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Running title: Homocytous and unicellular cyanobacteria from Pantanal  
Abstract 

 

Saline-alkaline lakes are extreme environments that limit the establishment and development of life. 

The Nhecolândia, a subregion of the Pantanal wetland in Brazil, is characterized by the existence of 

~500 saline-alkaline lakes, which support an underexplored and rich diversity of microorganisms. In 

this study, unicellular and homocytous cyanobacteria from five saline-alkaline lakes were accessed 

by culture-dependent approaches. Morphological evaluation and analyses of near complete sequences 

(~1400 nt) of the 16S rRNA genes were applied for phylogenetic and taxonomic placement. This 

polyphasic approach allowed for the determination of the taxonomic position of the isolated strains 

into the following genera: Cyanobacterium, Geminocystis, Phormidium, Leptolyngbya, Limnothrix 

and Nodosilinea. In addition, fourteen Pseudanabaenales and Oscillatoriales representatives of 

putative novel taxa were found. These sequences fell into five new clades that could correspond to 

new generic units of the Pseudanabaenaceae and Phormidiaceae families. 

 

Keywords: extreme environment, alkaline environment, saline environment, phylogeny, polyphasic 

approach, Oscillatoriales, Pseudanabaenales, Chroococcales, Synechococcales, tropical wetlands, 

Brazil.   



 

1. Introduction 

Cyanobacteria are an ancient phylum of oxygenic photoautotrophic bacteria with a diverse 

morphology and physiology. This group’s functional plasticity associated with its long evolutionary 

history has allowed it to disperse around the world, including into extreme environments with high 

and low temperatures, a range of salinities, pH levels and limited availability of nutrients (Taton et 

al. 2003, 2006, Turicchia et al. 2009, Bahl et al. 2011, Rigonato et al. 2012).  

A number of heterocytous and nonheterocytous genera have been reported from saline and alkaline 

lakes (Jones and Grant 1999, López-Archilla et al. 2004, Foti et al. 2008, Tsyrenova et al. 2011, 

Dadheech et al. 2012, 2013). The isolation and characterization of these strains can generate 

interesting data about cyanobacterial distribution and behavior. This approach can be valuable for 

solving selected taxonomic questions and also for providing biological material useful for applied 

and physiological studies (Ward et al. 1998, López-Cortéz et al. 2001, Taton et al. 2006). Several 

studies have shown that strains from extreme environments are sources of interesting metabolites 

with biotechnological applications (Grant 1992, Horikoshi 1999, Silva-Stenico et al. 2012, Taton et 

al. 2012). 

The Brazilian Pantanal is the largest continental wetland on the planet, extending over 2 x 105 km² 

(Por 1995). It consists of a patchwork of subregions with highly variable hydrological, chemical and 

pedological features (Rezende-Filho et al. 2012). Nhecolândia is a peculiar 24,000 km² subregion of 

the Pantanal that contains a myriad of shallow saline-alkaline and freshwater lakes coexisting in close 

proximity.  In saline-alkaline lakes, inorganic ion concentrations exceed 2.5 g·L-1 and electrical 

conductivity exceeds 3 mS·cm-1, with pH values above 8.9. Extreme values up to 50 g·L-1, 70 mS·cm-

1 and 10.5, respectively, have been recorded during the dry season. The high pH conditions with a 

NaHCO3 chemical profile are positively correlated with the electrical conductivity (Furian et al. 2013) 

and also associated with high contents of dissolved organic carbon up to 500 mgC·L-1 (Mariot et al. 

2007). These lakes are hypersaline (athalassohaline) soda lakes with a similar chemical composition 

to the lakes of the East Africa Rift Valley (Ventosa and Arahal 1989, Duarte et al. 2012).  

Blooms of microalgae and cyanobacteria occur usually when the electrical conductivity of the water 

exceeds about 3 mS·cm-1. These blooms are seasonal or permanent, depending on the intensity of the 

rainfall during the wet season (De-Lamonica-Freire and Heckman 1996, Santos and Sant’Anna 2010, 

Santos et al. 2011).  

Few studies have focused on the occurrence and distribution of cyanobacteria in the Nhecolândia, 

and were based on floristic surveys (De-Lamonica-Freire and Heckman 1996, Oliveira and Calheiros 

2000, Malone et al. 2007, Santos and Sant’Anna 2010). Cyanobacteria were reported as the dominant 

group in the saline-alkaline lakes from the Pantanal wetland during the dry season (De-Lamonica-

Freire and Heckman 1996). Otherwise, the genetic diversity of cyanobacteria from this environment 

remains mostly unexplored.  

In this study, the cultured diversity of unicellular and homocytous cyanobacteria from the saline-

alkaline lakes in Pantanal da Nhecolândia was assessed by morphology and phylogeny of 16S rRNA 

genes, allowing a robust systematic evaluation of these strains. 

 

2. Materials and Methods 

 

2.1 Site and Sampling  

The Nhecolândia is located between the Taquari River (North) and the Negro River (South). In this 

region, the number of lakes has been estimated from 12,000 to 17,500, including 500 to 600 saline-

alkaline lakes (Oliveira et al. 2011). Despite great differences in chemical composition between 

freshwater and saline-alkaline lakes, all surface waters in the region belong to the same chemical 

family, corresponding to several concentration stages of the Taquari River water that supplies the 

region (Rezende-Filho et al. 2012). The concentration stage depends on the hydrological functioning 

of each lake, which is itself controlled by the relative importance of low-permeability soils as a barrier 

to movement of water into or out of the lakes through the subsurface (Barbiero et al. 2008). Furian et 

al. (2013) have concluded that the high pH salinity observed in some lakes results from an ongoing 



 

process of accumulation and evaporation under relatively humid climatic conditions and poor 

drainage. 

The sampling was carried out in Southern Nhecolândia at Centenário farm located in the north of the 

city of Aquidauana, Mato Grosso do Sul State (Fig. 1). The region has a tropical humid climate with 

a short dry season. The mean annual air temperature is about 25°C, ranging from 21°C in winter to 

32°C in summer. Mean annual precipitation (P) is about 1,100 mm, and the annual evapotranspiration 

(ETP) is approximately 1,400 mm, giving a hydrological deficit of about 300 mm. Precipitation and 

ETP show a pronounced seasonal cycle, with most rainfall occurring from October to April and with 

excesses from November to March (Tarifa 1986). 

Water samples were collected from five shallow, non-stratified, saline-alkaline lakes (Fig. 1). 

Additionally, a sediment sample was collected from one lake (Salina Verde) that had a heavy 

cyanobacterial bloom. The geographic coordinates and physico-chemical parameters of these lakes 

are reported in Table 1. 

 



 

 
 

Figure 1 - Location of the studied sites in the Nhecolândia, Pantanal wetland. (A) Salina Verde; (B) 

Salina Grande; (C) Salina Preta; (D) Salina 67 mil; and (E) Salina Centenário. 

 

2.2 Cyanobacterial isolation and morphological evaluation 

In the laboratory, cyanobacterial growth was achieved by inoculating one milliliter of each water 

sample into flasks containing 75 mL of BG-11 medium (Allen 1968). After visible growth, the 

cultures were subjected to repeat streaking onto BG-11 solid medium and examined by microscopic 

observation until completely purified. Mono-specific cyanobacterial cultures were grown under white 



 

fluorescent light (40 µmol photons·m-2· s-1) with a 14:10 h light:dark (L:D) cycle at 25 ºC ±1 ºC. The 

isolated strains were maintained in the Molecular Ecology of Cyanobacteria Laboratory collection 

(CENA/USP), Piracicaba, São Paulo State, Brazil. The morphological characterization was 

performed according to the systematic scheme proposed by Komárek and Anagnostidis (1986, 1999), 

revised by Hoffmann et al. (2005) and Komárek (2010), as well as recent revisions for new genera. 

 

2.3 DNA extraction, amplification and sequencing 

Total genomic DNA was extracted using the method described by Fiore et al. (2000). PCR 

amplification and sequencing of the 16S rRNA gene (average length, 1,400 nt) were performed as 

previously described (Fiore et al. 2007). The quality of the DNA and specificity of the PCR were 

analyzed by agarose gels (1 % w/v) using the Low DNA mass ladder (Life Technologies/Invitrogen, 

Carlsbad, CA, USA). The gels were stained with the SYBR Safe DNA gel stain (Life 

Technologies/Invitrogen) and visualized under UV light. The PCR products were cloned using the 

pGEM-T Easy vector system (Promega, Madison, WI, USA) according to the protocol provided by 

the manufacturer. Competent E. coli DH5α cells were transformed, and plasmids containing the 

cloned gene were extracted by an alkaline lysis method (Birnboim and Doly, 1979). The plasmids 

containing the gene fragments were sequenced with the M13 forward and reverse primer set and the 

16S rRNA internal primer sets, 357F/357R, 704F/704R and 1114F/1114R (Lane 1991) to cover the 

entire fragment (1,400 nt), using the BigDye Terminator v3.1 cycle sequencing kit (Life 

Technologies/Applied Biosystems, Foster City, CA, USA). The cycle sequencing reaction was 

performed starting at 95 ºC for 1 min followed by 35 cycles of the following: 95 ºC for 15 s, 50 ºC 

for 15 s and 60 ºC for 2 min. After completing the sequencing reaction, the DNA was precipitated 

using a sodium acetate buffer (1.5 M sodium acetate, pH 9.0 and 250 mM EDTA) and washed with 

100 % and 70 % ethanol. The purified DNA was re-suspended in Hi-Di formamide (Life 

Technologies/Applied Biosystems), and the sample was placed in an ABI PRISM 3500 genetic 

analyzer (Life Technologies/Applied Biosystems).  

 

2.4 Sequence processing and phylogenetic analysis 

The 16S rRNA sequenced fragments were assembled into contigs using the Phred/Phrap/Consed 

software (Philip Green, Univ. of Washington, Seattle, USA). The sequences were trimmed by 

considering only bases with a quality score above 20. For accurate phylogenetic analyses of 16S 

rRNA, the best-matched sequences for each sequenced strain and the reference sequences were 

retrieved from GenBank. Phylogenetic analysis was performed using Mega 5.1 software (Tamura et 

al. 2011). All sequences were aligned using Muscle. Maximum likelihood was performed by applying 

the Gamma evolutionary model distributed with Invariant sites (G+I) and the Kimura-2 parameter as 

defined by the BIC (Bayesian Information Criterion). Gaps were treated as missing data, and 

bootstrap resampling was performed using 1,000 replications. The 16S rRNA gene sequences were 

deposited in the NCBI GenBank (Table 2). 

 

3. Results and Discussion 

 

Twenty-eight non-heterocytous cyanobacterial strains were isolated from the studied saline-alkaline 

lakes. The evaluation of morphological features organized these strains within the orders 

Chroococcales, Synechococcales, Pseudanabaenales and Oscillatoriales (Fig. 2, Table 2). The two 

unicellular isolated strains were affiliated to Cyanobacteriaceae and Merismopediaceae and the 26 

homocytous to Pseudanabaenaceae (24) and Phormidiaceae (2).  

The  16S rRNA gene sequences of unicellular and homocytous morphotypes showed a mixed 

distribution in the phylogenetic reconstruction (Fig. 3), corroborating with other studies showing that 

the orders Chroococcales, Synechococcales, Pseudanabaenales and Oscillatoriales are polyphyletic 

(Hoffmann et al. 2005,  Furtado et al. 2009, Shih et al. 2013). Although Cyanobacteria is a 

monophyletic phylum, a consensus was not yet reached regarding the origin and evolutionary history 

of its multicellularity or concerning which morphotypes emerged earliest (Sánchez-Baracaldo et al., 



 

2005;  Schirrmeister et al., 2011). Furthermore, cellular division genes determine cyanobacterial 

multicellularity and filamentous phenotypes may result from modifications of the gene regulatory 

network controlling cell division (Mori and Johnson 2001, Miyagishima et al. 2005, Dagan et al. 

2012). Whereas morphological evaluation is still needed due to the traditional morphological 

classification of Cyanobacteria, it is not always in agreement with molecular phylogeny. Therefore, 

the systematics of Cyanobacteria has been reapeatedly reviewed in order to arrive at a consensus 

(Komárek and Anagnostidis 1986, 1999, Hoffmann et al. 2005, Komárek 2010). 

 

 
Figure 2 – Microphotographs from selected cyanobacterial strains related to each phylogenetic 

cluster. A and B: Phormidium sp.  CENA 525; C and D: Leptolyngbya sp. CENA 538; E: 

Pseudanabaenaceae CENA 530; F: Leptolyngbya sp. CENA 532; G: Pseudanabaenaceae CENA 528; 

H: Nodosilinea sp. CENA 522; I and O: Phormidiaceae CENA 533; J: Nodosilinea sp. CENA 512; 

K: Pseudanabaenaceae CENA537; L : Leptolyngbya sp. CENA 540; M: Leptolyngbya sp. CENA 

542; N: Geminocystis sp. CENA 526; P: Limnothrix sp. CENA 545; Q: Leptolyngbya sp. CENA 520; 

R: Cyanobacterium sp. CENA 527; S: Pseudanabaenaceae CENA 519; T: Pseudanabaenaceae CENA 

510; U: Leptolyngbya sp. CENA 517. 

 



 

 

3.1 Synechococcales and Chroococcales 

 
Figure 3 – Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences of strains of 

Chroococcales, Synechococcales (on grey boxes), Oscillatoriales and Pseudanabaenales. Bootstrap 

values equal to or greater than 50 % are indicated at the nodes. The studied strains are in the clades 

indicated by a filled and bold circle.  



 

Morphologically, the strain CENA526 has solitary rounded or slightly oval cells and hemispherical 

cells after cell division; the cells did not form colonies, lacked gelatinous envelopes and had cell 

diameters of 4.08-7.15 µm. The CENA527 strain contained both solitary cells or cells in groups of 

two after division, and the cells were more or less cylindrical, without gelatinous envelopes, and had 

cell lengths of 2.30- 3.50 µm and cell widths of 2.10-2.33 µm. These morphological features are 

characteristic of Synechocystis aquatilis and Synechococcus cf. nidulans, respectively, identified 

previously in this environment (Santos and Sant´Anna 2010). However, the CENA526 strain had a 

larger cell diameter than the type-species Synechocystis aquatilis strain PCC 6803 (Korelusová et al. 

2009), and the S. aquatilis strain observed previously in the Pantanal wetlands (Santos and Sant´Anna 

2010). Likewise, the CENA527 strain had a cell width larger than the typically observed 

Synechococcus nidulans strains (Komárek and Anagnostidis 1999).  

Based on phylogeny of the 16S rRNA gene sequences, the two unicellular strains and their most 

similar morphotypes mentioned above were not related (Fig. 3, Fig. S1). The sequence of CENA526 

belonged to a clade formed by strains belonging to the recently described genus Geminocystis 

(Korelusová et al. 2009) and Cyanobacterium. The 16S rRNA sequence of CENA526 exhibited 96.3 

% identity to G. herdmanni PCC 6308, described as the type-species for the Geminocystis genus, 

which was previously identified as Synechocystis sp. PCC 6308. According to Korelusová et al. 

(2009), the main morphological differences between Synechocystis and Geminocystis are the cell 

diameter, the ultra-structural position of the thylakoids and the phylogenetic position. The cell size 

of CENA526 strain (4.08-7.15 µm diameter) is bigger than the reference strain, Synechocystis sp. 

PCC 6803 (1-5 µm diameter), and the Geminocystis cluster is not related with the typical 

Synechocystis cluster (Fig. 3). Currently, only two species in the Geminocystis genus have been 

described; one was isolated from a freshwater lake in the USA, and the other was isolated from the 

soil in Papua New Guinea. Furthermore, considering the cut-off value of 95 % of 16S rRNA sequence 

identity for genus definition (Wayne et al. 1987, Stackebrandt and Goebel 1994, Komárek 2010), 

CENA526 belonged to the Geminocystis genus and could represent a novel species from tropical 

saline-alkaline lakes. 

The 16S rRNA sequence of CENA527 was included in a well-supported cluster (bootstrap value of 

99 %) with two sequences from Cyanobacterium and had 98.7 % identity to C. stanieri PCC 7202, 

the type-species for this genus. This fact along with morphological similarity of CENA527 to 

Cyanobacterium (cell dimensions and a visible lengthwise striation) and the occurrence of at least 

three Cyanobacterium species (C. synechococcoides, C. minervae and C. diachloros) in saline-

alkaline environments, allowed the identification of this strain as Cyanobacterium sp. 

 

3.2 Oscillatoriales 

In the filamentous oscillatorialean group, the two Phormidiaceae strains (CENA525 and CENA533) 

were preliminarily identified as Phormidium spp. based on morphological features. The Phormidium 

genus is characterized by quadratic or sub-quadratic cells that are cylindrical and isopolar, have non-

branched and homocytous filaments, and form irregular aggregates with more or less parallel-oriented 

trichomes (Komárek and Anagnostidis 2005). Despite the fact that these two strains showed similar 

cell size and trichome morphology, CENA533 had necridic cells and sheaths, while CENA525 

possessed motile trichomes (Fig. 2). The occurrence of Phormidium morphotypes in the Brazilian 

Pantanal wetlands has been documented (Santos and Sant´Anna 2010). 

The 16S rRNA sequence of Phormidium sp. CENA525 shared 99.0 % identity with Phormidium sp. 

LEGE 06072 and Phormidium acuminatum PCC 6304 (synonymous with Oscillatoria acuminata 

PCC 6304) (Komárek and Anagnostidis 2005). The CENA525 sequence grouped in a highly 

supported clade (99 % bootstrap value) containing several sequences from Phormidiaceae (Fig. 3, 

Clade J; Fig. S2). These strains had no coherent morphological traits (such as apical cell morphology) 

but were obtained from extreme environments, such as the poles, hypersaline environments and hot 

springs. According to Chatchawan et al. (2012), the typical Phormidium phylogenetic cluster 

comprises Phormidium sp. UTEX 1580 and Phormidium tergestinum CCALA 155, but this cluster 



 

had little relationship with the cluster containing the CENA525 sequence. In addition, the CENA525 

sequence shared 89.9 % identity with the typical Phormidium representatives. 

The genus Phormidium is a polyphyletic group with few diacritic morphological characters 

(Strunecký et al. 2011, Chatchawan et al. 2012). Traditionally, this genus is divided into eight groups 

that differ in the morphology of the apical end cells (Komárek and Anagnostidis 2005). However, 

recent studies have demonstrated that this traditional division is not supported by the Phormidium 

phylogeny. Polyphasic approaches have been applied in an attempt to clarify the taxonomic position 

of the strains that have been assigned as Phormidium spp, and new genera, such as Coleofasciculus 

(Siegesmund et al. 2008), Phormidesmis (Komárek et al. 2009, Turicchia et al. 2009), Wilmottia 

(Strunecký et al. 2011) and Oxynema (Chatchawan et al. 2012) have been described. 

The CENA533 sequence had an identity of 92.2 % with sequences of the genera, Coleofasciculus 

(synonymous with Microcoleus chthonoplastes), Arthrospira, Spirulina, Lyngbya, Hydrocoleum and 

Oscillatoria, below the cut-off value used to delimit genera (Wayne et al. 1987, Stackebrandt and 

Goebel 1994, Komárek 2010). Notwithstanding, this sequence grouped in a well-supported clade 

(bootstrap value of 75 %) with the short sequence of Geitlerinema cf. acuminatum CCALA 141 

(1,165 nt) (Fig. 3, Clade K). The latter strain was isolated from the soil of Romania and was first 

identified as Microcoleus vaginatus (Vaucher) Gomont ex Gomont, renamed as Phormidium animale 

(C. Agardh ex Gomont) Anagnostidis et Komárek and recently reclassified as Geitlerinema by 

Lokmer (2007). However, considering the morphological features (Geitlerinema obligately has 

motile trichomes and an absence of sheaths - Komarék and Anagnostidis 2005), CENA533 must be 

excluded from this genus (Fig. 2). Therefore, CENA533 was identified only at the family level. 

 

3.3 Pseudanabaenales 

A total of 24 pseudanabaenacean strains were isolated. The only representative of the genus 

Limnothrix was the CENA545 strain. Limnothrix is defined as those morphospecies containing 

isopolar and slightly bent trichomes, absence of false branching, and cylindrical, elongated and 

generally unconstricted cells (1-6 µm in width) with apical or central aerotopes (Komarék and 

Anagnostidis 2005). Blast analysis showed that the sequence of Limnothrix sp. CENA545 shared 99.7 

% identity with sequences of Limnothrix redekei 2LT25S01, Limnothrix sp. CENA109, Limnothrix 

sp. CENA110 and Limnothrix sp. CENA111. The same comparison between our sequence and the 

sequence of the reference strain for the genus, Limnothrix redekei NIVA-CYA227/1 (Suda et al. 

2002), revealed an 88.3 % identity. This dissimilarity was reflected in the phylogenetic reconstruction 

because our strain did not group with the reference strain (Fig. 3; Fig. S2). Studies on the phylogeny 

of Limnothrix strains have demonstrated that their sequences are distributed mainly into two well-

supported clades; one clade contains the reference sequence and other sequences from different 

pseudanabaenacean genera, and the other clade is comprised of sequences exclusively assigned as 

Limnothrix spp. (Bernard et al. 2011, Perkerson et al. 2010, Zhu et al. 2012). These findings indicate 

that the reference strain for Limnothrix should be re-evaluated. Alternatively, one of the sequences 

included in Clade I could be used as a reference sequence because the whole group has coherent 

morphology and is stable in a well-supported phylogenetic cluster (Fig. 3, Clade I). 

All of the other isolated pseudanabaenacean strains had morphological features similar to the genus 

Leptolyngbya, which is defined as consisting of strains with very thin trichomes (less than 3.5 µm in 

width) and cells that are isodiametric or have longer lengths than widths (Komarék and Anagnostidis 

2005). Leptolyngbya is a polyphyletic assemblage. Leptolyngbya sensu stricto contains the type-

species L. boryana in a monophyletic and well-supported clade, and Leptolyngbya sensu lato 

comprises several morphologically and phylogenetically related lineages (Taton et al. 2006, Johansen 

et al. 2011). 

The isolated strains Leptolyngbya sp. CENA534, Leptolyngbya sp. CENA540 and Leptolyngbya sp. 

CENA542 showed 99.7 % sequence identity with Leptolyngbya spp. and grouped into the 

Leptolyngbya sensu stricto clade (Fig. 3 – Clade A). Leptolyngbya sp. CENA538 shared 96.7 % 

sequence identity with Leptolyngbya sp. O-77 and grouped in a separate and highly supported clade 

with Leptolyngbya laminosa ETS-08 and Geitlerinema sp. PCC 8501. Interestingly, these strains 



 

were isolated from different thermophilic environments (Fig. 3 – Clade B). Leptolyngbya sp. 

CENA520 and Leptolyngbya sp. CENA532 grouped together in a separate clade (Fig. 3 – Clade G). 

Leptolyngbya possesses few morphological features that are useful for its identification; thus, 

misidentifications are common and have hampered the definition of new taxa. Nevertheless, it is 

difficult to propose new taxonomic arrangements inside Leptolyngbya sensu lato because several 

studies have reported that the genetic diversity exceeds the morphological diversity (Casamatta et al. 

2005, Komárek and Anagnostidis 2005, Johansen et al. 2008). 

Recently, the new monophyletic genus Nodosilinea was described from strains previously identified 

as Leptolyngbya spp.  Morphologically, this new genus comprises species with isodiametric or longer 

than wide cells, that possess immotile trichomes with a sheath and that have the ability to form 

nodules when exposed to limited light stress (Perkerson et al. 2011). Five strains isolated in this study 

were assigned to Nodosilinea: CENA512, CENA515, CENA522, CENA523 and CENA546. All of 

these strains showed morphological features consistent with Nodosilinea spp., except for the 

nodulation under low light, which was not yet assessed in the isolated strains. Additionally, these 

strains shared > 97 % sequence identity with other Nodosilinea spp., and in the phylogenetic analysis 

fell into the Nodosilinea cluster (Fig. 3, Clade C).  

Thirteen isolates with Leptolyngbya-like morphological traits corresponded to novel 

Pseudanabaenaceae strains because they showed < 95 % identities in Blast analyses. These sequences 

grouped into four exclusive clades in the phylogenetic reconstruction (Fig. 3, Clades D, E, F and H), 

all demonstrating some morphological coherence (Fig. 2). Likewise, within these clades, the 16S 

rRNA sequences had the same length and shared at least 99 % sequence identity. Clade F (97 % 

bootstrap value) was formed by five sequences generated in this study and two uncultured sequences 

also retrieved from an extreme environment (saline-alkaline soil - Valenzuela-Encinas et al. 2009). 

Interestingly, all of these strains showed slight gliding motility. Clade H (89 % bootstrap value) 

exclusively comprises four sequences and has a sister taxon, Planktolyngbya limnetica PMC271.06 

(99 % bootstrap value). The strains within this clade had morphological characteristics similar to 

those of Planktolyngbya spp. (Komárek and Anagnostidis 2005), but differed in their trichome 

organization into ornate mats (Fig. 2).Taking into account these well-defined clades and the origin of 

the strains, Clades H and F may represent two novel generic units that must be better explored in a 

future study. 

Clades D and E are also formed by new Pseudanabaenales strains (< 95 % identity in the Blast 

analysis) but with weak support (bootstrap value ≤ 51 %). To correctly define these strains, more data 

on related strains are needed. 

 

4. Conclusions 

 

This is the first report to describe the diversity of cultured cyanobacteria from the Pantanal saline-

alkaline lakes using a polyphasic approach. Few genera were identified by morphological evaluation. 

However, our phylogenetic analysis indicated a larger number of taxa dispersed into 13 clades, of 

which five represent novel groups, indicating that morphological diversity underestimates genetic 

diversity. Our phylogenetic affiliations underscored the relevance of considering the environment in 

defining the taxonomy of homocytous cyanobacteria because lineages from extreme habitats tended 

to group together independently of the extreme environmental conditions. These data highlight the 

importance of polyphasic approaches to determine cyanobacterial taxonomy.  
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Table 1 - Main characteristics and abiotic variables of the studied saline-alkaline lakes from 

Pantanal da Nhecolândia, MS, Brazil. Measurements were made during the dry and wet seasons, 

from May 2009 to November 2011. 
 Saline-alkaline lakes  

 1 - Verde 2 - Grande 3 - Preta 4 - 67mil 5 - Centenário 

Geographic Coordinates 19°28'13"S 19°26'56"S 19°26'56"S 19°27'42"S 19°26'24"S 

 56° 3'22"W 56° 7'45"W 56° 7'55"W 56° 8'21"W 56°5'58"W 

Area (km²) 0.15 0.32 0.09 0.14 0.28 

Water level (m) 0.1 to 1.5 Dry to 0.6 1.2 to 2.5 Dry to 0.6 Dry to 0.7 

pHa e  8.4 to 9.7 9 to 9.8 8.5 to 8.8 8.4 to 10.3 10.02 b 

EC (mS.cm-1)c e 1.98 to 15 2.61 to 18 1.1 to 4.7 0.6 to 67 2.54b 

Bloom occurrence almost 

permanent 

almost 

permanent  

never seasonald seasonald 

a the pH value was measured at 0.3 meters below surface; b only one value was determined; c EC: Electrical Conductivity 

measured at 0.3 meters below surface. The higher values were obtained during dry season and the lower ones during the 

wet season; d bloom occurrence was observed only during the dry season; e electrical conductivity and pH did not show 

any significant variability laterally or vertically within a given lake.   



 

Table 2 – List of isolated strains with taxonomic affiliation, saline-alkaline lake of origin and 

GenBank access number of 16S rRNA sequences. 

Order Taxonomic assignment  Lake (Salina) GenBank  

Synechococcales Geminocystis sp. CENA526 Centenário  KF246492 

Chroococcales Cyanobacterium sp. CENA527 Grande  KF246493 

Pseudanabaenales 

Leptolyngbya sp. CENA520 Verde  KF246487 

Leptolyngbya sp. CENA532 Preta  KF246498 

Leptolyngbya sp. CENA534 Verdea KF246500 

Leptolyngbya sp. CENA538 67 Mil KF246502 

Leptolyngbya sp. CENA540 Verde KF246504 

Leptolyngbya sp. CENA542 Verde KF246505 

Limnothrix sp. CENA545 67 Mil KF246506 

Nodosilinea sp. CENA512 Verde  KF246481 

Nodosilinea sp. CENA515 Verde  KF246482 

Nodosilinea sp. CENA522 Verde  KF246489 

Nodosilinea sp. CENA523 Verde  KF246490 

Nodosilinea sp. CENA546 67 Mil KF246507  

Pseudanabaenaceae CENA510 Verde KF246480 

Pseudanabaenaceae CENA528 Preta  KF246494 

Pseudanabaenaceae CENA529 Preta  KF246495 

Pseudanabaenaceae CENA530 Preta  KF246496 

Pseudanabaenaceae CENA531 Preta  KF246497 

Pseudanabaenaceae sp. CENA516 Verde  KF246495 

Pseudanabaenaceae sp. CENA517 Verde  KF246496 

Pseudanabaenaceae sp. CENA518 Verde  KF246497 

Pseudanabaenaceae sp. CENA519 Verde  KF246498 

Pseudanabaenaceae sp. CENA521 Verde  KF246488 

Pseudanabaenaceae sp. CENA537 Grande KF246501 

Pseudanabaenaceae sp. CENA539 Verde KF246503 

Oscillatoriales 
Phormidium sp. CENA525 Centenário  KF246491 

Phormidiaceae CENA533 Preta  KF246499 
a  isolated from sediment sample. 

 

 

 

Figure S1 – Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences of strains 

of Chroococcales and Synechococcales. Bootstrap values equal to or greater than 50 % are indicated 

at the nodes. The studied strains are shown with a filled and bold circle. 

 

Figure S2 – Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences of strains 

of Oscillatoriales and Pseudanabaenales. Bootstrap values equal to or greater than 50 % are indicated 

at the nodes. The studied strains are shown with a filled and bold circle. The clades indicated as A-K 

correspond to those of  Figure 3. 


