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Abstract
The ASVSpoof challenges goal is to evaluate countermeasures to
spoof attacks on automatic speaker verification systems. We first
analyze in more details the results of the baseline systems pro-
vided by the organization and unveil several weaknesses for some
types of attack. In particular for the physical access (PA) task,
replay attacks with low reverberation time and/or high quality
of the replay device are problematic. Based on this observation,
we propose several improvements. Firstly, a specific learning tar-
geting the problematic types of attack. Secondly, a new type of
feature enhancing the reverberation. Thirdly, a Deep Neural Net-
work with more modelling capability. On the development set of
the PA task, each proposed improvements show results ameliora-
tion for the targeted types of attack. Furthermore, the ensemble
systems based on this proposed improvements show great overall
results amelioration compared to the baseline (0.140 vs 0.193
min t-DCF). However, the amelioration is less encouraging on
the evaluation set (0.225 vs 0.245 min t-DCF), thus raising the
question of over-fitting as the development set and the train set
are similar.
Index Terms: speech recognition, antispoofing, late fusion, fea-
ture engineering

1. The 2019 ASVSpoof challenge
The ASVSpoof challenge1 consists in building anti-spoofing sys-
tems, also called countermeasures (CM), to be used in tandem
with Automatic Speaker Verification (ASV) systems. The 2015
ASVSpoof challenge [1] introduced the Logical Access (LA)
task which consists in recognizing whether a speaker utterance
is produced by a real human or by a voice synthesis system. The
2017 ASVSpoof challenge [2] introduced the Physical Access
(PA) task which consists in recognizing whether a speaker ut-
terance is coming from a real human or from a playback device
(such as a smartphone). The 2019 edition of the challenge is
the continuation of the two previous ASVSpoof challenge. The
organizers [3] provide a training set of examples used for model
training, and a development set used for models self-evaluation
and hyperparameters tuning. An additional evaluation set (for
which the participants do not have access to the ground truth) is
provided to rank the different submissions to the challenge and to
drive the participants to build systems capable of generalization.

1.1. The LA task, speech synthesis detection

The LA task comprises six speech spoofing systems used to gen-
erate synthesized voice. The SS1, SS2 and SS4 speech spoofing
systems use neural network acoustic models and respectively
WaveNet, conventional vocoder and convention vocoder using
Merlin2. The US1 speech spoofing system is a unit-selection

1http://www.asvspoof.org/
2https://github.com/CSTR-Edinburgh/merlin

system using MaryTTS3. Finally, the V C1 and V C4 speech
spoofing systems are respectively neural network based and
transform function based voice conversion system.

1.2. The PA task, replay attack

The PA task comprises five categories of conditions4 related to
the replay attack, each category having three possible ranges
available in Table 1. First, the environment which consists in
three categories: the room size (S), the reverberation time T60
(R), the talker-to-asv distance (Ds). Second, the attack which
consists in two categories: the attacker-to-talker distance (Z)
and the replay device quality (Q). Details can be found in [3].

Table 1: PA task. Ranges of the environment (first 3 lines) and
attack (last 2 lines) parameters [3].

Ranges→ a/A b/B c/C

C
at

eg
or

ie
s S (m2) 2-5 5-10 10-20

R (ms) 50-200 200-600 600-1000
Ds (cm) 10-50 50-100 100-150

Z (cm) 10-50 50-100 > 100
Q Perfect High Low

1.3. The EER and t-DCF evaluation metrics

The equal error-rate (EER) [4] point is a compromise between
benefits (True Positive) and losses (False Positive). It repre-
sent the True Positive Rate (TPR) against False Positive Rate
(FPR) for different threshold. However EER metric has some
disadvantages. Firstly, EER is ill-suited for unbalanced problem.
Secondly, EER is not a reliable predictor of performance when
several systems are used in tandem. The ASV system can only
discriminate between target (1) and spoofing impostor (3) trials
and nontarget trials (2) and CM systems are designed to distin-
guish genuine speech ((1) and (2)) from spoofed speech (3). In
so, different combinations of ASV and CM systems can change
the EER.

The tandem Detection Cost Function (t-DCF) [4] calculates
the cost of detection error for the tandem system ASV-CM. The
t-DCF is based on four situations: ASV system rejecting a target
trial, ASV system accepting a nontarget trial, CM rejecting a
human trial and CM accepting a spoof trial. For each situation,
we multiply the cost of detection error, prior probability and
error probability and the four products are summed to define the
t-DCF. Since the t-DCF takes into account both the ASV and
CM systems, it is used as the ranking metric for the ASVSpoof
2019 challenge.

3http://mary.dfki.de
4The notations is derived from the challenge description [3].



2. Weakness of the baseline

The challenge organizers defined two baseline systems (LFCC-
GMM and CQCC-GMM)5 that previously demonstrated the best
performances on the previous 2015 and 2017 challenges corpus
among single systems, i.e., non-ensemble system. In this section,
we first describe the baseline systems and secondly we highlight
on which subset of the data the baseline results are weaker, both
for the LA and the PA task.

2.1. Baseline description

The LFCC (Linear Frequency Cepstral Coefficients) [5] are com-
puted by taking the discrete cosine transform of the power audio
spectrum. The first and second derivative coefficients are also
concatenated to the original LFCC. The CQCC (Constant Q
Cepstral Coefficients) [6] are computed by taking the cepstrum
of the constant Q transform of the audio signal.

For each class (genuine speech and spoof speech), a Gaus-
sian Mixture Model (GMM) [7] is trained on the corresponding
features (LFCC or CQCC) using a pre-defined number of com-
ponents (512 in the case of the baseline). For each test sample, a
log-likelihood is computed for genuine and spoof classes and the
so-called final score is the log-likelihood difference of these two
classes log-likelihood. We reproduce the two baselines using the
code provided by the organization (see Table 2 and 3) and find
similar results as in [3].

2.2. LA: influence of the voice synthesis system

The per-category (of speech spoofing systems) results on the
development set of the two baselines are available in [8]. Both
the EER and min t-DCF obtained with the baselines are already
low and they are equal to 0 for some speech spoofing systems.
However, some speech spoofing systems introduce more errors
than other, for instance US1 and V C4. Therefore, one of our
contributions described in the next Section consists in taking into
account the different speech spoofing systems during the model
training to better solve the LA task.

2.3. PA: influence of category’s ranges

The detailed per-category range results on the development set
of the two baselines are given in [8]. However, Table 4 sums up
the most interesting results for the baseline. We can observe that
both baselines have difficulties to correctly classify the audio
sample when the reverberation time T60 is very low (condition
“a” of R) or when the replay device quality is perfect (condition
“A” of Q). Thus, we can deduct that the reverberation information
and the effect due to the replay device quality are meaningful
information for the replay-attack detection (considering that the
baseline is good enough). Moreover, when both conditions are
present the results are even worst (e.g., 36.7% EER and 0.811
min t-DCF for the CQCC-GMM). We can also observe that
the LFCC are better designed than the CQCC for classifying
sample with small T60. Conversely, the CQCC perform better in
the case of perfect replay devices. Therefore, our contributions
described in the next Section consist in taking into account all
these observations to better solve the PA task.

5Later referred to as † and ♣.

3. Contributions
3.1. Category-specific spoof GMMs

Our main contribution is a classification method that exploits
the “category” information during the learning. Following the
observation drawn in Section 2, N specific GMMs are trained on
N different subsets of the spoof training corpus (the investigated
subsets are described hereafter). The same learning routine as in
the baseline is followed, i.e. 10 iterations of an EM algorithm.
The overall log-likelihood is then computed at the classification
step following:

Loverall = Lgenuine − log

(∑
n∈E

exp(Ln)

)
, (1)

where E is the set of N subsets and Ln is the log-likelihood
outputted by n-th spoof GMM models. This principle is used by
the three following classifiers.

Multi-categories (LA task). One GMM is trained for each
of the six types of “speech spoofing system” in E = {SS1,
SS2, SS4, US1, V C1, V C4}. These spoof GMMs are com-
posed of 85 components and the genuine GMM of 512. Thus,
the total number of GMM components is equivalent to the one
in the baseline. This system is referred to as multicat in Table 2.

The 3-spoof-GMMs (PA task). One spoof GMM is trained
for each three types of Q in E = {Perfect,High,Low}, for a
total of four (3 + 1) GMMs composed of 512 components.

The 9-spoof-GMMs (PA task). One spoof GMM
is trained for each (9) combinations of ranges in Q =
{Perfect,High,Low} and in R = {50-200, 200-600, 60-1000},
for a total of ten (3×3+1) GMMs composed of 512 components.

3.2. Dual-LFCC features.

Our second contribution is a new type of feature called “Dual-
LFCC”. The “Dual-LFCC” feature vector is a concatenation of
the LFCC features computed on the dereverberated signal and
on the residual reverberation of the dereverberation processing.
The dereverberation is achieved using the Doire algorithm [9],
the residual is obtained by subtracting the dereverberated signal
to the original signal and the LFCC are computed with the same
parameters as in the baseline. This contribution is targeting the
PA task and in particular the subset of examples where R is in
the “a” range, i.e. examples where the reverberation provides
little information to the classifier. The design intention of the
Dual-LFCC is to highlight this reverberation information to
reduce the complexity of the classification task. Similar features
such as residual-LFCC, dereverb-LFCC and CQCC counterparts
have been tested but with less success than the Dual-LFCC (the
numerical results are not reported in this paper).

3.3. The 9-layers-DNN.

This contribution focuses on the use of a classical Deep Neu-
ral Network (DNN). The aim is to evaluate in which pro-
portion the GMM is lacking modelling complexity. The
considered DNN is a 9-layers network built in an autoen-
coder way where the number of neurons per layers is
(250, 200, 150, 100, 150, 200, 250, 90, 2). The end layer is a
softmax layer with 2 neurons, which can be interpreted as the
two posterior probabilities of the genuine and spoof class. The
learning is achieved with 10 epochs using Adam optimizer and
binary cross-entropy loss. Batch normalization is used between
each layer.



Table 2: Results (EER in % and min t-DCF) on the development
and evaluation set for the LA task.

Set Classifier Feature EER (%) min t-DCF

Dev Baseline LFCC 2.71 0.0663
Dev Baseline CQCC 0.43 0.0123

Dev Multicat CQCC 0.16 0.0032
Eval Multicat CQCC 7.95 0.2298

4. LA experiments
The overall results on the LA task are available in Table 2. The
CQCC-GMM baseline results were already high on the develop-
ment set, however our proposed system, i.e. the multi-categories
GMM with the CQCC features, demonstrates improvements
both in terms of EER and min t-DCF. In particular, the multi-
categories classifier shows higher performances in the categories
where the worst results were observed (see details in [8]). How-
ever, while in most categories our system show 0% EER on the
development dataset, we infer from the results on the evaluation
set the training data have been over-fitted and that this system
does not generalize. We did not implement any fusion strategies
for this task due to the effectiveness of our single system on the
development set. For the record, the submitted primary system
to the ASVSpoof challenge is ranked 32 over 50 submissions
which is equivalent to the baselines rankings.

5. PA experiments
In this Section, the different experiments targeting the PA task
are presented. A total of twelve systems are trained to address the
PA task, twelve corresponding to all combinations of the three
different types of feature (LFCC, CQCC and Dual-LFCC) and
the four classifiers (Baseline, 3-spoof-GMMs, 9-spoof-GMMs
and 9-layers-DNN) (see Table 3 and Section 5.1). The category
range specific results of those twelve systems are then analyzed
(see Table 4 and Section 5.2) with the target of mining useful
information on the specificity of each system. Based on this
information and on the results of the exhaustive list of all possible
late fusion [10] of those twelve systems (see Section 5.3), the
ASVSpoof 2019 challenge submission is then designed and
discussed (see Table 5 and Section 5.4).

5.1. Overall results analysis

The results on the development set for each combination of clas-
sifiers / features are available in Table 3a for the EER and in
Table 3b for the min t-DCF. For each kind of feature (including
Dual-LFCC), both multi-categories settings, i.e., 3- and 9-spoof-
GMMs, improve the EER compared to the baselines but the
min t-DCF remains approximately the same. As for the LA
task, it seems that this setting succeed in take into account the
variability of the problematic categories (in particular the rever-
beration time and the replay device quality). We can also notice
that the DNN and the Dual-LFCC do not improve the overall
results. Furthermore, their combination leads to even worse re-
sults. One explication could be that DNN is well suited for low
level features, i.e. raw features like unprocessed spectrum, while
Dual-LFCC are high level features.

The symbols (†,♣, ‡, ∗,♦, F, 6,♥, 8, ],♠, \) present in Table 3
represent the twelve systems. They are used in Table 4 to refer to
the different ensemble system described in the coming sections.

Table 3: Results on the development set for the PA task.

(a) EER in %

↓ Classifier ↓ LFCC CQCC Dual-LFCC

Baseline 10.77† 9.92♣ 10.61‡

3-spoof-GMMs 10.37∗ 9.02♦ 10.26F

9-spoof-GMMs 10.146 9.13♥ 9.568

9-layers DNN 13.07] 12.78♠ 14.11\

(b) min t-DCF

↓ Classifier ↓ LFCC CQCC Dual-LFCC

Baseline 0.226† 0.193♣ 0.255‡

3-spoof-GMMs 0.234∗ 0.191♦ 0.257F

9-spoof-GMMs 0.2296 0.191♥ 0.2328

9-layers DNN 0.295] 0.251♠ 0.302\

5.2. Per-category range results analysis

The per-category range results of the twelve evaluated systems
are available in Table 4. The results are focused on the range
“a” of R and “A” of Q that were identify as the problematic
ranges for the PA task. The first two lines correspond to the
baselines. Most of the proposed systems improve the results on
these specific category ranges (in EER or in min t-DCF). The
best results are highlighted in bold numbers.

Regarding the range “a” of R, the LFCC baseline (†) was
originally better performing than the CQCC (♣). The new LFCC
systems (∗, 6, ]) are unsurprisingly among the best, in particular
the (∗) system has the best EER. However, the DNN CQCC
(♠) provides the best min t-DCF for this range. These two last
systems are part of our primary submission to the challenge as
they bring the best results for the range “a” of R. Regarding the
range “A” of Q, the CQCC baseline (♣) was originally better
performing than the LFCC (†). CQCC multi-categories systems
(♦, ♥) are predictably the best systems in terms of min t-DCF
for this range. It can be noticed that our primary submission to
the challenge uses (♥).

It is interesting to note that we design the Dual-LFCC to
solve the reverberation time issue. However, in practice the
results are good on this case but not the best while conversely
the system 8 (respectively F) is the best (respectively the third)
system in terms of EER when the replay device quality is perfect.
We have not yet found an explanation to this phenomenon and
Dual-LFCC are not used in our submission anyway.

Furthermore, the systems identified in Table 4 significantly
improve the overall results (as part of ensemble systems) while
their individual overall results on the development set (displayed
in Table 3) are comparable with the baselines. This tends to
validate our strategy against problematic ranges.

5.3. Fusion experiments

Previous experiments [10] showed that late fusion of the results
tremendously improved the results on this task. So, we decide to
evaluate every possible combinations of the twelve systems. All
combinations result in

∑12
k=2

(
12
k

)
= 4083 different ensemble

systems. For each ensemble system, a fusion function is trained
using the computed scores on the development dataset of the
corresponding systems. We use the Bosaris toolkit [11] for
this training. Those fusion functions are then used to compute



Table 4: Category range specific results. PA task.

Range→ a of R A of Q

↓ System ↓ EER t-DCF EER t-DCF

† 16.22 0.290 23.13 0.512
♣ 17.88 0.332 21.33 0.458

‡ 15.54 0.314 20.29 0.470
∗ 11.98 0.252 20.79 0.506
♦ 17.17 0.355 18.35 0.420
F 12.94 0.280 18.31 0.450
6 12.54 0.271 19.83 0.487
♥ 17.72 0.362 17.94 0.413
8 12.99 0.298 17.37 0.450
] 14.72 0.287 24.91 0.656
♠ 13.72 0.237 26.16 0.610
\ 16.55 0.311 27.68 0.689

the scores of the ensemble systems on both the development
and evaluation datasets. We then analyze the results on the
development set of those 4083 ensemble systems both in terms
of EER and min t-DCF in order to design our submission to
the challenge. The systems identified here significantly improve
the overall results (as part of ensemble systems) while their
individual overall results showed in Table 3 are comparable with
the baselines.

5.4. ASVSpoof challenge submission

Our submission to the challenge is based on the results of single
and ensemble systems on the development set while the chal-
lenge evaluate on a different set of data. The submitted single
system is the 9-spoof-GMMs CQCC (♥) system which corre-
sponds to the best system with respect to the min t-DCF. The
primary system is composed of four systems (∗♣♥♠ = P) and
is built following the observation drawn in Section 5.2. It is also
the best ensemble system in terms of min t-DCF with four or less
systems. The Contrastive 1 is composed of two systems (∗♦).
It is the best ensemble system both in terms of EER and t-DCF
with only two systems. The Contrastive 2 is composed of six
systems (P†F). It is the best ensemble system with six or more
systems. The results of these ensemble systems are available in
Table 5 both for the development set and the evaluation set.

While the three submitted ensemble systems demon-
strate major improvements on the development set (e.g.,
0.193→0.140), their results on the evaluation set are disappoint-
ingly comparable to the baselines. The primary system is ranked
35 over 52 submissions which is equivalent to the baselines
rankings. Conversely, the Contrastive 1 system shows a slight
improvement compared to the baselines (0.245→0.225). As
explained in the evaluation plan [3], speakers and room impulse
responses changed from the development set to the evaluation set.
The over-fitting of our method on the PA task can be explained
more likely by over-fitting room impulse responses than speaker
as ranges of reverberation time T60 (R) are used in the training
procedure whereas speaker labels are not.

In addition to our submission results, Table 5 also display
for the results of various other typical ensemble systems for
the development set only as the ground truth of the evaluation
set is not disclosed to the participants yet. This results are
not commented further but give the reader a broader view of
ensemble systems.

Table 5: Ensemble systems for the PA task.

Metric EER (%) min t-DCF

Set Dev Eval Dev Eval

Baseline LFCC (†) 10.77 13.54 0.226 0.301
Baseline CQCC (♣) 9.92 11.04 0.193 0.245

Su
bm

is
si

on Single (♥) 9.13 11.91 0.191 0.291

Primary (∗♣♥♠ = P) 7.37 10.53 0.140 0.249
Contrastive 1 (∗♦) 7.94 9.59 0.156 0.225
Contrastive 2 (P†F) 7.31 10.53 0.145 0.255

Best EER (P♦†‡\]) 6.80 - 0.142 -
Best min t-DCF (P]) 7.22 - 0.135 -
12 systems 7.07 - 0.148 -
Best without DNN (♣♥6F‡) 8.13 - 0.156 -
Best without DNN (♣ ∗ ♦‡) 7.85 - 0.158 -
Baseline fusion (†♣) 9.22 - 0.178 -

5.5. Discussion and perspectives

First, we noticed that among the 4083 fusion combinations,
the ensemble systems comprising the DNN are among the best,
whereas the DNN alone does not improve the results. The consid-
ered structure is simple yet effective in this case. One explanation
could be that the DNN explores a larger space than the GMM
and in doing so adds an additional generalization power to the
overall ensemble system.

Second, our preliminary experiments show that the baselines
has more difficulties to correctly classify the sound examples
when the range of the R category (T60) was the smallest, i.e.,
“50-200”ms. To this end, we considered the Dual-LFCC, which
corresponds to the concatenation of the dereverberated and resid-
ual signals. Whereas this feature does not improve the results by
itself, it allows to build an ensemble system which has the lower
EER among the other systems. As the dereveberation [9] uses
external data (forbidden by the organization), we did not submit
to the challenge any system including the Dual-LFCC. However,
the external data could be replaced by the challenge data but we
were lack time to implement it. The release of the labels of the
evaluation set will enable us future research perspectives. In par-
ticular, we will be able to evaluate the generalization capability
of the Dual-LFCC.

6. Conclusions

This paper presents our contributions to the 2019 ASVSpoof
Challenge (LA and PA tasks). Our first contribution is a training
procedure that exploits the labelling of the attack conditions
in the training set. In particular for the replay attack scenario,
we identify low reverberation time and perfect microphone to
be problematic attack conditions and allocate more modelling
power to these training subsets. Our second contribution is a
new feature called Dual-LFCC that target the low reverberation
time attack condition. We then conduct extensive experiments
on single (resp. ensemble) systems, which lead to major im-
provements of the baseline on this particular attack conditions
(resp. on all types of attack). However, we suspect that our
training procedure has over-fitted the development set as similar
improvements are not observed on the evaluation set. This still
need to be confirmed for the Dual-LFCC, once the evaluation
set will be released.



7. References
[1] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li,

“Spoofing and countermeasures for speaker verification: A survey,”
Speech Communication, vol. 66, pp. 130–153, 2015.

[2] Z. Wu, J. Yamagishi, T. Kinnunen, C. Hanilçi, M. Sahidullah,
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