantly improved DNN performances. In 2016, [11]
presented some tricks to raise network sizes up to a hundred
layers like ResNet101. The following year, [12] proposed a
network using new strategies claiming to obtain the same
accuracy as AlexNet with 50x fewer parameters. The same
year, MobileNets [13] proposed a series of DNNs designed
for mobile vision applications.

When different steps of a deep learning algorithm are time
multiplexed, high complexity translates into large response
times. The algorithm may fit on the platform but the computa-
tional strength is too low to provide a response time necessary
for the application requirements. In that case, solutions exist
to accelerate the execution using approximate computing and
hardware optimization. As an example, in [14], Marty et al.
use overclocking and fault tolerance to accelerate a CNN
implemented on a FPGA.

IV. MOTIVATING CASE STUDY

In this section, we present a system that benefits from
advances in the field of embedded image denoising. All
electronic devices produce Electro Magnetic (EM) emana-
tions that not only interfere with radio devices but also
compromise the data managed by the information system. A
third party may perform a side-channel analysis and recover
the original information, hence compromising the privacy of
the system. While pioneering work of the domain focused



Compromising Emanations

Reception Antenna

(

Interception System

)

NN

/N
’ Raster H Denoiser H OCR

Fig. 2. Proposed System: it includes an eavesdropped screen (1) displaying sensitive information connected to an information system (2), and an interception
chain including an SDR receiver (3) sending samples to a host computer (4) that implements signal processing including a deep learning denoiser and CR.

on analog signals [15], recent studies extend eavesdropping
exploits using an EM side-channel attack to digital signals
and embedded circuits [16]. The attacker’s profile is also
taking on a new dimension with the increased performance
of Software-Defined Radio (SDR). With recent advances in
radio equipment, an attacker can leverage on advanced signal
processing to further stretch the limits of the side-channel
attack using EM emanations [17].

In that context, the method drawn in Figure 2 is proposed
as an audit solution to assess the security of an information
system and especially its display. The system first intercepts
the emanations and reconstructs it using a raster. Image
information comes with a very strong noise of complex nature.
A computer is then used to denoise the reconstructed image
and extract its content. It is assumed that the displayed and
intercepted sample contains only characters. The content is ex-
tracted using transfer learning on a pre-trained implementation
of Mask R-CNN [18]. Once content is found, it is possible to
compare it to the content of the reference sample displayed on
the audited screen. The more content is retrieved, the bigger
the information leakage is.

To make the audit more applicable to real systems, the
whole interception system, with SDR, raster, denoiser, and
interpreter, should run onto a unique platform. Currently,
this is not possible since the denoiser/interpreter is run on a
computer and does not fit any embedded platform. This context
motivates our studies on embedded deep learning-based image
denoising.

V. CONCLUSION

In a context of constant growing attention on deep learn-
ing techniques, their embedding becomes a major topic of
research. Denoising is required in many image processing
applications to enhance the raw data acquired from a given
source. We propose in this paper a brief review of conventional
and deep learning denoising techniques, as well as of embed-
ded platforms likely to host denoising algorithms. We notice
that state-of-the-art denoising models are not designed for
embedded systems. Embedded deep learning exists, but mainly
image classification and segmentation have been studied in this
context. From that observation, we propose perspectives to go
forward on embedded deep learning for image denoising.
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