
HAL Id: hal-02082705
https://hal.science/hal-02082705

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Differentiation using Operator Overloading
(ADOO) for implicit resolution of hyperbolic single

phase and two-phase flow models
François Fraysse, Richard Saurel

To cite this version:
François Fraysse, Richard Saurel. Automatic Differentiation using Operator Overloading (ADOO) for
implicit resolution of hyperbolic single phase and two-phase flow models. Journal of Computational
Physics, 2019, 399, pp.108942. �10.1016/j.jcp.2019.108942�. �hal-02082705�

https://hal.science/hal-02082705
https://hal.archives-ouvertes.fr


1 
 

Automatic Differentiation using Operator Overloading 
(ADOO) for implicit resolution of hyperbolic single phase 

and two-phase flow models  

François FRAYSSEa and Richard Saurela,b 

a: RS2N, Recherche Scientifique et Simulation Numérique, St Zacharie, France 
b: LMA, Laboratoire de Mécanique et d’Acoustique, UMR 7031 AMU - CNRS - Centrale Marseille, Marseille, 

France 
 

Abstract: Implicit time integration schemes are widely used in computational fluid dynamics numerical codes 
to speed-up computations. Indeed, implicit schemes usually allow for less stringent time-step stability 
constraints than their explicit counterpart. The derivation of an implicit scheme is however a challenging and 
time-consuming task, increasing substantially with the model equations complexity since this method usually 
requires a fairly accurate evaluation of the spatial scheme’s matrix Jacobian. This article presents a flexible 
method to overcome the difficulties associated to the computation of the derivatives, based on the forward 
mode of automatic differentiation using operator overloading. Flexibility and simplicity of the method are 
illustrated through implicit resolution of various flow models of increasing complexity such as the compressible 
Euler equations, a two-phase flow model in full equilibrium (Le Martelot, et al., 2014) and a symmetric variant 
(Saurel , et al., 2003) of the two-phase flow model of (Baer & Nunziato, 1986) dealing with mixtures in total 
disequilibrium. 

Keywords: automatic differentiation, implicit, two-phase, finite volume, unstructured meshes     

I. Introduction 
In the early days of numerical simulation, the industry growing needs for fast and accurate fluid flow 
predictions lead to numerous developments in the field of Computational Fluid Dynamics (CFD). Among them, 
in the aerospace community for instance, implicit time integrators arose from the motivation of decreasing the 
computational time required to reach steady-state, first for the Euler equations (Mulder & Van Leer, 1983) and 
later for the laminar compressible Navier-Stokes equations (Venkatakrishnan & Barth, 1989) and for the 
Reynolds-Averaged Navier-Stokes equations (Barth & Linton, 1995). Towards a better fidelity and thanks to the 
improvement in computational resources, the development of fast numerical schemes for unsteady flows 
became necessary and feasible. Taking advantage of the numerous acceleration techniques developed for the 
explicit time integrators solving steady-state flows, discrete unsteady equations have been solved as successive 
stationary problems at each time-step (Jameson, 1991). However for problems where the physical time scale is 
greater than the spatial scale divided by the eigenvalue, fully implicit methods are known to be more efficient 
(Pulliam, 1993) (Dubuc , et al., 1998).  

Implicit methods for unsteady flows are known to suffer from higher diffusive and dispersive errors. 
Nevertheless, developments of high-order implicit methods such as those based on backward Taylor series or 
implicit Runge-Kutta (Gottlieb, et al., 2001) opened the way to implicit schemes applied to higher fidelity 
situations including direct numerical simulation (Martin & Candler, 2006) (Liu, et al., 2016).    

One of the major difficulties with implicit schemes is that they require the derivatives of the spatial numerical 
scheme with respect to the flow variables. The complexity of the involved expressions rapidly grows with the 
model equations and spatial scheme sophistication such as for example, Riemann problem-based methods. 
This fact motivated the development of various methods requiring only a crude approximation of the Jacobian 



2 
 

matrix such as for example the alternating direction implicit (Briley & McDonald, 1977) where the implicit 
operator is dimensionally split (restricted to structured grids) or the lower upper symmetric Gauss-Seidel 
method where the operator is decomposed in lower and upper dominant factors (Jameson & Turkel, 1981). 
These approximations while decreasing the development time usually severely degrade the stability of the 
implicit scheme yielding effective time-steps much smaller than the full unfactored form or very slow 
convergence of the unsteady residual.  

While appealing, approximation of the matrix Jacobian through finite differentiation is an expensive strategy 
and subject to round-off errors not easily controlled. Krylov subspace methods for solving linear systems (Saad 
& Schultz, 1986) lead to matrix-free implicit algorithms known as Newton-Krylov-matrix-free. In this approach, 
the matrix Jacobian is not explicitly built, indeed the Krylov methods such as for example the generalized 
minimal residual method (GMRes) mostly only involves matrix Jacobian-vector products which can directly be 
approximated through finite differentiation. Nevertheless, it is well-known that the convergence rate of the 
GMRes method can be highly improved by the application of a preconditioner. However, forming a good 
preconditioner without the explicit form of the matrix is not a trivial task and the whole method is still subject 
to numerical error affecting both the linear and the non-linear convergence rate.  

Automatic Differentiation (AD) (Wengert, 1964) (Griewank & Walther, 2000) is an algorithmic method for 
evaluating derivatives up to any order by propagating the chain rule to a high-level language computer 
program. AD combines the main advantages of symbolic and numerical differentiation without their major 
drawbacks. In contrast to numerical differentiation it provides exact derivatives (up to round-off error) and is 
less computationally demanding. AD performs on computer algorithms directly and as such is able to 
differentiate any complex function as well as numerical procedures such as root-finding methods. Two main 
approaches to AD are usually considered: AD based on source code transformation (ADSCT) and AD based on 
operator overloading (ADOO), the key point of the present contribution. 

 ADSCT is a procedure that takes as an argument a function or a routine of a computer code, parses all 
basic operations and intrinsic functions, and returns another function or routine containing the 
tangent or adjoint derivatives which can be compiled together with the original code. This method is 
quite easy to apply to any programming language. The generated code complexity does not increase 
with respect to the original code allowing efficient compile time optimizations. This method is 
however rather complex to implement. Examples of codes based on this approach include ADIFOR 
(Bischof, et al., 1996) and TAPENADE (Hascoet & Pascual, 2013). 

 ADOO determines the derivatives present in a computer code by appending a dual component to all 
the dependent variables. The dual variable contains the derivatives of the expression with respect to 
the independent variables and is propagated by applying elementary differentiation arithmetic based 
on the chain rule. ADOO benefits from object-oriented programming and more precisely from the 
ability of defining operators on user derived data-types, which is a computer language dependent 
feature. Programs based on this technique include ADOL-C and ADOL-F for C and FORTRAN 
programming language respectively (Walther & Griewank, 2012). 

In this article, we will show how AD can be applied to the computation of complex matrix Jacobians and how it 
considerably simplifies the design of implicit schemes for sophisticated systems of equations. 

The paper is organized as follows. In Section II, the derivation of a general implicit scheme targeting unsteady 
flows is presented. AD applied to the evaluation of the matrix Jacobian is detailed in Section III with practical 
examples in FORTRAN programming language. Then, various fluid flow models of increasing complexity are 
discretized implicitly and tested in Section IV, including the compressible Euler equations, a two-phase flow 
model in full equilibrium (Le Martelot, et al., 2014) and a symmetric variant (Saurel , et al., 2003) of the two-
phase flow model of (Baer & Nunziato, 1986), widely used to model non-equilibrium mixtures.                



3 
 

II. Implicit time integration 
The fluid flow models considered in this article can be written under the following general differential form: 

       div F G div H 0 (1)
t


   


Q

Q Q Q  

where Q  is the vector of conservative variables,   div F Q the conservative part and 

    G div HQ Q the non-conservative part of the system. The discrete finite volume form is obtained by 

first integrating (1) over a time-independent element i of boundary i and applying the Green-

Ostrogradski theorem to the conservative part:   

      i i i i

i i i

dV dS G div H dV 0 (2)
t    

  


    

  
Q

F Q n Q Q  

Then, assuming second order quadrature rule for the surface and volume integrals, averaging the tensor 

 G Q over the domain i and introducing approximate Riemann fluxes *F and *H , system (2) can be 

rewritten as: 

             ij ij ij ij

ij i ij i

* *i
k k i k ki f f f f

i j i j
f f

d
V g ,g S g ,g S 0 (3)

dt  

          
    Q

F Q Q n G Q H Q Q n

In the above system, iQ is the volume average of Q  defined as 
i

i

i

i

1
dV

V 


 Q Q , ijf is a linear surface of 

normal unit 
ijfn  separating elements indexed by i and j  and pointing towards element j . Function  g is 

an interpolation operator reconstructing left and right states at face ijf  satisfying a maximum principle. This 

function takes as argument a set of conservative vectors forming a compact stencil centered in cell i  for the 

set  k
i

Q  and in cell j for the set  k
j

Q .  

The numerical approximation (3) with respect to non-conservative terms in the present formulation is 
particularly simple, but appropriate for various two-phase flow models with non-equilibrium effects (Saurel, et 
al., 2009) (Furfaro & Saurel, 2015). As shown in these references appropriate Riemann solvers considering 
these terms have to be addressed.  

The implicit discrete temporal integration using Backward-Difference-Formula (BDF) under     form gives 

the following non-linear system for the unknown set of vectors        
ij

k k k
i ii f

Q Q Q   forming the 

domain of dependence of cell i : 



4 
 

        
       

ij ij

ij i

ij ij

ij i

n 1 n
n 1 n 1 n 1

*i i
k k ki i f f

i i j
f

n 1 n 1n 1 *
i k k f f

i j
f

n n 1

i i
i

1
V g , g S

t

g , g S

V 0 (4)
t


  



 





          

   
 

 
 

 





Q Q
P Q F Q Q n

G Q H Q Q n

Q Q

 

In the above system, the first order BDF method is obtained using the couple    , 1,0    and the second 

order BDF uses the couple    , 1,1/ 2   .  

It can be shown that BDF of order 1 (BDF1) and 2 (BDF2) are L-stable, furthermore BDF1 is unconditionally 
Strong Stability Preserving (SSP) for the linear case (Total Variation Diminishing-stable). However, BDF2 and all 
other high-order methods (>1) are only conditionally SSP, e.g. it exists a constant 

 n 1 n n 1 s
EEc 0 / max ,..., , for t c t      Q Q Q where EEt  is the maximum time step for TVD 

Explicit Euler integration. This constant c is not easily bounded in the general case, and often t is bounded by 
criteria based on relevant physics of the problem under study. 

System (4) written for all cells of the mesh represents a coupled non-linear set of equations for the next time-

step unknown vector 
n 1

Q . Its solution is approximated by the iterative Newton-Raphson (NR) method. An NR 

method iteration is written as 
r 1 r r

  Q Q Q where the increment 
r

Q is given by the solution of the 

linear system  r r

r


  



P
Q P Q

Q
. At convergence of the NR method, e.g. when 

r

NLn


 

Q

Q
, where 

NL is a tolerance parameter, the solution at the next time-step is obtained: r

NLn

n 1 r 1
lim

 





Q

Q

Q Q . 

The NR method thus requires a sequence of linear problems to solve each time-step involving the derivative of 

the function P with respect to the conservative variables r





P

Q
. In compact form, the Newton iteration is 

obtained through the solution of the following linear system: 

     
       

ij ij

ij i

ij ij

ij i

r rr *i
i k kd f f

i j
f

r rr *
i k k f f

i j
f

s n n n 1

i i i i
i i

V1
g , g S

t

g , g S

1
V V (5)

t t







              

   
 

    
 

   





I J Q F Q Q n

G Q H Q Q n

Q Q Q Q

 

where the matrix Jacobian J gathers all the conservative and non-conservative flux derivatives present in the 

implicit operator r





P

Q
. In case of unstructured grids, J is a sparse non-symmetric block-matrix whose level of 



5 
 

fill-in depends on the union of all spatial domains of dependence which is equal to   k
ii

card
 
 
 

Q . Let us 

consider   m k
i

Q Q , the block matrix imJ of J is related to r





P

Q
through the following equalities: 

     
 

   

     

ij ij ij ij
r r r r rij i ij i

k k k k ki i j i j

ij
r r rij i

k k ki i j

* *
r

i
if f f fr r r

f fm m mg ,g g ,g

im

*
i

fr r
fm m g ,g

if m i , S S

J

if m i,

           
                    

     
        

  
    

  



 
  

 

 



Q Q Q Q Q

Q Q Q

P F H
n G Q n

Q Q Q

P F
n

Q Q
 

   

     

ij ij ij
r rij i

k ki j

ij ij
r ij i
i

*
r

if f fr
f m g ,g

r r
*

k k f f i dr i j
fm Q

im i d

S G S

1
g , g S V

1
V

     
        




 



        

 
 







Q Q

H
Q n

Q

G
H Q Q n I

Q

J I

Performing a single Newton iteration results in the so-called linearized implicit method, which requires only 
one linear system resolution per time-step. Such approximation allows a large gain in computational speed, but 
its accuracy is clearly restricted to the case where the magnitude of the unsteady residual is lower than the 

temporal scheme’s truncation error:  
r 1

k
n O t



 

Q

Q
. Nevertheless, this condition is fulfilled under the 

following situations: 

 Weak temporal non-linearity; 
 Accurate estimation of the initial guess in the Newton’s algorithm;  
 Accurate evaluation of the Jacobian matrix. 

Backward difference formula of order two is not a self-starting method as it requires the solution at time n-1. 
Consequently, the numerical integration for the first time-step needs another discretization scheme. In this 
paper, the first-order backward difference formula is used to start the numerical integration.  

The second implicit scheme considered in this paper is a semi-implicit scheme of the Runge-Kutta family. More 
precisely, the two-stage second-order Strong Stability Preserving Singly Diagonally Implicit Runge Kutta scheme 
(SSPSDIRK-2) (Kennedy & Carpenter, 2016). This is a multi-step method and as such is self-starting. The semi-
implicit terminology refers to the fact that the Runge-Kutta stages are decoupled from each other, resulting in 
the present case in two sequential non-linear equations per time-step. This scheme can be written in the 
following compact form: 



6 
 

             ij ij ij ij

ij i ij i

r,1
i

r,1 r,1 r,1 r,1r,1 r,1* *i
i k k i k kd 11 11 f f f f

i j i j
f f

r,1 n

i i
i

1,1 n r 1,1 r,1 r,1 1 r 1,1

i i i i i i i0

V1
a a g ,g S g ,g S

t

V
t

with , , lim

 

 

 

                          






   

 

Q

St

I J Q F Q Q n G Q H Q Q n

Q Q

Q Q Q Q Q Q Q

             
     

ij ij ij ij

ij i ij i

r,2 r,2 r,2 r,2r,2 r,2* *i
i k k i k kd 22 11 f f f fi j i j

f f

1 1
*

k k21
i j

V1
a a g ,g S g ,g S

t

a g ,g

 

                          



 

age1

I J Q F Q Q n G Q H Q Q n

F Q Q



       ij ij ij ij

ij i ij i

r,2
i

1 11 *
i k kf f f f

i j
f f

r,2 n

i i
i

1,2 1 r 1,2 r,2 r,2 2 r 1,2

i i i i i i 0

i

S g ,g S

V
t

with , , lim

 

 

 

              






   

 

Q

Stage2

n G Q H Q Q n

Q Q

Q Q Q Q Q Q Q

Q



             ij ij ij ij

ij i ij i

2 s s s sn 1 n s* *
i k k i k ks f f f fi j i j

s 1 f fi

t
b g ,g S g ,g S

V



  

                  
  Q F Q Q n G Q H Q Q n

 

with 

2 1
1 0

2 2a ,b
12

2 1 1
22

      
   
         

 

For moderately and highly unsteady flows, forming an accurate Jacobian matrix is of primary importance to 
reach good convergence rate in the Newton’s method (up to quadratic).   

III. Evaluation of the Jacobian matrix 

1. Introduction 
Two main strategies are usually followed to evaluate the Jacobian matrix of the spatial numerical scheme: 

 Analytic differentiation. This approach involves both hand and symbolic differentiation of the 
numerical flux and overall scheme. The main advantage of this approach is the full determination and 
control of the elements of the matrix resulting generally in an accurate and efficient Jacobian 
evaluation. Various drawbacks are however present. First, the complexity of the differentials grows 
rapidly with the model and numerical scheme sophistication making this method very error-prone. 
The level of flexibility is very low since any slight modification in the model or in the numerical scheme 
needs an adaptation of the Jacobian matrix. Further difficulties arise when the numerical scheme 



7 
 

involves root-finding algorithms such as sophisticated boundary conditions and non-explicit equations 
of state (EOS). Symbolic differentiation is somehow more flexible but often at the cost of rather 
complicated expressions thus resulting in a larger computational overhead. 

 Numerical differentiation. This method is based on finite differencing, and as such is not an exact 
method. The aim is to approximate the implicit operator as  

r r

FD
r

FD

( + ) ( ) 




P Q P QP

Q
 

with  FD  a numerical tolerance. While offering a maximum flexibility and ease of implementation, 

this approach has two major drawbacks. First, the computational cost is relatively high as one 
evaluation of the function P is necessary for each degree of freedom. The second drawback lies in the 

calibration of FD . Indeed, its value is of fundamental importance as too high or too small values yield 

inaccurate derivative approximations because of truncation and round-off errors respectively (Dennis 
& Schnabel, 1983). This approach gained however a lot of interest and success when used together 
with Krylov subspace methods as a solver for the linear problems (Brown & Saad, 1990). Indeed, in 

these linear solvers the implicit operator only appears as a product with the solution increment 
r

Q . 

Consequently, the full matrix does not need to be evaluated, instead the matrix-vector product is 
approximated through finite differencing: 

r r r
r FD

r
FD

( + ) P( )  
 

 
P Q Q QP

Q
Q

 

While being attractive in terms of computational speed with respect to the full matrix approximation, 

this method still suffers of non-trivial estimate of FD . An inaccurate approximation of the implicit 

operator can severely degrade the convergence rate of the Newton’s method or the accuracy of the 
linearized implicit method. Furthermore, it is well known that the convergence rate of the iterative 
Krylov subspace linear solvers degrades rapidly when the diagonal dominance decreases (e.g. when 
the time-step increases). Convergence rate of the linear solver is usually significantly increased by the 
application of a preconditioner which tends to decrease the spectral radius of the implicit operator. 
Efficient fully matrix-free preconditioning is nonetheless not trivial and is still an active research area.   

2. Automatic differentiation 
As we shall see in the following, ADOO can be implemented in a straightforward manner into an existing 
FORTRAN code. Let us first consider the following simple example: 

   
 

2

'

f x sin x x

f (x) cos x 2x

 

 
 

The first step consists in replacing the real variables x and f by two objects ADx and ADf having two 

components 
v

dv

 
 
 

: v being the value of the variable itself and dv the value of its derivative. The FORTRAN 90 

standard allows the construction of such objects, more commonly called derived data types (DDT). The 

FORTRAN 2003 standard allows each component of a DDT, and in particular dv , to be an array which gives a 
greater flexibility in handling derivatives with respect to various independent variables. The evaluation of the 
derivative following the ADOO approach is performed in three steps: 



8 
 

 
 

 
 

 AD2 22

AD AD AD AD AD AD

Initialization Operator overloading Pr opagation

sin xx x x sin x x f xx
x f (x ) sin

cos x1 1 1 cos x 2x f '(x)2x

            
                                    

 

 Initialization. It consists in copying the value of x in the component v of DDT ADx  and initializing the 

component dv to 1, indeed in this case 
dx

dv 1
dx

    

 Operator overloading. A DDT is a construct defined by the programmer. As such, no rules are 
predefined for operations involving one or more DDTs and they need to be coded. Fortunately, the 
number of basic operations and intrinsic functions is finite, and their coding can be done once and for 

all. In the above example, rules must be defined for the operators   AD2

AD ADsin , , . 

 Propagation. Once all needed operators and intrinsic functions are overloaded they can be applied to 
any DDT and the derivatives then propagate through the chain rule. 

To better understand how ADOO works, let us consider the one-dimensional compressible Euler equations 
closed by the ideal gas equation of state: 

   
 

   
2 2 2

u
1 p 1

0 with u , u p and E e , p u u
t x 2 1 2

E u E p

   
                            

F QQ
Q F Q  

where , u,p, E,e,   denote the density, the velocity, the pressure, the total energy, the internal energy and 

the polytropic gas constant respectively. Let us assume a BDF1 numerical scheme in time and a first order finite 

volume discretization in space on a uniform grid indexed by i  and of spacing x . A single Newton iteration 
(linearized implicit) simplifies the non-linear system (4) to the following tridiagonal linear system to be solved 
at each time-step: 

 

n n n n

n n

n

* * * *
n n ni,i 1 i 1,i i 1,i i,i 1 * *
i i 1 i 1d i,i 1 i 1,in n n n

i i i-1 i+1

n n n n+1 n* *
i i+1 i i ii,i 1

x

t

with , and (6)

   
   



                       

   

F F F F
I Q Q Q F F

Q Q Q Q

F F Q Q Q Q Q

 

Let us approximate the intercell fluxes by the two-waves Riemann solver of Rusanov (Rusanov, 1962) which has 
a relatively low algorithmic complexity: 

        
 

n n n n n n*
i i+1 i i+1 i+1 iMAX

n
n n n n n i

MAX i i i+1 i+1 i n
i

1
, S

2

p
with S MAX u c , u c and c

   


   



F Q Q F Q F Q Q Q

 



9 
 

Let us focus on the evaluation of the local Jacobian matrix 

n*
i,i 1

n

i





F

Q
appearing in (6) in the special case 

n n n
max i i iS u c , u 0   . Omitting the time superscript n  and average symbol , the exact Jacobian 

obtained by hand differentiation is given by: 

             

       n

2i i i
i i i 1 i i i 1 i i 1 i

i i i i i i i i

*
i,i 1 2 2 i

i i i i 1 i 1 i i 1 i i i i i 1 i 1 in
i i i i i ii

1 1 1u c u 1 1
u E u

2 4 c 2 2 2 4 c 4 c

1 1u3 3 1
u u E u u u u c u u

4 4 c 2 2 2 4 c

  


    

           
                     

           
                     

F

Q
     

                   

i i 1 i 1 i i
i i

3 2
i i i i i i i2 i

i i i 1 i 1 i i 1 i i 1 i 1 i i i 1 i 1 i i
i i i i i i i i

11
u u u (7)

2 4 c

1 u u E 1 2 E 3 1 u 1 1 u c 1u 1
u E E E u E E E E

2 4 c 2 4 2 4 c 2 4 c

 

      

 
 
 
       
 
 
                       

                       
In order to compare this hand differentiated Jacobian to the one obtained by ADOO in FORTRAN language, the 
first step consists in defining a DDT as shown in Figure 1. 

 

Figure 1: FORTRAN definition of a derived data type. 

Note the dimension of the component dv which corresponds to the total number of independent variables. In 
the case of one-dimensional Euler equations NCons represents the number of conservative variables which is 
equal to 3 and Nderiv the number of conservative vectors the intercell flux depends on. Nderiv is equal to 2 in 

the case of first order spatial discretization  n n

i i+1,Q Q .  

The second step consists in overloading operators and intrinsic functions needed to compute the intercell flux 
in order to handle computations involving DDTs. Examples are given in Figure 2. 

 

Figure 2: Examples of operator and function overloading. These functions allow the use of basic arithmetic with REAL type, AutoDiffType 
or a mix of both.   

Let us focus on the function d_times_d described in Figure 2. This function takes as arguments two DDTs and 

returns a DDT whose component v holds the product of the values and the component dv holds the 
conventional derivative of the product. Note the keyword ELEMENTAL, which is a FORTRAN 95 standard and 
allows to call this function with d1 and d2 being scalar DDTs or arrays of DDTs in a transparent way. The 
functions d_times_r and r_times_d are necessary when multiplying a DDT by a REAL constant. Note that similar 
rules may be defined for the product of an INTEGER by a DDT and vice versa.  



10 
 

At this point, all basic arithmetic operators and functions in the code involving DDTs would have to be 
rewritten to use the aforementioned routines. Fortunately, in FORTRAN, an automatic selection of the right 
function can be achieved through interfacing, see example in Figure 3.  

 

Figure 3: Example of operator and function overloading. Interface blocks allowing the use of the symbols =,* and the intrinsic functions 
SIN,COS and EXP whether the arguments are of type REAL or AutoDiffType or a mix of both.  

The selection is based on the type of the argument at compile time. 

Once all required operators and functions are properly overloaded, the last step is to initialize the component 

dv of the independent variables to the identity matrix 

n n

i i+1
dn n

i i+1

  
  
   

Q Q
I

Q Q
 as shown in Figure 4. 

 

Figure 4: Initialization of the derivatives of the left and right vectors of conservative variables prior application of the chain rule. 

Finally, a call to the routine computing the Rusanov flux (Figure 5) will automatically compute all the derivatives 
of the flux with respect to the left and to the right vectors of conservative variables: the v component of the 

DDT variable “Flux(:)” holds all the necessary derivatives. For example, L,R

*

L

F


is stored in 

Flux(VC_Rho)%dv(VC_Rho,LEFT) and L,R

*

R

F


is stored in Flux(VC_Rho)%dv(VC_Rho,RIGHT). 



11 
 

 

Figure 5: FORTRAN routine for the computation of the Rusanov flux as well as all its derivatives with respect to the left and right vectors 
of conservative variables. It is worth to note that except the declaration of the variables where TYPE(AutoDiffType) is inserted, the rest 

of the subroutine corresponds to the conventional one used in the explicit version of the method. 

Without loss of generality, let us detail the computation of L,R

*

L

F


. After the initialization step detailed in 

Figure 4, the left and right dv  components of the conservative vectors 
L Rc cV ,V  are filled with the following 

values: 

   

   

 

L R

L R

L R

L R

T T
c c

L L R R

T T
c c

L L

T
c c

v : v :

V VC _ Rho V VC _ RhoL 1 0 0 L 0 0 0
dv : dv :

R 0 0 0 R 1 0 0

v : u v : u

V VC _ RhoU V VC _ RhoUL 0 1 0 L 0 0 0
dv : dv :

R 0 0 0 R 0 1 0

v : E

V VC _ RhoE V VC _L 0 0 1
dv :

R 0 0 0

  
 

     
    

    
  

 
     

    
    



   

  
 

 
R R

T

v : E

RhoE L 0 0 0
dv :

R 0 0 1




   
  

 

 

In the Rusanov flux routine of Figure 5, the first instruction after the variables declarations (rhoL=VcL(VC_RHO)) 
is a DDT copy which is allowed since the assignment operator has been overloaded. This operation copies the 

components v and dv of  
LcV VC _ Rho   into the components v and dv of the variable L . The next line 

extracts the left-face side value of the velocity Lu  from the conservative vector. Overloading the division 

operator gives the following value for the derivative of Lu  with respect to L : 



12 
 

 
               

  
 

 

L L L L L

L
L

c c c c c
L L 2

c c

L L L L
L 2

LL

V VC_RhoU V VC_RhoU %dv 1,1 V VC_Rho %v V VC_RhoU %v V VC_Rho %dv 1,1
u u %dv 1,1

V VC_Rho V VC_Rho %v

0 u 1 u
u %dv 1,1

  
  

   
  



 

The same result is obtained by hand calculations. Denoting m u  , the velocity is obtained as 
m

u 


. 

Hence, 

L

LL L L L L
2 2

L L L L L

m

u m u u

 
          

    
 

Proceeding the same way for the next lines and assuming MAX L LS u c  , the following intermediate 

derivatives are obtained: 

 

   

   

   

L
L

L

2
L L

L
L

L L L

L L
MAX

L L L L

E
E %dv 1,1

1
p %dv 1,1 u

2
1 c

c %dv 1,1
4 c 2

1u c
S %dv 1,1

4 c 2








 
 

 

 
  
  

 

Finally, the derivative of the Rusanov flux with respect to the left density is obtained as: 

   
* 2
L,R LL L L L

R L
L L L L L

F 1 uu c u c

2 8 c 2 4

   
      

    
 

which after some elementary algebraic manipulation gives the same expression as the one given in (7) 
obtained by hand differentiation. 

IV. Numerical examples 
In this section numerical integration using time implicit schemes is performed on various flow models and 
spatial schemes to demonstrate the flexibility delivered by the automatic differentiation. One-dimensional and 
two-dimensional computations are considered using unstructured meshes decomposed in subdomains using 
Metis graph partitioning (Karypis & Kumar, 1998). Simulations are performed in parallel using the MPI protocol 
and the GNU-gfortran compiler. The linear systems arising from the implicit time discretization are solved by 
the PETSc libraries (Balay , et al., 2018) using block-Jacobi preconditioned GMRes solver (Saad & Schultz, 1986).    

One-dimensional and two-dimensional Euler equations are addressed first on a shock-tube test problem 
followed by an unsteady transonic flow past a cylinder. Simulations of water-hammer using a two-phase flow 
model in equilibrium and a two-phase flow model in disequilibrium are carried out next.  



13 
 

1. Euler equations 

a. 1D Sod shock-tube test-case 
The one-dimensional shock-tube test of Sod (1978) is performed first. The computational configuration is 
composed of a tube of 1m length with a membrane located at x=0.5m separating a chamber at atmospheric 
conditions on the left side and a low-pressure chamber on the right side. Air governed by the ideal gas 

equation of state is considered with polytropic coefficient 1.4  . The pressure is set to 5p 10 Pa  to the 

left of the membrane and 4p 10 Pa  to the right while the densities are set to 31kg.m   and 
30.125kg.m  respectively. The computational domain is discretized with 10000 uniform cells. First-order 

finite volume computations are carried out using explicit Euler integration scheme with a time-step controlled 

by the CFL stability constraint 
t

CFL 0.5
x


  


, being the fastest wave velocity over the domain at a 

given time  n nMAX u c   . The time explicit numerical solution is compared to BDF1 with a single 

Newton iteration for increasing CFL numbers: 10,50 and 100.  

Four numerical flux functions are tested in the present study: the approximate two-waves Riemann solver of 
Rusanov (Rusanov, 1962), the flux splitting scheme AUSM+ (Liou, 1996), the three-wave approximate Riemann 
solver HLLC (Toro, et al., 1994) and the Godunov scheme based on the exact Riemann solution (Godunov, 
1959). The matrix Jacobian of all schemes is built using the ADOO method presented in Section III.2. While the 
algorithmic complexity of the Rusanov and HLLC schemes allow a relatively easy symbolic differentiation (see 
Rinaldi, et al., (2014) for the implicit HLLC scheme), the AUSM+ (see Colonia, et al., (2014) for analytic 
derivatives ) and the Godunov scheme require a fairly amount of work. The AUSM+ scheme involves numerous 
conditional branches for the evaluation of the split Mach number and split pressure.  

The Godunov scheme is based on the exact solution of the Riemann problem (Godunov, 1959) and involves a 
root-finding algorithm for the determination of the star pressure, where symbolic differentiation often requires 
some assumptions at this stage. In contrast, ADOO is able to differentiate the entire numerical scheme, 
propagating the derivatives inside the fixed-point iterative algorithm in a fully transparent way. The only 
precaution to be made in the automatic differentiation of root-finding algorithms of Newton type used in the 
Riemann solver is to set a tolerance allowing both function and function derivative to be converged, the latter 
generally having a slower rate.  

Density plots comparing explicit Euler and BDF1 time integration schemes are presented in Figure 6, for the 
Rusanov, HLLC, AUSM+ and Godunov flux functions. Excellent stability for all schemes is obtained even for 
relatively high CFL number. Unconditional SSP property in the linear case for BDF1 together with exact 
Jacobians transpose very well in this non-linear case.    



14 
 

 

Figure 6: 1D Sod shock-tube problem, density plot. Comparison of explicit Euler and BDF1 numerical solutions using the Rusanov, HLLC, 
AUSMP and Godunov (left to right, top to bottom respectively) schemes with various CFL numbers. 

BDF1 with HLLC scheme and CFL=100 results in a gain in computational time of about a factor 10. Note that in 
the present case, these 1D simulations have been carried out in the unstructured multi-dimensional code 
DALPHADT using the general GMRes linear solver provided by PETSc libraries. As such, the computational gain 
is representative of higher dimensions simulations.   

ADOO time overhead has been measured with respect to analytic differentiation using the Rusanov flux 
function on a purely structured grid arrangement as well. Total simulation time has been recorded using both 
methods and use of ADOO showed negligible impact. Indeed, a time overhead lower than 0.1% with the fast 
block-tridiagonal Thomas algorithm has been observed. In multi-dimensional simulations with sparse non-
symmetric matrices and general linear solvers, this overhead is expected to become even smaller.   

b. 2D transonic flow past a circular cylinder 
The second test-case using the compressible Euler equations is a 2D transonic flow around a circular cylinder of 
1m diameter. The computational domain is rectangular (see Figure 7) with non-reflective boundary conditions 
(BC) assuming low-amplitude waves through algebraic acoustic relations. The circular cylinder BC assumes slip 
condition, consistent with the inviscid Euler equations. Free-stream BC as well as initial condition (IC) uses a 
Mach number (Ma) of 0.5 and an angle of attack of 0°. The domain is discretized with 50000 triangles.  

A second-order finite volume spatial scheme is used. Cell-center gradients are computed using weighted least-
squares based on a stencil composed of all cells sharing a vertex with the control volume. Multi-dimensional 
limiting process is ensured using a vertex-based extension (Park, et al., 2010) of the Barth and Jespersen limiter 
(Barth & Jespersen, 1989). The implicit operator is built using ADOO assuming dependence on direct neighbors 

only, e.g. assuming the set   k
i

Q composed of cells sharing a face with cell I (often referred as first-order 

Jacobian in the literature). Second-order spatial accuracy is ensured through the right-hand-side of the linear 
system where fluxes are computed from reconstructed states. This assumption greatly reduces the memory 
space needed for the implicit operator as well as increases the convergence rate of the linear solver. Indeed, on 



15 
 

a regular 2D grid composed of equilateral triangles   k
i

card 22   
 

Q  using weighted least-squares 

gradient approximation together with vertex-based limiter of (Park, et al., 2010), resulting in 22 non-zero block 

matrices per row. Restriction of   k
i

Q to direct neighbors only involves a Jacobian matrix composed of 4 

non-zero blocks per row. This assumption nevertheless introduces a slight inconsistency between the Jacobian 
matrix and the right-hand-side resulting in the loss of quadratic convergence of the non-linear residual. 

 

Figure 7: Single-phase transonic flow past a circular cylinder. Computational set-up. 

Under these operating conditions, the flow becomes transonic near the top of the cylinder and attached shock-
waves form downstream, ahead of the rear stagnation point. Due to the important total pressure loss across 
the shock and the high curvature, vorticity is generated, and the flow detaches from the wall resulting in an 
unsteady periodic flow (Salas, 1983) (see solution snapshots in Figure 8).     

 

Figure 8: Single-phase transonic flow past a circular cylinder. Contours of density gradients magnitude when periodic regime is reached. 
Solutions are displayed with a time interval of 0.01s when periodic regime is reached. 

Explicit and implicit computations have been carried out using the Rusanov, AUSM+ and HLLC schemes for a 

physical time of 0.3s. Ideal gas equation of state is used with a polytropic coefficient 1.4  . The explicit 

scheme employs a second-order two-stage SSP-Explicit-Runge-Kutta method (SSPERGK-2) (Gottlieb, et al., 
2001).  

The lift coefficient is computed as 
y

s
L

2
w

pn.e dS

C
1

u S
2  





 

, with , u  the free-stream density and velocity and 

2
wS 1m the projected wetted surface. Lift coefficient is plotted as a function of time using AUSM+ 



16 
 

approximate Riemann solver, SSPERGK-2 with CFL=0.5 and one-iteration BDF1 with CFL=10 and CFL=20 in 
Figure 9 (left).  

The results agree with those of Pandolfi & Larocca, (1989).  The lift coefficient values obtained with the first-
order implicit scheme are very close to those given by the second-order explicit scheme despite a slight phase 
lag increasing with the numerical integration time-step. This phase lag can be highly decreased using the 
second-order BDF2 scheme at the cost of solving the non-linear problem up to a reasonable tolerance, see 
Figure 9 (right). The Newton-BDF2 scheme with second-order spatial reconstruction is in fact a quasi-Newton 
approach due to the first-order Jacobian assumption, and only linear convergence has been obtained. A 
decrease factor of 106 has been imposed to the magnitude of the non-linear residual with a maximum of 10 
Newton iterations. Newton-BDF2 is however a rather costly method and no computational gain has been 
observed with respect to the explicit integration. On the other hand, a factor of 8 in computational time has 
been obtained using BDF1 (CFL=20) with respect to SSPERGK-2 on a 16-cores Intel Xeon E5-2687W-v2. 

The simulation has been carried out using the Rusanov and HLLC fluxes and results are displayed in Figure 10. 
Explicit and implicit results are in overall good agreement.        

 

Figure 9: 2D transonic flow past a circular cylinder. left: comparison of lift coefficient using explicit and implicit schemes based on 
AUSM+ spatial flux and right: BDF2 and Newton-BDF2 schemes compared to BDF1 and SSPERGK-2. 

 

Figure 10: 2D transonic flow past a circular cylinder. Comparison of lift coefficient using explicit and implicit schemes based on Rusanov 
and HLLC spatial fluxes (left and right respectively). 

All the tested implicit schemes are in good agreement with the explicit solution and results from the literature. 

ADOO based implicit schemes are now considered for more sophisticated flow models for which derivation of 
numerical fluxes is a challenging task. 

2. Two-phase flow models in full equilibrium and full disequilibrium 
Two compressible two-phase flow models are presented in this section. The implicit discretization using ADOO 
is applied and verified on the numerical simulation of water-hammer two phase flow. 



17 
 

a. Parent model in full disequilibrium 
The symmetric variant (Saurel , et al., 2003) of the compressible two-phase flow model of (Baer & Nunziato, 
1986) in the absence of mass and heat transfer reads in the following 1D compact form: 

        (8)
t x x

 
  

  
F Q H QQ

G Q S Q  

with 

 
 
 

 
 

   

1 I 1

1 1 1
1 1

2
1 1 1 1 I 11 1 1

1 1 1 1 1 I I 11 1 1

2 2 2 2 2

2
I2 2 2 2 2 2 2

I I2 2 2
2 2 2 2 2

0 u
u 0 0

u p pu

u E p p u, , ,E

0 0u

pu u p
p uE u E p

                                                                          

Q F Q G Q H Q

2

2

(9)

 
 
 
 
 
 
 
 
 
  

 

and 

 

 

 
   

 
   

1 2

2 1

I 2 1 I 1 2

2 1

I 2 1 I 1 2

p p

0

u u

u u u p p p (10)

0

u u

u u u p p p

   
 
 
   
      
 
 

  
 
     

S Q 



 

In this system, the subscripts 1 and 2 refer to phase 1 and 2 respectively. k k k k k k, , u ,p , E ,T (k 1, 2)    

are the volume fraction, density, velocity, pressure, total energy and temperature of each phase. I Iu ,p  are the 

interfacial velocity and pressure modeled as in (Saurel , et al., 2003): 

 1 1 2 2 1 2 1 2 1 1 2 1 1 2
I I 2 1

1 2 1 2 1 2 1 2

Z u Z u p p Z p Z p Z Z
u sgn , p sgn u u (11)

Z Z x Z Z Z Z x Z Z

                      
 

where k k kZ c  is the acoustic impedance of phase k with kc the associated sound speed. The 

homogeneous part of this model considers each phase as compressible, evolving with its own velocity, pressure 

and temperature. The source term vector  S Q contains a closure law for pressure disequilibrium and drag 

effects, where controls the rate at which pressure equilibrium is reached and   is the coefficient of friction. 

The volume average pressure and interface velocity are given by: 

1 1 2 2 2 1 1 2
I I

1 2 1 2

Z u Z u Z p Z p
u , p (12)

Z Z Z Z

 
 

 
  



18 
 

The system is closed by an equation of state for each phase, stiffened-gas in this work: 

   
k k SG,k2 2

k k k k k k
k k

p p1 1
E e , p u u (13)

2 1 2

 
    

  
 

and by the saturation constraint: 

1 2 1 (14)    

The compressible two-phase flow model (8)-(14) is a non-conservative hyperbolic system. The intercell flux 
functions arising from the spatial finite volume discretization are solved using an algebraic HLLC-type 
approximate Riemann solver detailed in (Furfaro & Saurel, 2015) and summarized in Appendix B.  

Two 1D shock tube problems are solved using explicit and implicit time integrators. The first problem is a 
water-air shock tube without relaxations, and the second test is a shock tube in a water-air mixture with 
instantaneous pressure relaxation and drag effects. 

Water-air shock tube without relaxations 

Initially a 1m length tube is filled with pure water on the left side of a membrane located at x=0.8m and pure 
air on the right side. Water pressure is set to 0.2GPa while air pressure is set to 0.1MPa. Densities of water and 
air are initially set to 1000kg/m3 and 1 kg/m3 respectively. Water phase is governed by the stiffened gas EOS 

with parameters SG,1p 1GPa and 2.35  and air is governed by the ideal gas law with 1.4  . A small 

volume fraction of air is present in the water and vice versa ( 610  ). The mesh is composed of 2000 
elements and first order spatial discretization is used. The simulation time is set to 276µs. 

This test case in the absence of pressure and velocity relaxations is very challenging. Indeed, interface 
conditions across the two-phase contact of equal pressure and normal velocity are not trivial to achieve as they 
are solely satisfied by the consistent discretization of the non-conservative products present in the model.  This 
problem is thus a strong benchmark for numerical schemes applied to the two-phase flow model out of 
equilibrium.  

Explicit Euler temporal integration with CFL=0.5 and implicit methods with CFL=20 using Newton-BDF1, 
Newton-BDF2 and Newton-SSPSDIRK schemes have been compared. Single-step BDF methods failed on this 
test case for CFL numbers greater than 5. Newton method tolerance has been set to 10-6 , reached in less than 
10 iterations thanks to the Jacobian exactness yielding quadratic convergence. 

Volume fraction of water is displayed in Figure 11. Explicit and implicit schemes are undistinguishable, and they 
all yield a perfectly bounded solution.   



19 
 

 

Figure 11: Water-air shock tube without relaxations. Volume fraction of water using explicit and implicit schemes. 

Mixture pressure and velocity as well as pressures and velocities of both phases are plot in Figure 12. It can be 
seen on the top graphs that BDF1 is more diffusive than the explicit Euler integration but is strongly stable. 
Newton-BDF2 and Newton-SSPSDIRK which are second order accurate give very similar solutions matching the 
explicit solution. A small oscillation is however present at the tail of the rarefaction wave using Newton-BDF2 
scheme where Newton-SSPSDIRK remains stable. Second order implicit methods are only conditionally SSP, 
SSPSDIRK with a less stringent time-step limit. 

Bottom graphs of  Figure 12 show both phases pressures and velocities. Only Newton-SSPSDIRK results are 
shown for the sake of conciseness, explicit solution can be found in (Furfaro & Saurel, 2015). Interface 
conditions are fulfilled: at the contact pressures and velocities of both phases match perfectly.      

 

Figure 12: Water-air shock tube without relaxations. Comparison between explicit and implicit time integrators. Top: mixture pressure 
and mixture velocity. Bottom: pressures and velocities of both phases showing correct fulfillment of interface conditions. 

Water-air mixture shock tube with pressure relaxation and drag effects 

The second test case considered with the two-phase model out of equilibrium is a shock tube composed of a 

water-air mixture. A 1m length tube is initially filled with water and air in proportion 0.1  and 0.9  . A 

membrane is placed at x 0.5m separating a hot pressure chamber at 100bar to the left and 1b to the right. 



20 
 

Densities of water and air are set to 1000kg/m3 and 1kg/m3 respectively. Water phase is governed by the 

stiffened gas EOS with parameters SG,1p 1GPa and 2.35  and air is governed by the ideal gas law with 

1.4  . The mesh is composed of 2000 elements and first order spatial discretization is used. The simulation 

time is set to 790µs. 

Instantaneous pressure relaxation is applied following a time splitting procedure detailed in (Furfaro & Saurel, 

2015). Drag effects are accounted for considering constant water bubble radius wR 5mm . The exchange 

interfacial area per unit volume ( IA ) dependence is thus simplified. It is assumed dependent only on water 

volume fraction ( w ) evolution which in turn is driven by pressure equilibrium. The total friction coefficient   

is then modelled as: 

w1 2 1 2
I

1 2 1 2 w

3Z Z Z Z
A

Z Z Z Z R


  

 
 

This finite rate momentum exchange is integrated following a first-order explicit time-splitting method.  

A comparison between explicit Euler temporal integration using CFL=0.5 and Newton-SSPSDIRK scheme using 
CFL=10,20 and 30 is carried out. Pressure is displayed in Figure 13, showing overall good agreement between 
the explicit and the implicit solutions. The dominant error is due to the time-splitting strategy. Indeed, the 
difference between the explicit solution and SSPSDIRK with CFL=10 is much higher than the differences 
between the various implicit solutions using increasing CFL. 

 

Figure 13: Water-air mixture shock tube with pressure relaxation and drag effects. Relaxed pressure using explicit and implicit time 
integrators. 

Water and air velocities are displayed in Figure 14. Momentum exchanges driven by drag effects are quite stiff 
under these operating conditions as shown by the relatively small velocity drift. Overall good agreement 
between the explicit and the implicit solutions is visible.  



21 
 

 

Figure 14: Water-air mixture shock tube with pressure relaxation and drag effects. Water and air velocities using explicit and implicit 
time integrators. 

b. Reduced model in full equilibrium 
Another two-phase flow model is considered as well for numerical experiments. An asymptotic analysis in the 
stiff limit of velocity, pressure and temperature of system (8)-(14) yields the following two-phase model in full 
equilibrium (Le Martelot, et al., 2014) (Chiapolino, et al., 2016): 

     

2

1 1

u

u u p
0, , (15)

E u E pt x

Y uY

    
            
      
   
    

F QQ
Q F Q  

where 1, u,p,E,Y denote the mixture density, velocity, pressure, total energy and mass fraction of phase 1 

respectively. The system is closed by the saturation constraint: 

1 2Y Y 1 (16)   

and by a mixture equation of state satisfying the following principles of conservation of mixture internal energy 
and mixture specific volume: 

   
   

1 1 2 2

1 1 2 2

e Y e p,T Y e p,T

v Y v p,T Y v p,T (17)

 

 
 

Considering stiffened-gas equation of state for phase 1 and ideal gas equation of state for phase 2, system (17) 
admits a unique physical solution for the mixture pressure: 



22 
 

   

     
1 2

1 2 1 2

2

1 2 SG,1 2 1 SG,1 1 2

1 1 v 2 2 v
1 SG,1 2

1 v 2 v 1 v 2 v

1 1
p A A p A A p A A

2 4

Y 1 c Y 1 c
with A e p , A e (18)

Y c Y c Y c Y c

      

   
    

 

 

Equations (15),(16) and (18) form a conservative hyperbolic system. The sound speed associated to this system 
of equations is very well approximated by the simple Wood formula (Wood, 1930). The intercell flux function 
arising from the spatial finite volume discretization is solved using an algebraic HLLC-type approximate 
Riemann solver (Saurel, et al., 2006).   

Two 1D problems are solved using explicit and implicit time integrators. The first test is a shock tube in a water-
air mixture while the second problem is a double rarefaction wave. Multi-dimensional extension is addressed 
through a sonic jet problem and a gas-gas single mode Rayleigh-Taylor instability  

Water-air mixture shock tube 

A 1m length tube is filled with a mixture of water and air. Water mass fraction is set to 2%. Initially, a 
membrane located at x=0.5m separates a high-pressure chamber to a low-pressure one. On the left side, 
pressure is set to 0.2MPa while it is set to 0.1MPa on the right side. Temperature is imposed to 293K in all the 

domain. Water phase is governed by the stiffened gas EOS with parameters SG,1p 1GPa and 2.35  and 

air is governed by the ideal gas law with 1.4  . The mesh is composed of 10000 elements and first order 

spatial discretization is used. The simulation time is set to 1ms. 

Explicit and implicit integration is carried out. The explicit scheme uses first order Euler integration with CFL 
number set to 0.5, while the implicit scheme uses single-step BDF1 with CFL=10,20 and 40. Mixture density is 
displayed at the final time in Figure 15. Under these mild conditions single-step BDF1 remains stable even for a 
CFL number of 40, yielding a computational gain of a factor 10 with respect to explicit integration. 

 

Figure 15: Water-air mixture shock tube. Mixture density at time t=1ms using explicit Euler and implicit BDF1 schemes. 

Double rarefaction wave 

The second 1D test case considered using the two-phase model in mechanical and thermal equilibrium is a 
double rarefaction wave problem. This test is particularly interesting to benchmark numerical schemes as 
vacuum conditions are reached at the center.  

A 1m length tube is considered filled with almost pure water (air mass fraction equal to 10-6) at atmospheric 
conditions p=0.1MPa and T=293K. Initially a membrane is located at x=0.5m. Velocity is set to -10m/s and 
10m/s to the left and to the right of the membrane respectively. The domain is discretized into 10000 elements 



23 
 

and the simulation time is set to 1.5ms. Explicit first order Euler integration with CFL number equal to 0.5 and 
implicit single-step BDF1 scheme with CFL=10,20 and 40 are used with a first order spatial discretization. 

Pressure and velocity at time t=1.5ms are displayed in Figure 16. Single-step BDF1 scheme remain stable in all 
cases without pressure positivity violation. At a CFL of 40, the gain in CPU time is about a factor 10 with respect 
to explicit Euler integration. 

 

Figure 16: Double rarefaction wave. Velocity (left) and pressure (right) using explicit Euler and implicit BDF1 schemes. 

Multi-dimensional tests are now addressed. A 2D two-phase sonic jet simulation is carried out first, then a 2D 
two-phase single mode Rayleigh-Taylor instability is computed. 

2D sonic jet 

A 2D jet configuration is set up as described in Figure 17. Initially the domain is composed of a water-air 
mixture in equal mass proportion at atmospheric conditions. Water phase is governed by the stiffened gas EOS 

with parameters SG,1p 1GPa and 2.35  and air is governed by the ideal gas law with 1.4  . At the 

left side, a two-phase pressure tank-inlet boundary condition is imposed (see Appendix A). Tank pressure is set 
to 0.2MPa yielding a chocked flow through a convergent-divergent nozzle and a sonic jet develops.    

 

Figure 17: 2D sonic jet computational set-up. 

The domain is discretized using an unstructured mesh composed of about 250000 triangles (the mesh edges 
length is multiplied by a factor 10 in Figure 17). Second order spatial discretization is applied using Barth and 
Jespersen limiter and the simulation time is set to 21ms. Explicit temporal integration uses second order 
SSPERGK scheme with CFL number equal to 0.5. Implicit schemes use single-step first order BDF and second 
order Newton-SSPSDIRK both using CFL equal to 20. In case of Newton-SSPSDIRK scheme, as quadratic 



24 
 

convergence cannot be achieved due to the first order Jacobian simplification, a limit of five iterations to reach 
a non-linear residual magnitude of 10-6 has been imposed. 

Two-phase tank-inlet condition implies the solution to a non-linear equation to approximate the boundary flux. 
The Jacobian boundary contribution is computed in a straightforward manner using ADOO as detailed in 
Appendix A. 

Contours of density at time 14ms and 21ms for the three temporal schemes are displayed in Figure 18. No 
significant diffusion is observed on the jet using BDF1 scheme, in contrast the shock wave is slightly smeared. 
At this CFL number, the higher order Newton-SSPSDIRK scheme predicts a sharper shock front but some non-
amplifying oscillations are present.   

 

Figure 18: 2D jet at time t=14ms (top) and t=21ms (bottom). Mixture density contours. 

Newton-SSPSDIRK scheme with an imposed maximum of five non-linear iterations per stage requires about 10 
linear systems to be solved at each time step. At a CFL number of 20, the CPU gain with respect to two-stage 
explicit SSPERGK scheme is about 17%. Single-step BDF scheme which only requires one linear system solution 
per time step gives a CPU gain factor of about 5.  

Air-Helium Rayleigh-Taylor instability 

A 2D single-mode Rayleigh-Taylor configuration is set up as described in Figure 19. Initially the domain is 
composed of a pure light gas (helium) on the bottom and a denser gas on the top (air). An initial perturbed 
interface separates the two gases to trigger a single-mode instability driven by gravity effects. Gravity 
magnitude has been set to 1000m/s2. The computational domain is all bounded by slip wall boundary 
conditions. Air and helium are governed by the ideal gas law with polytropic coefficients 1.4 and 1.67 
respectively. 

 



25 
 

 

Figure 19: 2D single-mode Rayleigh-Taylor instability computational set up. 

Final simulation time is set to 37.5ms. In the absence of viscous and surface tension effects, the interface is 
highly unstable and subject to chaotic behavior which can be triggered by small perturbations induced for 
example using distinct spatial numerical discretization (Liska & Wendroff, 2004). In our context, the spatial 
discretization is fixed using second-order HLLC scheme on a mesh composed of about 300000 triangles.  

Explicit temporal integration uses second order SSPERGK scheme with CFL number equal to 0.5. Implicit 
schemes use single-step first order BDF and second order Newton-SSPSDIRK both using CFL equal to 100. In 
case of Newton-SSPSDIRK scheme, a limit of five iterations to reach a non-linear residual magnitude of 10-6 has 
been imposed. Contours of mixture density are shown for the three temporal schemes at two time intervals in 
Figure 20. 

Single-step first order BDF scheme is more diffusive than the explicit scheme resulting in a slightly altered 
mushroom shape. In contrast, second order implicit SSPSDIRK scheme gives a remarkably similar solution as the 
explicit one.  

The CPU speed-up using implicit SSPSDIRK scheme is about a factor 4 while it reaches a factor of about 27 using 
single-step first order BDF method.  



26 
 

 

 

Figure 20: Single mode Rayleigh-Taylor instability at time t=22.5ms (top) and t=37.5ms (bottom). Mixture density contours using explicit 
and implicit time integrators. 

V. Conclusion 
A numerical procedure to evaluate the matrix Jacobian coming from the implicit discretization of hyperbolic 
systems has been presented. The approach is based on the forward mode of ADOO and showed numerous 
advantages: 

 It is easily applicable to existing codes with languages compilers supporting user-defined DDT and 
operator overloading; 



27 
 

 It is highly flexible with models and numerical schemes adjustments as the user do not need to worry 
about the implementation of the derivatives; 

 It handles complex numerical algorithms such as root-finding methods or conditional branches 
differentiation in a straightforward manner, 

 The overhead associated to operations on DDTs is negligible in the present context as most of the 
computational time is spent in the linear solver.   

The ADOO method has been applied to the implicit discretization of various flow models, involving root-finding 
methods and complex equations of state. In the test-cases needing unsteady residual resolution, the accurate 
Jacobian evaluation allowed very fast convergence of Newton’s method (always quadratic for first-order in 
space discretization). 

ADOO allowed the implicit discretization of the compressible two-phase flow model of Baer and Nunziato. To 
the author’s knowledge, the present work corresponds to the first successful attempt with a fully implicit 
approach.  

  



28 
 

Appendix A: Tank-inlet boundary condition 
The tank-inlet boundary condition is obtained though the solution of a semi-Riemann problem described in 
Figure 21.  

 

Figure 21: Tank-inlet boundary condition description. 

Assuming a stationary flow between the tank and the inlet, the integration of the energy equation associated 
to the Euler equations on volume V yields: 

     
mass
cons°

* *
L 0L 0

V

. Hu dV=0    uHS uHS 0    H H        
 

 

which gives a first relation linking the tank state to the left Riemann state.  

The enthalpy is conserved across the left curved wave. Considering an isentropic flow in the tank, the speed of 

sound 2

s

p
c

 
   

is assumed constant across the left wave: 
2

*
* 2 L 0
L 0 *

L 0

p p
c c


 

 
. This gives a second relation 

linking the tank state to the left Riemann state: 
*

* L 0
L 0 2

0

p p

c


    . Acoustic relations are assumed through 

the right wave: 

   
* *
R R R R R R R R

* * *
R R R R R R R

p c u p c u

p u p c u u

  

   
 

The middle wave being necessarily a contact, equality of pressure and normal velocity is imposed yielding 
* * * *
L R L Rp p , u u  . Putting all relations together yields to: 

 

 

 
        

2
*

* * *L
L L L 0*

L

*
* * L 0
L L 0 2 *

20 * * * *
0* *

* * R R
R R R

R R

* *
L R

* *
L R

p 1
e p , u H 0

2

p p
f p

c p 1
e p , f p g p H h p 0

p p 2f p
u g p u

c

p p

u u


      


     

        



 
 

 



29 
 

After application of the equation of state, this non-linear relation is solved numerically using Newton’s method. 
Classical sampling is then performed, and the flux is computed from the Riemann solution. ADOO is propagated 
to the Newton’s method in a transparent way, but with an additional convergence criterium based on the 

magnitude of the derivative of function  *h p . 

Extension to the two-phase reduced model is straightforward considering the mixture equation of state. A 
prototype subroutine is given as example in Figure 22. 

 

Figure 22: FORTRAN routine for the computation of tank-inlet boundary flux. The resulting data structure fluxbc contains the derivative 
blocks of the flux with respect to the vector of conservative variables. 

  



30 
 

Appendix B: HLLC solver for the two-phase model in disequilibrium 
 

The two-phase model in disequilibrium can be rewritten under the following compact form for a generic phase 
k: 

     
 
 

 
 

 
 

 

k Ik I

kk k k k kk
2k k k k k k

k k I Ik k

I Ik k k k I Ik

u u
u 0

0, , , (19)
u p pu pt x x

E p uE p u p u

                                              

F Q H QQ
Q F Q H Q

The first step consists in approximating the interfacial terms I Iu et p . This step takes its roots in the Discrete 

Equations Method (Saurel , et al., 2003), given a 2D topology composed of independant channels as illustrated 
in Figure 23. 

 

Figure 23: 2D topology showing two types of contacts at a given element boundary. 

On a given cell boundary, three types of contacts are admissible : two mono-phasic contacs 1-1 and 2-2 and 
one contact 2-1 if the phase 1 volume fraction is higher on the right side or 1-2 if it is lower. Interfacial pressure 
and velocity are approximated as the solution of the Riemann problem associated to the two-fluide Euler 

equations. As the Riemann solution depends only on the left and on the right state, Iu and Ip become locally 

constant during a time-step. 

Focusing on a 2-1 contact, the wave pattern is shown in Figure 24. 

 

Figure 24: Riemann wave pattern associated to contact 2-1.  

 

Wave speeds L,2 R,1S ,S  are computed following Davis approximation (Davis, 1988): 



31 
 

 
 
 

R,1 L,1 L,1 R,1 R,1

L,2 L,2 L,2 R,2 R,2

S Max u c , u c

S Min u c ,u c

  

  
  

The interfacial variables Iu and Ip are computed HLL (Harten, et al., 1983) and HLLC (Toro, et al., 1994) 

approximations respectively: 

 

       
   

  

2 2
L,2 R,1L,2 R,1R,1 L,2*,HLL

I 21
L,2 L,2 R,1 R,1R,1 L,2

*
I R,21 R,1 R,1 R,1 R,1 I R,1

u p u p S u S u
u u

u u S S

p p u S u u p

        
 

      

     

  

In case of a 1-2 contact, a similar approach is followed (Furfaro & Saurel, 2015). 

The interfacial vairbales being locally constant on an element boundary during a time-step, system (19) can be 
rewritten under the following conservative form: 

 
   

 
 

 
 

 
 

k Ik

kk k kk
2k k k

k k Ik k

k k k k I Ik

u

u
0, ,

u P put x

E E p u p u

  
                             

F QQ
Q F Q   

Local constancy of the interfacial variables also implies the decoupling of the full 7-wave Riemann problem in 
two 4-wave Riemann problems as shown in . 

 

Figure 25: Main patterns of phase k Riemann problem: L,k M,k I R,k L,k I M,k R,kS S u S et S u S S       

The 4-wave Riemann solution is based on the Rankine-Hugoniot relations, approximating the wave speeds 

L,kS and R,kS by (Davis, 1988) and intermediate contact M,kS  by HLL. Rankine-Hugoniot relations across the 

various waves read : 

 

 
 

 
 

* *
L,k L,k L,k L,k L,k

* *
R,k R,k R,k R,k R,k

** * ** *
k R,k I k R,k

* ** * **
L,k k M,k L,k k

S

S

u

S

  

  

  

  

F F Q Q

F F Q Q

F F Q Q

F F Q Q

  



32 
 

Explicit relations for * * **
L,k R,k k, andQ Q Q  are obtained as a functions of known states L,k R,kandQ Q . 

Riemann solution state is obtained through a classical sampling. Once ccomputed, these states and fluxes are 
used in the non-conservative explicit or implicit Godunov scheme associated to system (19). 

The whole numerical flux function is algorithmically rather complex. Nevertheless, the ADOO procedure is able 
to provide the exact Jacobian matrix in a straightfoward manner. 

  



33 
 

Bibliography 
 

Baer, M. R. & Nunziato, J. W., 1986. A two-phase mixture theory for the deflagration-to-detonation transition 
(ddt) in reactive granular materials. International Journal of Multiphase Flow, pp. 861-889. 

Balay , S. et al., 2018. PETSc Users Manual, s.l.: Argonne National Laboratory. 

Barth, T. & Jespersen, D., 1989. The design and application of upwind schemes on unstructured meshes. s.l., 
AIAA. 

Barth, T. J. & Linton, S. W., 1995. An Unstructured Mesh Newton Solver for Compressible Fluid Flow and Its 
Parallel Implementation. AIAA Paper 95-0221. 

Bischof, C., Khademi, P., Mauer, A. & Carle, A., 1996. Adifor 2.0: Automatic Differentiation of Fortran 77 
Programs. IEEE Computational Science & Engineering, pp. 18-32. 

Briley, W. R. & McDonald, H., 1977. Solution of the multi-dimensional compressible Navier-Stokes equations by 
a generalized implicit method. Journal of Computational Physics, pp. 372-397. 

Brown, P. N. & Saad, Y., 1990. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM Journal on 
Scientific and Statistical Computing, pp. 450-481. 

Chiapolino, A., Boivin, P. & Saurel, R., 2016. A simple phase transition relaxation solver for liquid–vapor flows. 
International Journal for Numerical Methods in Fluids, 83(7), pp. 583-605. 

Colonia, S., Steijl, R. & Barakos, G. N., 2014. Implicit implementation of the AUSMP and AUSMP-up schemes. 
International Journal for Numerical Methods in Fluids, p. 687–712. 

Davis, S. F., 1988. Simplified second-order Godunov-type methods. SIAM Journal of Scientific and Statistical 
Computing, 9(3), p. 445–473. 

Dennis, J. E. & Schnabel, R. B., 1983. Numerical Methods for Unconstrained Optimization and Nonlinear 
Equations. Englewood Cliffs: Prentice-Hall. 

Dubuc , L. et al., 1998. Solution of the Unsteady Euler Equations Using an Implicit Dual Time Method. AIAA 
Journal, 36, pp. 1417-1424. 

Furfaro, D. & Saurel, R., 2015. A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase 
flows. Computers & Fluids, pp. 159-178. 

Godunov, S., 1959. Finite difference method for numerical computation of discontinuous solutions of the 
equations of fluid dynamics. Matematicheskii Sbornik, Steklov Mathematical Institute of Russian Academy of 
Sciences, Volume 47, pp. 271-306. 

Gottlieb, S., Shu, C.-W. & Tadmor, E., 2001. Strong Stability-Preserving High-Order Time Discretization 
Methods. SIAM Review, pp. 89-112. 

Griewank, A. & Walther, A., 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic 
Differentiation. s.l.:SIAM. 

Harten, A., Lax, P. D. & van Leer, B., 1983. On upstreaming differencing and Godunov-type. SIAM Review, 25(1), 
pp. 35-61. 



34 
 

Hascoet, L. & Pascual, V., 2013. The Tapenade automatic differentiation tool: Principles, model, and 
specification. ACM Transactions on Mathematical Software. 

Jameson, A., 1991. Time dependent calculations using multigrid, with applications to unsteady flows past 
airfoils and wings. AIAA Paper 91-1596. 

Jameson, A. & Turkel, E., 1981. Implicit Scheme and LU-Decompositions. Mathematics of Computation, pp. 385-
397. 

Karypis, G. & Kumar, V., 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM 
Journal on Scientific Computing, 20(1), pp. 359-392. 

Kennedy, C. A. & Carpenter, M. H., 2016. Diagonally Implicit Runge-Kutta Methods for Ordinary Differential 
Equations. A Review, NASA Langley Research Center; Hampton, VA, United States: NASA/TM-2016-219173, L-
20470, L-20597, NF1676L-19716. 

Le Martelot, S., Saurel, R. & Nkonga, B., 2014. Towards the direct numerical simulation of nucleate boiling 
flows. International Journal of Multiphase Flow, pp. 62-78. 

Liou, M. S., 1996. A Sequel to AUSM: AUSMP. Journal of Computational Physics, 129(2), pp. 364-382. 

Liu, X., Xia, Y., Luo, H. & Xuan, L., 2016. A Comparative Study of Rosenbrock-Type and Implicit Runge-Kutta Time 
Integration for Discontinuous Galerkin Method for Unsteady 3D Compressible Navier-Stokes equations. 
Communications in Computational Physics, pp. 1016-1044. 

Martin, M. P. & Candler, G. V., 2006. A parallel implicit method for the direct numerical simulation of wall-
bounded compressible turbulence. Journal of Computational Physics, pp. 153-171. 

Mulder, W. A. & Van Leer, B., 1983. Implicit upwind methods for the Euler equations. AIAA Paper 83-1930. 

Pandolfi, M. & Larocca, F., 1989. Transonic flow about a circular cylinder. Computers & Fluids, 17(1*), pp. 205-
220. 

Park, J. S., Yoon, S.-H. & Kim, C., 2010. Multi-dimensional limiting process for hyperbolic conservation laws on 
unstructured grids. Journal of Computational Physics, pp. 788-812. 

Pulliam, T. H., 1993. Time Accuracy and the Use of Implicit Methods. AIAA Paper 93-3360. 

Rinaldi, E., Pecnik, R. & Colonna, P., 2014. Exact Jacobians for implicit Navier–Stokes simulations of equilibrium 
real gas flows. Journal of Computational Physics, p. 459–477. 

Rusanov, V. V., 1962. Calculation of interaction of non-steady shock waves with obstacles. USSR Computational 
Mathematics and Mathematical Physics, 1(2), pp. 304-320. 

Saad, Y. & Schultz, M. H., 1986. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric 
Linear Systems. SIAM Journal on Scientific and Statistical Computing, pp. 856-869. 

Salas, M. D., 1983. Recent developments in transonic Euler flow over a circular cylinder. Mathematics and 
Computers in Simulation, 25(3), pp. 232-236. 

Saurel , R., Gavrilyuk, S. & Renaud, F., 2003. A multiphase model with internal degrees of freedom: application 
to shock–bubble interaction. Journal of Fluid Mechanics, pp. 283-321. 

Saurel, R., Boivin, P. & Le Métayer, O., 2006. A general formulation for cavitating, boiling and evaporating 
flows. Computers & Fluids, Volume 128, pp. 53-64. 



35 
 

Saurel, R., Petitpas, F. & Berry, R. A., 2009. Simple and efficient relaxation methods for interfaces separating 
compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, pp. 
1678-1712. 

Sod, A. S., 1978. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation 
laws. Journal of Computational Physics, 27(1), pp. 1-31. 

Toro, E. F., Spruce, M. & Speares, W., 1994. Restoration of the contact surface in the HLL-Riemann solver. Shock 
Waves, 4(1), p. 25–34. 

Venkatakrishnan, V. & Barth, T., 1989. Application of direct solvers to unstructured meshes for the Euler and 
Navier-Stokes equations using upwind schemes. AIAA Paper 89-0364. 

Walther, A. & Griewank, A., 2012. Getting started with ADOL-C. In U. Naumann und O. Schenk, Combinatorial 
Scientific Computing, Chapman-Hall CRC Computational Science, pp. 181-202. 

Wengert, R. E., 1964. A simple automatic derivative evaluation program. Communications of the ACM, pp. 463-
464. 

Wood, A., 1930. A textbook of sound. London: G. Bell and Sons Ltd. 

 

 


