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THEME ARTICLE 

Fostering Reuse in 

Scientific Computing with 

Embedded Components  

Application to high-performance Bayesian inference  

for bioinformatics 

Component-based programming is a programming 

paradigm which eases software reuse but has yet to 

be widely adopted in scientific computing. We 

propose to embed component frameworks inside 

high-performance languages directly to improve 

flexibility compared to the literature. We present this 

approach through the example of a high-performance Bayesian inference application. 

Developing high-performance code is a challenging balancing act between performance and 

productivity concerns. Optimizing performance is crucial for large-scale applications but can be 

extremely time-consuming and lead to code that is both complex and hard to maintain. On the 

other hand, productivity is important to reduce development cost, particularly in academia where 

developer time is scarce.1 

Because they need fine control over implementation, and because they need high performance, 

many developers of computationally-intensive applications write them from scratch using low-

level languages like C++.2 Such hand-written codes are costly to develop and maintain, even 

more so if several versions must be maintained at the same time. In addition, this approach dis-

courages reuse from third parties, by third parties, and between application variants. Indeed, 

good practices for software reuse (e.g., hiding implementation details, modular structure) tend to 

get in the way of low-level optimizations and fast prototyping of new ideas. 

One possible approach to try address these reuse problems is component-based programming. 

This programming paradigm consists in building applications by assembling reusable pieces of 

software called components. This approach has been well-studied: it is known to greatly ease 

software reuse, improve separation of concerns, and provide a high-level representation of an 
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application, making its structure easier to reason about. However, component-based techniques 

have yet to be widely adopted in scientific computing.2 

We argue that existing component-based technologies for scientific computing suffer from their 

reliance on dedicated languages and external tools. These tools impose a strict separation be-

tween low-level business code and high-level structural concerns, which adds complexity and 

can get in the way of low-level optimization and fast prototyping. 

Instead, we propose to embed component frameworks directly into low-level languages. Having 

everything in the same language makes it easier to implement changes that bridge abstraction 

levels, which is useful for low-level optimization and fast prototyping. Moreover, this approach 

makes component assemblies mere objects, which opens introspection and static optimization 

possibilities. 

We have developed such an embedded component-based framework, called tinycompo, in C++ 

and used it to build a Bayesian inference library. We find the approach to be particularly suited 

to Bayesian inference and see software engineering benefits.  

This paper starts with a general presentation of software components for readers which are not 

familiar with the paradigm. Next, we review related works and present our own C++ framework. 

The framework is then used, in a detailed step-by-step example, to build a high-performance 

Bayesian inference application. Finally, we present a performance and software engineering 

evaluation of the approach on real-life bioinformatics applications. 

SOFTWARE COMPONENTS 

Principle 

At the end of the 1960s, computer scientists proposed to copy the practices of other industries 

and to start building software from components produced by third parties. 

Components are different from traditional libraries in the sense that they are built to interoperate 

with components from unrelated third parties. For example, most implementations of the MPI 

standard – a widely-used message passing technology in high-performance computing – are tra-

ditional libraries: they provide a functionality to programmers through an API and can be config-

ured though a library-specific interface. On the contrary, the OpenMPI implementation3 is 

component-based and allows the integration of third-party code directly in the library implemen-

tation, provided the code in question follows some interoperability rules. 

Rules for interoperability between components are called component models. Just like in other 

industries, some degree of standardization is required so that components from different manu-

facturers can be used together. For example, in the music industry the MIDI standard makes it 

possible to connect audio and music-related devices from various manufacturers. A component 

model must define what constitutes a software component – that is, the unit of code reuse – and 

how to use several components together. 

Component-Based Software Engineering is the domain that deals with designing and implement-

ing component models. Many component models have been proposed over the years both in the 

industry – such as COM (Microsoft), EJBs or XPCOM (Mozilla) – and in academia. 

Component models in practice 

The nature of the components themselves – that is, the unit of reusable code – can take various 

forms depending on the model. Many modern component models use objects as components. 

More recently, component models have been developed for cloud applications, in which compo-

nents can be things like web services or databases. 

A central concern in the design of component models is that of interfaces. The interface of a 

component is a declaration of what it does, provided by the component designer. When using a 
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component, a user can assume exactly as much about its behavior as is specified in its interface. 

Components are said to be black boxes in the sense that they hide implementation details. This is 

important as it eases separation of concerns - that is, how easy it is to work on one part of the 

code without understanding the rest. 

Like electronic components, software components often have ports, that is interaction points 

which can be connected to the ports of other components. Ports can represent things like data 

input/output, provided/required services, object interfaces, and so on. Just like there are port 

types in electronics – you cannot connect any port with any other port – possible connections be-

tween software components are constrained by port types. 

Just like one might use a variety of cables and adapters to connect electronic components, some 

component models allow non-trivial connections between ports using connectors. For example, 

two ports of incompatible types could be connected with an adapter connector that performs a 

type conversion. For example, two arrays could be connected by an n-ary “array connection” 

connector that performs many element-by-element connections. Connectors are a useful tool to 

encapsulate connection logic, to keep it outside of the components themselves. 

In addition to defining what components and their interfaces are, most component models spec-

ify how they should be composed to form applications. A composition of components is often 

called a component assembly. Many component models provide dedicated languages to describe 

component assemblies. Since components often need to be deployed – that is instantiated and/or 

allocated somewhere – most component models provide automated deployment of component 

assemblies. This means that a component assembly description plus an entry point – that is, a 

function to run at startup – is effectively a full application that can be run with no extra code. 

In addition to being useful to deploy applications, component assemblies provide a high-level 

view of application structure. Since they are graph-like in nature, assemblies can easily be repre-

sented graphically. Examples of graphical representations of assemblies are given further in the 

article. Such representations are useful for top-down discussion about application design. 

A last commonly-found feature of component models is so-called composite components. A 

composite component is a collection of components that can be seen as a single component, or, 

to put it the other way around, it is a component that is implemented by a component assembly. 

Components inside composites can themselves be composites, forming a hierarchy of nested 

composites. Composites are a useful tool to organize application structure into meaningful sub-

parts. 

PROPOSAL: AN EMBEDDED COMPONENT MODEL 

Related works 

CCA4 (for Common Component Architecture) and L2C5 are two component models specifically 

designed for scientific computing. CCA focuses on multi-language compatibility 

(C/C++/Fortran/python), distributed deployment, and some design patterns commonly found in 

high-performance computing. L2C is based on distributed C++ objects that communicate either 

locally or using MPI. L2C assemblies are described using XML. Both L2C and CCA are de-

signed to have minimal performance impact and to ease the deployment of large component as-

semblies on distributed architectures. 

Component models from closely-related domains, such as grid or cloud computing, might also 

be of interest to high-performance programmers. For example, the Grid Component Model 

(GCM)6, focuses on distributed deployment and control of components in computing grids. 

Other works have investigated applying the component approach to specific application classes. 

For example, Aumage et al.7 applied a mix of component-based and task-based paradigms to a 

large gyrokinetic simulation, and Bigot et al.8 used component assemblies as the backend of a 

domain specific language for stencil applications. Another interesting occurrence of components 

in high-performance computing is the already-mentioned use of a component model for the im-

plementation of OpenMPI.3 
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Although the aforementioned component models have been successfully used in specific applica-

tions, adoption in the scientific community at large is limited. These frameworks are multi-lay-

ered and use dedicated languages for component interface declaration and component assembly. 

We first argue that these models are hampered by a high barrier to entry, as they are difficult to 

use for non-computer scientists and difficult to adapt to existing code. Their multi-language na-

ture leads to complex tool suites and requires handling additional dedicated languages. We also 

argue that low-level optimization and fast prototyping, which are staples of scientific computing, 

are hampered by the strict separation of concerns imposed by the multiple layers of existing 

models. 

Our proposed model 

Instead, we propose to embed all layers of typical component-based frameworks in a single lan-

guage. This approach is conceptually and technologically simpler, lowering the barrier to adop-

tion. While a more relaxed separation between the different layers (component programming, 

declaration and assembly) might weaken separation of concerns, it is also more flexible which 

can be useful for rapid prototyping. Finally, embedding component assembly into a general-pur-

pose language provides opportunities for introspection and automatic assembly generation. 

We have thus devised an embedded component model which implements common component-

based features such as composites and connectors. Figure 1 gives a conceptual overview (in the 

form of a metamodel) of the structure of our component model. A user wiling to build a compo-

nent assembly must declare a model of the assembly; this model contains components which im-

plement C++ classes and have addresses; components are connected with connectors which are 

implemented by functors (C++ callable classes) and target addresses; finally, the model can con-

tain composites which have an address and are implemented by an assembly model. 

 

Figure 1. Metamodel of our embedded component model from the point of view of a user using 
UML notation. Orange rectangles are user-provided C++ objects while blue rectangles are user-
declared component-related entities. Edges denote relationships between entities and are labelled 
by their multiplicity (for example, a model can be associated to any number of components, 
denoted by *, but a component is associated to a single model). Diamonds denote whole/part 
relationships (e.g., components are part of a model), with filled diamonds denoting that the part 
cannot exist independently of the whole. Arrows denote other directed relationships. 

We have implemented this model in C++ in the form of a framework called tinycompo. The 

name is inspired by the well-known tinyxml, to which it is similar in the sense that it is a small 

(~2k lines of code) C++ header-only library that one needs only include in their project to use. 
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Instead of having dedicated languages for interface and assembly declaration, these are done di-

rectly in C++, leveraging C+11 features to provide a declaration syntax as close as possible to 

what one might find in a dedicated language. 

Particular care was put to minimize the overhead of the model. In practice, tinycompo compo-

nents are normal C++ objects which are either connected directly using pointers or which com-

municate through MPI. The only computation time overhead brought by the implementation is 

the systematic use of virtual calls between components, which could only be a problem in very 

fine-grained applications. 

In practice, to use tinycompo, one has to: 

 write components (which are objects which inherit from tc::Component) and connectors 
(which are functions that perform connections); 

 build a Model object (that follows the structure given in Figure 1) that is a representa-
tion of the desired assembly; 

 instantiate the assembly by building an Assembly object from the model; 

 use the instantiated assembly, for example by calling component methods. 

A minimal Hello World looks like this: 

#include "tinycompo.hpp" 

 

class HelloComponent : public tc::Component { 

  public: 

    /* declare a port in the constructor */ 

    HelloComponent() { port("hello", &HelloComponent::hello); }  

    void hello() { std::cout << "Hello world\n"; } 

} 

 

int main() { 

    tc::Model model; /* declaring an empty assembly model */ 

    model.component<HelloComponent>("mycompo"); /* adding our hello component */ 

 

    tc::Assembly assembly(model); /* instantiating assembly */ 

    assembly.call("hello", "mycompo"); /* calling the hello method */ 

} 

Having an abstract Model object that represents a yet-uninstantiated assembly means that the as-

sembly can be modified before instantiation. For example, static optimization of a user-provided 

assembly could be performed automatically. This opens possibilities of static analysis and opti-

mization which can help bring existing automation from high-level Bayesian frameworks. 

The implementation is also capable of automatically generating graphical representation of 

tc::Model objects in the .dot format, using a representation that is close to the UML notation – a 

common graphical convention for components. 

A STEP-BY-STEP BIOINFORMATICS EXAMPLE 

Thanks to New Generation Sequencing techniques, sequencing the genome of an organism – in 

the form of DNA – has become cheap and efficient. This has opened new research opportunities 

to understand the role of the genome. Of particular interest in the genome of organisms are genes 

– parts of the genome that code for functional molecules. Gene expression – that is, how many 

molecules are produced from a given gene – can be measured. Patterns of gene expression levels 

can then be used to locate genes of interest. 

Gene expression measurements are, however, imprecise, which makes differentiating noise from 

unusual patterns difficult. This can be solved by using Bayesian inference to provide estimates of 
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real gene expression levels from noisy observed data. Bayesian Inference is a mathematical tech-

nique that consists in computing the probability of hypotheses depending on observed data. Such 

distributions are called posterior distributions; statistical tests can be performed on them to lo-

cate genes of interest. 

To perform Bayesian inference, one must provide a hypothesis – in the form of a probabilistic 

model – of how the observed data have been produced. This model can take the form of a Di-

rected Acyclic Graph (DAG) where each node is associated to a probability distribution, and 

each vertex from A to B denotes that B uses A as a parameter for its associated distribution. 

A very simple gene expression model is presented in graphical form in Figure 2. This model is 

limited to the expression of a single gene across individuals and experiments. Given individuals 

indexed by 𝑖, the real gene expression of individual 𝑖 is given by 𝜆𝑖. The value of 𝜆𝑖 may vary 

from one individual to another, and is assumed to follow a gamma distribution described by its 

mean 𝛼 and a dispersion parameter 𝜇. Those two parameters are assumed to have exponential 

distributions. Several experiments have been performed in which the gene expression 𝐾𝑖,𝑗 of 

every individual has been measured. We expect these discrete measurements to be distributed 

according to a Poisson distribution of mean 𝜆 – which adequately models the measurement 

noise. 

 

Figure 2. A simple probabilistic model represented by a DAG. Circles are probabilistic variables of 
the model. The greyed circle corresponds to observed data. The contents of dashed boxes are 
replicated for every index value. 

Given this model, Bayesian inference consists in computing the probability distribution – the so-

called posterior distribution – of unobserved nodes (that is, 𝜆, 𝛼 and 𝜇) given observed data. In 

practice, the computations should output a set of vectors which collectively form a sample of the 

posterior distribution. 

A widely-used method to obtain this sample is Markov Chain Monte Carlo (MCMC). Starting 

from an arbitrary vector 𝜃 = (𝜆0, 𝜆1…𝜆𝑁 , 𝛼, 𝜇), MCMC consists in running a Markov chain of 

𝜃𝑘 vectors – that is, a chain where every element is computed probabilistically from the previous 

element. There exist several algorithms to compute from in such a way that the chain samples 

from the posterior distribution. 

One such algorithm is the Metropolis-Hastings algorithm, which consists in proposing random 

changes – called moves – to and accepting them with a probability that depends on the probabil-

ity of the observed data before and after the move. 

Using tinycompo as our component model, we have implemented a Bayesian inference library. 

This section and the next ones present a step-by-step example of how to use such a component-

based library to build a simple Bayesian application. While many details are obviously specific 

to our library, the example illustrates more general design principles and highlights some of the 

benefits of components. 
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Basic model structure 

From the perspective of the developer of a Bayesian inference application, an important question 

is the specification of the probabilistic model. In high-level Bayesian inference frameworks, us-

ers basically only need to specify their model and ask the framework to run the inference. Graph-

ical representations like the one presented in Figure 2 are familiar to scientists in the domain and 

are thus a good abstraction to start with. 

Assuming we can specify probabilistic models, how do these models intervene in inference? The 

Metropolis-Hasting algorithms needs to know the probabilistic model in these cases: 

 to access the value of every node in order to output the vectors; 

 to compute the probability of the model in order to compute acceptance probability 

when making moves; the probability of every node depends on its associated distribu-
tion (the probability density of this distribution is required), on its value, and on the 
value of its parents; 

 to modify the value of nodes to enact accepted moves. 

Thus, a good potential data structure to provide all these functionalities would be a graph of 

“probabilistic node” objects, each associated to a distribution, and each connected to their par-

ents in the model. Each object would provide its value through a “Value” interface, and would 

provide a “Probability” interface that returns the probability of the node given its value, its asso-

ciated distribution, and the values of its parents – which it can access through their “Value” inter-

face as it is connected to them. 

Our library provides component types that implement probabilistic nodes with various number of 

parents. These components need to be connected to form a probabilistic model. The library also 

provides the ability to handle arrays of probabilistic nodes using composite components to repre-

sent arrays of components and a collection of connectors to represent many-to-one, one-to-many 

and many-to-many connections between arrays of varying dimensions. 

Declaring our example model using the library looks like this: 

tc::Model m; 

m.component<OrphanExp>("alpha", 1, 1); 

m.component<OrphanExp>("mu", 1, 1); 

 

// array lambda of gamma nodes 

m.component<Array<Gamma>>("lambda", experiments, 1) 

    .connect<ArrayToValue>("a", "alpha") 

    .connect<ArrayToValue>("b", "mu"); 

    // a and b are port names for gamma parameters 

 

// array K of Poisson nodes 

m.component<Matrix<Poisson>>("K", experiments, samples, 0) 

    .connect<MatrixLinesToValueArray>("a", "lambda") 

    .connect<SetMatrix<int>>("x", data); 

Note the use of the .connect<C> method to declare a connection between components using 

connector C. Our library provides a set of connectors such as ArrayToValue which connects 

components using pointers to interfaces. For example, all components in the “lambda” array will 

obtain a pointer to the Value<double> interface of component “alpha”; this pointer will be 

stored in an attribute of the “lambda” components associated to port “a”.  

Although the syntax to declare components is not the simplest due to the constraints of the C++ 

language, only minimal information is required, and the structure resembles that of existing as-

sembly declaration languages. 
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Metropolis-Hastings moves 

Now that we have a data structure that represents our probabilistic model, we need to add the 

Metropolis-Hastings algorithm itself. The basic algorithm is as follows: 

1. initialize observed nodes from actual data and unobserved nodes arbitrarily; 
2. propose a move, i.e., a random change to unobserved node values; 
3. compute acceptance probability using model probability before and after proposal; 
4. decide to accept or reject move using acceptance probability; change the value of 

nodes according to proposal only if the move is accepted; 

5. start over at step 2. 

In practice, not all unobserved nodes are moved at the same time. It is often more efficient to 

move a few parameters at a time and cycle between moves that change different parts of the 

model. For example, in our example model, one move could change the value of only 𝛼, another 

the value of 𝜇, and so on. As long as every unobserved node is covered by at least one move, the 

algorithm will converge to the correct distribution. 

In this context, writing the vector 𝜃𝑘 = (𝜆0, 𝜆1…𝜆𝑁 , 𝛼, 𝜇) after every move is not useful. In-

stead, the vector should be written to disk after every unobserved node has been the target of a 

move at least once. We call the set of moves that are performed between two outputs an itera-

tion. 

To add Metropolis-Hastings moves to our implementation, we need a way to represent them with 

components. A component implementing a move would need to have the following interface: 

 have a target, an unobserved node in the model that it will try to move (implemented by 

a “target” port); 

 have access to all the nodes in the model whose probability might change when the tar-

get’s value is changed (“logprobs” port); 

 provide a way to start the move from outside the component. 

Using such a component to add a move on would look like this (assuming we have already de-

clared our probabilistic model data structure): 

m.component<MHMove<Scale>>("move_alpha") 

    .connect<UseValue>("target", "alpha") 

    .connect<Use<LogProb>>("logprobs", "alpha") 

    .connect<OneToMany<Use<LogProb>>>("logprobs", "lambda"); 

While the move component itself neatly encapsulates move logic, its connection to the probabil-

istic model data structure is non-trivial. In particular, the “logprobs” port must be connected to 

the correct parts of the model data structure, the ones whose probability is affected by the move.  

Now that moves have been added to the assembly, everything is in place to run the actual Me-

tropolis-Hastings algorithm. The only thing missing is a main function that loops over iterations 

and calls the moves. 

Automation using model introspection 

Declaring moves and writing the main MCMC loop as presented in the previous sections could 

easily become verbose in more complex examples. Existing Bayesian inference frameworks usu-

ally try to automate such tasks instead of leaving them to the user. To do this, they rely on repre-

sentations of the probabilistic model, and run various algorithms on these representations. 

While our library does not have a “graphical model” object per se, the tc::Model object repre-

senting the assembly provides introspection methods which can be used to gain insight on the 
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graphical model. For example, it is possible to get a Directed Acyclic Graph (DAG) of the com-

ponents and binary connections; it is also possible to test the type of a given component. Con-

trary to existing HPC component models, these introspection functionalities are directly 

accessible in the C++ code as well as methods to modify the assembly.  

For example, we have automated the connection of moves to the correct logprob ports in the as-

sembly. The set of nodes affected by a given move – which is called Markov blanket in the liter-

ature – is easy to compute given a set of modified nodes in a probabilistic model. This algorithm 

needs only the DAG of probabilistic nodes of the model, which can be obtained with the intro-

spection methods. 

We have implemented this Markov blanket calculation in our library in a MCMC object which 

provides a declaration interface for moves and automatically adds them to the assembly with op-

timal logprob connections. Because this MCMC object is aware of the list of moves, it can pro-

vide other functionalities such as configuring the trace to show only variables which are affected 

by moves and running the main loop. We have also implemented an optimization from the litera-

ture called sufficient statistics which consists in using proxies for the logprob calculation of large 

arrays of probabilistic nodes. Moves affected by sufficient statistics should be connected to rele-

vant sufficient statistics objects instead of directly connected to the logprob of the probabilistic 

nodes; this is another task which can be automated by our MCMC object. 

Using this new object, the move declarations and main loop section of our example becames as 

simple as: 

MCMC mcmc(m, "model"); /* declaring MCMC object */ 

/* giving it the tc::Model and the address of the graphical model */ 

 

mcmc.move("alpha", scale); /* declaring moves */ 

mcmc.move("mu", scale); 

mcmc.move("lambda", scale); 

mcmc.suffstat("lambda", {"alpha", "mu"}, gamma_ss); /* sufficient statistic */ 

mcmc.declare_moves(); /* add all the moves to the component assembly */ 

 

mcmc.go(50000, 10); /* main MCMC loop with 50000 iterations */ 

Distributed version with MPI 

The Metropolis-Hastings algorithm can become computationally intensive for large model sizes. 

While our example model may seem simple at first glance, its size is actually ~O(#individuals x 

#experiments), which may be significant for large datasets. 

The Metropolis-Hastings algorithm is intrinsically sequential in the sense that an iteration cannot 

be started before the previous one has finished lest the convergence of the algorithm be compro-

mised. It is, however, possible to perform certain moves in parallel inside iterations. Indeed, 

moves with disjoint Markov blankets are functionally independent. 

With our example model, moves on individual 𝜆𝑖 nodes are independent of each other and can be 

performed in parallel, as opposed to moves on 𝛼 and 𝜇. A possible parallelization of the Metrop-

olis-Hastings algorithm is as follows: 

1. Have a “master” process which performs moves 𝛼 and 𝜇 while the 𝜆𝑖 nodes remain 

untouched. 
2. Divide the set of individuals into subsets and have a “slave” process for each subset. 

Once the master has finished moving 𝛼 and 𝜇, each slave can perform moves on the 𝜆𝑖 
in its subset of individuals while the master waits. 

3. Once the slaves have finished performing moves on the nodes, the iteration ends, the 
vector is written to disk and the next iteration can start with the master. 
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One way to implement parallel algorithms in a component-based context is to have different as-

semblies on different processes. In our case, each process needs only access to a subset of the 

full model – for example, the master does not need access to the nodes 𝐾𝑖,𝑗 – and could thus hold 

only the relevant part of the model to save memory. Given the components we have so far, the 

only missing part is a way to have processes wait on each other and exchange data. 

The question of synchronization and communication can be answered by having Bcast and 

Gather component which transmit data from the master to slaves and from slaves to the master 

respectively. These components would be connected to the same target nodes on both sides – on 

one side to read the values and on the other side to set it. They would need to provide an acquire 

interface to wait for the other processes that modifies their targets and gets their value, and a re-

lease interface to signify that they no longer need to modify their targets and that other processes 

can modify them again. Since data is transmitted between one master and N slaves, collective 

communications – such as MPI_Gatherv and MPI_Bcast – can be used for maximum perfor-

mance and encapsulated in the components. 

In practice, to get a parallel version of our MCMC example, the following changes are needed: 

1) add an if in the model declaration to not declare 𝐾 on the master; 2) partition individuals be-

tween slaves; 3) declare moves 𝛼 and 𝜇 only on the master and moves on 𝜆𝑖 only on slaves; 4) 

declare communication components on all processes as follows: 

m.component<Bcast>("alpha_mu_proxy") 

    .connect<UseValue>("target", Address("model", "alpha")) 

    .connect<UseValue>("target", Address("model", "mu")); 

 

m.component<Gather>("lambda_proxy", experiment_partition) 

    .connect<OneToMany<UseValue>>("target", Address("model", "lambda")); 

And 5) on both slaves and master, call the acquire method of proxies before computing and the 

release method afterwards – this can be accomplished automatically with a modified MCMC 

class for MPI (which we have implemented and is called MpiMCMC). Note that proxy declara-

tion is the same on master and slaves, Bcast and Gather hide the master/slave difference inside 

their implementation; this global declaration of proxies is consistent with how global operations 

are usually declared in MPI. 

Overall, these modifications are fairly small, which makes parallelization of Bayesian applica-

tions using our library very easy. 

EVALUATION 

To evaluate our library, we have implemented a real-life probabilistic model instead of the sim-

plistic model presented in the step-by-step example. This model aims to detect genes with spe-

cific expression patterns. We have implemented this model (called M3) with our library, and 

made a parallel version on the same model as the one presented in the previous section. 

This use case was motivating for this work, as it posed both programmability and performance 

issues. The size of the dataset was large enough that a high-performance implementation would 

be needed, but custom probabilistic models would need to be developed and iterated upon. 

To evaluate our component-based implementation, we compared it to JAGS9, a widely-used pro-

gram for Bayesian inference. JAGS has a large community built around it and is widely recog-

nized and used in various applied science communities. JAGS provides an easy-to-use dedicated 

language to declare graphical models, and implements many MCMC optimizations which give it 

good sequential performance. 
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Expressivity 

The model we have presented in the step-by-step example (see Figure 2) can be written using the 

JAGS dedicated language. This dedicated language is used to declare the model itself and must 

be used through a library in a general-purpose language, typically R. 

To compare the expressivity of our approach to JAGS, we have implemented models M1 and 

M2 which are simpler preliminary versions of the M3 model. Having a collection of models al-

lows us to see that our library is flexible enough to accommodate different models. 

Table 1 gives the size of these implementations for JAGS (in R using rjags) and tinycompo (in 

C++). The sizes are given in lines of code, as computed by the cloc program. In addition to M1-

M3, we added M0, the model we used for the step-by-step example. We see that, overall, code 

sizes are comparable. Both implementations use the same underlying abstraction (graphical mod-

els) to declare the models themselves. The main change with our library – apart from the added 

complexity of C++ syntax – is that the MCMC moves must be declared, but we see that the im-

pact on overall code size is minimal. 

We see that parallel version of M0 and M3 are not much longer than their non-parallel version, 

which is an important advantage of our approach. 

Table 1. Code size (lines of code) comparison between JAGS and tinycompo. 

 M0 M0-MPI M1 M2 M3 M3-MPI 

Total 

code 

tinycompo 32 43 31 47 61 86 

JAGS * * 48 55 61 * 

Model 

only 

tinycompo 13 15 10 23 34 44 

JAGS 10 * 13 19 24 * 

*: not implemented 

Sequential performance 

To evaluate sequential performance, we once again compare our library to JAGS. While JAGS 

uses different algorithms than we do, it still performs MCMC and produces the same output: a 

trace which is a sample of the posterior distributions of interest. For a given model, the traces 

produced by both implementations can be compared using Effective Sample Size (ESS), which 

is a measure of how much information a trace contains about the posterior distribution of a varia-

ble. Two traces with comparable ESS are thus equally useful for a MCMC end user. 

For each of the models M1-M3, we have run JAGS and our implementations on a small subset of 

real data for enough iterations that the chains have reached their stationary distribution. Then we 

have computed the mean ESS for N iterations of our implementation, and adjusted N until the 

mean ESS was higher than for 2000 iterations of JAGS.  

Results are that our M3 implementation needs to compute 6500 iterations to have as much infor-

mation as 2000 JAGS iterations, which it does in 10.458s while JAGS needs 2.337s to compute 

2000 iterations. Given that our implementation uses a much simpler algorithm, the fact that its 

overall speed is not further away from JAGS is indicative of a reasonably efficient implementa-

tion. Also, the implementations for M1-M3 use default tunings for the MCMC moves; a better-

tuned implementation could probably give much better results. 

Parallel performance 

So far, we have seen that our approach is slightly worse than JAGS in terms of expressivity and 

sequential performance, but contrary to JAGS, our code is easily parallelizable. 
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To evaluate the scalability of our parallel implementation, we have performed two experiments 

on the tier-0 supercomputer Occigen using our parallel M3 implementation. A first experiment 

was conducted on a real dataset (with 7124 genes) with an increasing number of 24-core compu-

ting nodes, ranging from 4 nodes (96 cores) to 128 nodes (3072 cores). For each node count, the 

genes were divided as equally as possible between the slave processes. This so-called strong 

scaling experiment shows how much computation can be sped up for a fixed dataset by adding 

more resources. A second experiment was conducted with a large simulated dataset. Contrary to 

the first experiment, each process is given a fixed amount of data (8 genes), which means the 

size of the dataset grows with the number of processes. This so-called weak scaling experiment 

shows how well the code can handle datasets of increasing size given more resources. 

  

Figure 3. Strong scaling (left) and weak scaling (right) results on the Occigen supercomputer. All 
computing nodes have two 12-core Intel E5-2690V3 processors at 2.6GHz with 64Go of memory; 
network uses InfiniBand. Strong scaling consists in runs of the M3 model parallel implementation 
on real data with 7124 genes and 87 samples. Speedup is computed by dividing a projected 
sequential iteration time (time measured on 4 genes with a single slave multiplied by 7124/4) by the 
measured iteration time. Weak scaling consists in runs of the M3 model parallel implementation on 
simulated data with 8 genes per core. Iteration time is divided into the time spent on slaves (in 
blue), the time spent on the master (in red) and the different between the total iteration time and the 
sum of master and slave times (in orange) which is interpreted as synchronization/communication 
time. 

Results are given in Figure 3. Strong scaling results show that speedup keeps improving even at 

3072 cores, although the rate of speedup improvement decreases with higher node counts. This 

decrease is to be expected because the parallelization relies on global communication (broadcasts 

and gathers), because worker/slave load ratio increases, and because load balancing quality de-

creases as the number of genes per core decreases. Given all these scalability problems, the ob-

served speedup is rather encouraging. The maximum observed speedup (at 3072 cores) is around 

850, which means that our parallel code is approximately 850 times faster with this number of 

cores that it would be on a single core. Even considering that JAGS sequential performance is 

better, our parallel code can be several hundred times faster on a large enough dataset. Weak 

scaling experiments show that scalability is good up to 3072 cores but starts to drop at 6144 

cores. Communication and synchronization do not seem to be a problem, but the time spent on 

the master is the main bottleneck. This is because the master performs operations which are in 

~𝑂(#𝑔𝑒𝑛𝑒𝑠) which are inherently non-scalable. Still, the performance at 3072 cores means that 

analysing a dataset of size 3072 ∗ 𝑁 with 3072 cores takes only twice the time it would take to 

analyse a dataset of size 𝑁 on one core. 

CONCLUSION 

In this article, we have presented the tinycompo component model, which is novel because it is 

embedded in the C++ language. We have presented a detailed step-by-step example of how this 

model can be used to implement high-performance MCMC applications and have evaluated our 
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implementation both in terms of performance and expressivity. Evaluation show that our ap-

proach is about as expressive as JAGS, has worse sequential performance, but is able to scale up 

to several thousands of cores. 

We have presented two technologies that we have developed. Our component model tinycompo 

is available on github (http://github.com/vlanore/tinycompo). Our Bayesian inference library is 

also available on github (http://github.com/vlanore/compoGM). The full code for our example is 

available on the repository, as well as the more complex codes of the real-life model that we 

used for performance comparisons. 

Our library and tinycompo are currently used in several projects inside the lab. Component-based 

approaches in general (systematic use of composition, explicit structure) are starting to gain trac-

tion inside the team, as people start to see the software engineering benefits. In addition, a 

presentation of our work on compoGM was given to the AppliBUGS community (BUGS/JAGS 

users in France) and got positive feedback; people in this community are very familiar with the 

graphical model representation and would be interested in parallelization if it was easy to do. 

Perspectives for this work include the use of embedded component to refactor legacy applica-

tion. The extra flexibility offered could help address this issue which has been cited as being a 

major obstacle to component use in HPC2. There is also ongoing work to improve the perfor-

mance of arrays of components in tinycompo, which poses difficult design questions. 
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