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Abstract 

Taylor's law states that variance of the distribution of distance between two randomly chosen 

individuals is a power function of the mean distance. It applies to the distances between two 

randomly chosen points in various geometric shapes, subject to a few conditions. In Réunion 

Island and France, at some spatial scales, the empirical frequency distributions of inter-

individual distances are predicted accurately by the theoretical frequency distributions of 

inter-point distances in models of geometric probability under a uniform distribution of 

points. When these models fail to predict the empirical frequency distributions of inter-

individual distances, they provide baselines against which to highlight the spatial distribution 

of population concentrations. 
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Introduction 

In animal ecology, Taylor (1961, 1986) compared aggregation from the distribution of 

population densities across sub-groups of a given population. In demography, Courgeau 

(1970, 1973) and Bell et al. (2015) compared internal migrations from the distribution of 

distances between randomly chosen individuals in human populations from different 

countries. Here we relate these two perspectives on the spatial distribution of populations. We 

link empirical data from human populations to models based on geometric probability.  

Taylor’s (1961) law (also known as Taylor’s power law) asserts that the logarithm of 

the variance Var(X) of the density X of a set of comparable groups is a linear function of the 

logarithm of the mean density E(X), or equivalently that there exist constants a > 0 and b such 

that 

Var     .bXEaX                                                     )1(  

Taylor's law has been verified, using the sample mean and the sample variance as 

estimates of the population mean and variance, in cosmology, with the emission spectra of x-

ray binary systems and active galactic nuclei (Uttley and McHardy, 2001); in ecology, with 

population densities of bacteria (Ramsayer et al., 2012) or plants, insects, and animals (Taylor 

et al., 1978); and in social sciences, with the spatial distribution of human population densities 

(Cohen et al., 2013). 

Social groups are organized according to rules generating spatial structures. Examples 

include urbanization for humans and colonies for termitaries and anthills. Different regions, 

including the different subgroups considered in Taylor’s law, may not be independent of one 

another in the presence of migration. The distribution of the distances between pairs of 

randomly chosen individuals is another way of describing the spatial distribution of 
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populations. It has been modeled as the distribution of the distances between two randomly 

chosen points in various geometric regions, using geometric probability. 

Geometric probability originated with Buffon (1733), who studied the spatial 

distribution of different kinds of randomly distributed objects. Crofton (1885) calculated the 

probability that a figure formed by n points randomly distributed on a given surface possesses 

a specific property independently of any overall translation or rotation. One such property 

concerns the distance between a pair of randomly selected points. Barton et al. (1963) in 

chromosome analysis, Kuiper and Paelinck (1982) in geography, Moltchanov (2012) in 

network analysis; Courgeau (1970), Courgeau and Baccaïni (1989), Rogerson (1990) in 

demography, and Parry and Fischbach (2000) in physics have addressed such questions. 

However, these models use uniform distributions and only approximate non-uniform 

distributions with a finite number of points. Spatial point process models use geometric 

probability to describe the arrangement and interactions of objects unevenly or randomly 

distributed on a plane or in a space (Boutin and Kemper, 2004; Illian et al., 2008). 

We show that the distribution of distances between two random individuals obeys 

Taylor’s law with exponent b = 2 in a Euclidean space of any finite dimension, for all regions 

of the same shape as a given bounded region of any shape (section 1). The space may be 

continuous or discrete and the total number of points may be finite or infinite, subject to a few 

conditions. The case b = 2 has special significance. When b = 2, the coefficient of variation, 

which is the ratio of the standard deviation (Var   21X  of the density X to the mean density 

 XE , equals 21a  for all values of  XE . For nonnegative random variables such as 

population density X, the coefficient of variation equals the reciprocal of the signal-to-noise 

ratio, which is the mean divided by the standard deviation. When b = 2, the signal-to-noise 
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ratio equals 21a  for all values of  XE .  Conversely, when the coefficient of variation is 

constant, then Taylor's law holds with b = 2. 

We shall review and extend results of geometric probability for different territorial 

shapes, including an annulus (section 2). We confirm that the distribution of distances 

between individuals obeys Taylor’s law with exponent b = 2 in these examples. In section 3, 

we consider a finite space and a finite number of individuals to examine the effect of spatial 

variation in population density and how these results are modified by territorial and social 

constraints. We give simulated and empirical examples (sections 2 and 3). 

 1. Application of Taylor’s law with geometric probability 

The intuition behind the theorem in section 1.2 is that for any family of similar shapes, 

both the mean distance between two randomly chosen points and the standard deviation of the 

distance between two randomly chosen points scale linearly with rescaling (e.g., by changing 

the radius of a circle or the side of a regular polygon, and similarly for any shape), and 

therefore the variance scales as the second power of the mean. This intuition applies to all the 

cases in section 2. 

1.1 Definitions and preliminary results 

In plane geometry, two shapes are defined to be "similar" if one can be perfectly 

transformed to another by rescaling, rotation, reflection (mirror image), and translation. For 

example, all equilateral triangles are similar, all circles are similar, and all squares are similar, 

but no equilateral triangle is similar to a square or to a right triangle. 

ℝ is the real line, and N any fixed positive integer. ℝN is the N-dimensional space of 

real vectors  Nxxx ...,,1 . For any two points x and y in ℝN, the Euclidean distance between 

them is 
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The Euclidean N-space (ℝN, r(., .)) is the set ℝN of N-dimensional real points together 

with the metric r(., .), which gives the Euclidean distance r(x, y) between a pair of points x 

and y in ℝN. 

S is any fixed set of points in ℝN. It may be continuous or discrete, and the total 

number of points in S may be finite or infinite. For any two points x and y in S, r(x, y) is not 

necessarily bounded, though by definition of ℝN, r(x, y) = ∞ is excluded. For convenience, we 

take S as continuous. ℝ+ is the set of positive finite real numbers (0, +∞). For any c in ℝ+, 

define the rescaling of S by c as the set of points  SxcxcS  .  Define the family of S, 

࣭(S), to comprise all sets of points in ℝN obtained from S by rescaling S by c, that is, {cS | c ∈ 

ℝ+}, and all translations and all rotations of all rescalings of S. 

For example, if N = 1 and S = [0, 1], then the family ࣭(S) consists of all closed 

intervals of the real line ℝ. If N = 2 and S is the unit disk, then ࣭(S) is the family of all closed 

disks of any radius centered anywhere in the plane. 

Consider a probability density function Sp  on the points of S : 

for any x in S,  xpS0  and   1 
dxxp

Sx S .    (3) 

If S is a set in ℝN, then the infinitesimal volume element is 




N

i
idx

1

      

Define the random distance XS  to be the random variable constructed by picking x in S 

with probability  xpS dx, independently picking y  in S with probability  ypS dy, and 

computing the Euclidean distance  yxr ,  between the chosen points. Define the mean 

and the standard deviation of the random distance SX  on S  as 

          


Syx SSS dydxypxpyxrXES
,

,,     (5) 

                 2
1

,

22
1

2 , 


Syx SSS dydxypxpSyxrSXES  .   (6) 
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We assume that 0 < μ(S), thus excluding S consisting of a single point, because 

  0, xxr . We also assume that 0 < σ(S), thus excluding S consisting of exactly two 

points or the vertices of an equilateral triangle. We finally assume that μ(S) < ∞, and 

that σ(S) < ∞. The last two conditions hold true if S is bounded (there exists k in ℝ+ 

such that, for all x, y in S,   kyxr , ) but may also hold true if S is not bounded, 

depending on the probability density function p(.). 

Under these assumptions, we define the variance of XS  on S  as the square of its 

standard deviation: Var    SS 2 . The coefficient of variation of the random distance 

XS  on S  is  

CV(S) = σ(S)/μ(S).                                                                     (7) 

Then 0 < CV(S) < ∞. 

Lemma 1 

Consider x and y two points in ℝN. Then for any c  in ℝ+,    yxcrcycxr ,,  .  That 

is, rescaling any two points x, y by the factor c  rescales the Euclidean distance r(x, y) by 

the same factor c. Rotating around a point and translating x and y by the same vector 

have no effect on the distance between them. 

Proof.  

       yxrcyxccycxcycxr
N

i
ii

N

i
ii ,,

2
1

1

222
1

1

2 
















 



.      (8) 

Lemma 2 

If cS  is a rescaling of S  by c in ℝ+, define the probability density function pcS  on the 

points of cS  by     N
ScS cxpcxp   for all points cx in cS, or equivalently for all points x 

in S. Then pc S  is a probability density function on cS. 

Proof. 

By construction,   0cxpcS . Because the infinitesimal of the volume element d(cx)  in cS  is 
the product of the infinitesimals of each dimension, 
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      dxcdxccxdcxd N
N

i
i

N

i
i  

 11

,    (9) 

we have 

              1  
dxxpxdccxpcxdcxpdyyp

Sx S
N

Sx

N
SSx

N
ScScxy cS .      (10) 

1.2 Theorem and theoretical example 

S is a set of at least three points in the N-dimensional Euclidean space (ℝN, r(., .)) such 

that not all pairs of points are equidistant. ࣭(S) is the infinite family of sets of points in ℝN 

including all rescalings of S, namely,  ccS ℝ+  , all translations, all reflections, and 

all rotations of all rescalings, translations, and reflections of S. With a probability density 

function pS  on the points of S and the probability density function pcS on the points of cS 

defined by     N
ScS cxpcxp   for all points cx in cS, for any set s in ࣭(S), μ(s) is the mean 

and σ(s) the standard deviation of the distance between two randomly chosen points. 

Assume 0 < μ(S) < ∞ and 0 < σ(S) < ∞. Then 

 μ(s) = cμ(S), σ(s) = cσ(S), CV(s) = CV(S).    (11) 

The last equality in (11) holds independently of c, and the variance of the random 

distance on s  satisfies  

Var(s) = (CV(S))2×(μ(s))2.      (12) 

This is Taylor’s law with a = (CV(S))2 and exponent b = 2. 

Proof. Because rotations, reflections, and translations have no effect on the distance  ScX , 

we need to examine only the effects of rescaling S by c in ℝ+. By definition of the mean μ(.), 

using     N
ScS cxpcxp   for all points cx in cS or equivalently for all points x in S 

        dvduvpupvurXEs cScScSvucS  


,
),(      

           dycdxccypcxpcycxr NN
cScSSyx 


,

,       

         
dycdxc

c
yp

c
xp

yxcr NN
N

S
N

S

Syx













  ,

,      

       Scdydxypxpyxrc SSSyx
  ,

, .    (13) 
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The proof that    Scs    follows the same steps, starting from the definition of the 

standard deviation. Dividing the equation    Scs    by the equation    Scs    

gives 

CV(s) = CV(S),     (14) 

which implies   s CV(S)  s . Squaring both sides of equation (14) gives 

Var      ss 2 (CV(s)) 2   2s , which is Taylor’s law with exponent b = 2. ▭ 

Nothing in this theorem requires that the shape S be topologically connected. 

The space can be extended from real to complex with an appropriate Euclidean 

distance, the Minkowski 2-norm, 

  2
1

1

2

2 







 



N

i
ii yxyx .     (15) 

The theorem extends to all Minkowski p-norms 

 
ppp

i
iip

yxyx

1

1










 



,     (16) 

for any 1 ≤ p <∞ (Steele, 2004: 140), or to any homogeneous metric  yxr ,  such that 

   yxrccycxr ,,  . 

As an example, consider the whole plane ℝ2, and the normal distribution  2,cN   on 

ℝ2 with mean μ and standard deviation c. μ has no effect on the difference between two 

points, so the distribution of the distance  2,cX   between two points randomly selected 

from  2,cN   is the same for any μ. Increasing or decreasing c leaves the geometric region 

(which here is the whole plane) unchanged but spreads or contracts the domain of the 

probability density function over the plane. This example satisfies the assumptions of the 

theorem. Therefore  2,cX  , the random distance between a randomly selected pair of 

points, satisfies Taylor’s law with b = 2 for all c > 0, translations, reflections, and rotations. 

Because the difference between two independent normal variables, each of which is 

identically distributed as  2,cN  , has the distribution  22,0 cN , the absolute value of that 

difference has the so-called “half-normal” distribution with    cccXE 1284.12, 212    



 9 

and Var      212, 22  ccX . Thus Taylor's law Var      bcXEacX 22 ,,    holds 

true with a = π/2 – 1, b = 2 for all c > 0.This example can be extended to a bivariate normal 

distribution on ℝ2 with or without correlation between the x- and the y-axes. 

2. Population uniformly distributed across a territory 

We review some distributions of distances between two randomly chosen points and calculate 

their expected value and variance to show Taylor’s law with b = 2, now assuming that the 

population is uniformly distributed across the territory. 

2.1 Segment of the real line 

Consider a linear territory of length R > 0. The distance X between two points chosen 

at random on the line has the probability density function f  (Borel, 1924): 

  





 

R
r

R
rf 12 , Rr 0 .    (17) 

Integrating with respect to r yields the cumulative distribution function F of the random 

variable X: 

  









R
rr

R
rF

2
2 2

, Rr 0 .    (18) 

The mean distance between individuals is 

 
3
RXE  ,      (19) 

and its variance 

Var  
18

2RX  .      (20) 

This distribution obeys Taylor’s law with exponent 2b , because Var     2

2
1 XEX  . 
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2.2 Disk and sphere 

On a two-dimensional disk of radius R, the distance r between two points chosen at 

random has the probability density function f  (Borel, 1924; Garwood, 1947; Luu Mau Thanh, 

1962; Barton et al., 1963; Moltchanov, 2012): 































21

2

2

2 4
1

22
cos4)(

R
r

R
r

R
r

R
rrf Arc


.   (21) 

The cumulative distribution function is 

 
21

2

2

2

2

2

2

4
1

2
1

2
cos121 



































R
r

R
r

R
r

R
r

R
rrF


Arc .  (22) 

The mean distance between individuals is  

  RRXE 9054.0
45

128



,     (23) 

and the variance is 

Var   2
2

2 0934.0
45

128 RRRX 








.   (24) 

This distribution obeys Taylor’s law, with 2b . 

All moments of order p may be written (Tu and Fischbach, 2002): 

pp
p R

B

pB

p














 











 

2
1,

2
3

2
3,

2
3

2
22 2 ,    (25) 

where  qpB ,  is the beta function, leading, for ap > 0, to the relationship 

 p
pp a 1  ,      (26) 

which is Taylor’s law for all moments (Giometto et al., 2015). 
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For a three-dimensional sphere, we have (Borel, 1924): 

  







 3

53
2

3 164
33

R
r

R
rr

R
rf .    (27) 

The cumulative distribution function is  

  







 3

643

3 9616
3

3
3

R
r

R
rr

R
rF .    (28) 

The mean distance between individuals is  

  RRXE 0286.1
35
36

 ,     (29) 

and its variance is 

Var   2
2

2 142.0
35
362.1 RRRX 






 .    (30) 

This distribution obeys Taylor’s law with exponent 2. 

2.3 Square 

In a square of side R (Borel, 1924; Garwood, 1947; Luu Mau Thanh, 1962), the 

distribution of the distance r between two randomly selected points has probability density 

function: 

  ,0,42)( 22
4 RrrRrR

R
rrf       (31) 

  .2,41cossin22)( 221222
4 RrRrRrR

r
R

r
RR

R
rrf 















  ArcArc    (32) 

The mean distance is 

     RRXE 5214.021ln522
15

    (33) 
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and its variance is 

Var          22
2

0615.021ln2521ln22102469
225

RRX  . (34) 

This distribution obeys Taylor’s law with 2b . 

To show how the different shapes affect the probability density functions, Figure 1 

presents the curves for a circle and a square with the same mean distance 0.5. For the circle, 

the diameter equals 1.10448; for the square, the side equals 0.95895 and the maximum 

distance is 1.3562. 

 

 

Figure 1. Distribution of distances between two random points from a circle (solid line) and a square 

(dashed line) with the same mean distance of 0.5. 
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Only the tail of the distribution differs. If two points are randomly selected with a 

uniform distribution from a country with boundaries that are more complicated than those of a 

circle or a square, only the tails of the distribution of distances between those two points are 

likely to be substantially affected.  The core of the distribution is likely to remain unchanged. 

2.4 Annulus 

Consider an annulus (the area between two concentric circles) with an inner radius of 

1R  and an outer radius of 2R . To our knowledge this case has never been studied until now. 

The Réunion Island offers a real-life approximation. Its central region—occupied by high 

mountains and an active volcano—is uninhabitable and its territory has a roughly circular 

shape. The humanly habitable zone of the island has the shape of an annulus (Figure 2). 

 

Source: Bénard, 2012. 

Map 1. Inhabited areas in Réunion Island  
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We seek the distribution of the straight-line distance between two random points P and 

Q drawn independently of one another in the annulus. An alternative to the linear distance 

between two points is a curvilinear path running within the annulus, but calculations are more 

complicated. The angle formed by PQ  and a direction fixed at the beginning of the 

calculations is uniformly distributed in the interval  2,0 . If the angle lies in the interval 

[  d, ) and if the distance |PQ| lies in the interval [ drrr , ), then P, whose position is 

constrained by r, must lie in the set of areas S common to the initial annulus and to the 

annulus obtained by the translation by vector QP  (Figure 2). For a given position P, Q is 

located in the area element ddrr , and the different angles are given in Figure 3. 
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Figure 2. The annulus and its translated image, which enable us to define the areas S where P must lie, 

in order to define an acceptable ( ,r ) pair. 

The cosines of the angles shown in Figure 3 are:  
1

1 2
cos

R
r

 ,  
2

2 2
cos

R
r

 , 

 
1

2
2

2
1

2

3 2
cos

rR
RRr 

 , and  
2

2
1

2
2

2

4 2
cos

rR
RRr 

 .  

The joint probability of drawing two point P and Q that define an acceptable ( ,r ) 

pair is  

  2
2

2
1

2 RR
ddrrSddrrf


  .     (35) 

We first estimate the values of S according to the value of r relative to 

21122121 ,2,, RRRRRRRR  andthanlowerisitif . Then we integrate   ddrrf  with 

respect to . To give the result of this integration, it is convenient to define: 

 
 22

1
2
2

4:
RR

rrK





.      (36) 

If 
2

2
1

RR  , we go to the next case; otherwise, if 112 2RrRR  , then 

        111
2

1222
2
2 sincossincos   RRrKrf .  (37) 

If 112 2RrRR  , then 

             
  






































41

4111343

1121
2
11242

2
2

sin
sin2sinsinsin

sincos
sincos





 RRrKrf .   (38) 

If 
2

2
1

RR   and 2112 RRrRR  , or if 
2

2
1

RR   and 2112 RRrR  , then 
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        333
2

1442242
2
2 sincossincossincos   RRrKrf .  (39) 

If 221 2RrRR  , then 

    222 sincos   rKrf .    (40) 

Figure 4 presents the curve obtained for 101 R  and 302 R , which we shall 

compare to the case of inhabited areas of Réunion Island (points indicated by a cross “x”). 

Why we traced a solid curve up to 52 km and a dotted line beyond 52 km will be explained in 

section 3.2. We shall not test for Taylor’s law here, as the formulas are too complicated, but 

as shown in section 1, it holds true for all scalings 1cR ,and 0,2 ccR for . 
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Figure 4. Probability distribution of distances obtained for an annulus of radii 10 and 30 with uniform 

distribution (solid line up to 52 km, dotted line beyond), with the values observed for inhabited areas 

of Réunion Island (points indicated by a cross “x”). 

2.5 Other shapes 

Taylor’s law applies to other shapes, but the formulas grow increasingly complicated 

from triangles (Borel, 1924) to rectangles (Mathai et al., 1999), convex polygons (Borel, 

1924), and ellipsoids (Parry and Fischbach, 2000). 

3. Populations distributed non-uniformly over a discretized territory 

The distribution of distances between two random individuals in a continuous territory (such 

as those considered in section 2) could be analyzed assuming a non-uniform spatial 

distribution of population, by weighting the probability density function of the distance 

between the locations of the individuals by the population densities or counts at each terminus 

of the line segment between the two randomly chosen individuals (Tu and Fischbach, 2002). 

A computationally easy way to introduce population density into the calculations is to assume 

discrete populations with a finite total number of individuals located in a finite total number 

of areas. Most probability calculations should remain unchanged. Gridded population counts 

or estimates and gridded population maps are now available in many countries (at 

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). We can then verify theoretical 

results empirically. 

3.1 Square populated by one individual in each cell 
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Consider a square of side R divided into n² square areas of side 
n
R , with a single 

individual at the center of each cell. The density of each such cell is 2

2

R
n

 , with a total 

number of pairs of cells equal to 

 
2

122 


nnC .     (41) 

This number grows rapidly: for the 2n 36,000 French municipalities (approximately), the 

total number of pairs is nearly 8105.6  . 

To count the total number of pairs at a distance  
n

baRr
2122 

 , we shift the square of side 

R by one of the translation vectors QP   ba ,  or  ab , , as we did with the annulus. The 

common surface of the square and each of its translated squares has an area equal to 

  bnan  , which is also the total number of pairs for each translation. If 

00  baba oror , then there are two possible translations, and four otherwise. The 

probability mass functions of the distance X between two points chosen at random in the 

square is equal to this count divided by the total number of cases given in Eq. 41. 

We calculate the mean distance between two individuals selected at random on the 

territory 

             


 21542412212
1

2 2

22
nnnnnnn

n
R

nn
XE ,  (42) 

and its variance 

Var              


 2120281412
1

2 2

2

2

22 nnnnnnn
n
R

nn
X . ….(43) 
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This distribution obeys Taylor’s law with 2b . However, the relationship between  XE  

and  XVar  now depends on the total number of areas. When the latter increases, the 

distribution tends toward a continuous distribution. 

Figure 5 gives the example of a square of side 
2
2  divided into 100 square areas of 

side 
20

2 , with distances grouped into 14 classes. The mean   5229.0XE  and the variance 

Var   0628.0X  of the distance between a pair of randomly selected points from this 

distribution are very close to the values for a population distributed uniformly over the same 

square, for which   5214.0XE  and Var   0615.0X . Figure 5 presents the fit.  

 



 20 

Figure 5. Distribution of distances grouped in 14 classes for a square of side 22  divided into 

squares of side 
20

2
 (black dots) compared with a continuous distribution (black line). 

3.2 Réunion Island and France discretized by uniform gridded cells 

Geographic grids of 1 square km introduced in several countries provide comparable 

data on human population distributions. The Lambert Azimuthal Equal Area projection 

(INSPIRE_Specification_GGS_v3.0.1.pdf) is the standard in Europe. The systems used in 

other areas are very similar. 

Réunion 

Réunion Island is roughly circular, with an uninhabited central region (Figure 2). Each 

cell of this annulus is associated with the indicator “inhabited or not”. Using the data supplied 

by Insee, we calculate the distribution of distances between pairs of randomly chosen 

inhabited areas. 

Figure 4 shows empirical along with theoretical probabilities of distances between 

random pairs of individuals resulting from the model of Eq. 37 to 40 for a uniform 

distribution on an annulus. The root mean squared error  

 
21

1

2ˆ


























kn

pp
n

i
ii

RMSE ,     (44) 

quantifies the goodness of fit, where ip̂  is the observed frequency for the distance id , ip  the 

theoretical frequency, n the total number of observed distances, and k the total number of 

estimated parameters. In Figure 1, the shape of the territory (a square or a circle) affects the 

tail of the distribution. We estimate the root mean squared error omitting this tail, which is 
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empirically determined when the theoretical and the observed curve begin to diverge, as the 

boundaries become more complicated. For Réunion Island, setting this tail at distances above 

52 km leads to a root mean square error of 0.003025 for 19 degrees of freedom (21 classes of 

distance minus two estimated parameters), for an internal radius of 10 km and an external 

radius of 30 km. From 52 km to the maximum distance of 70 km (dotted line in Figure 3), the 

empirical distribution's tail is longer than for the annulus because the island is ellipsoidal 

rather than circular. 

Metropolitan France 

Metropolitan France comprises 375,279 inhabited areas of 1 square km, which makes 

nearly 70.4 × 109 pairs of areas. A 10% sample is enough and tractable to estimate the 

distribution of distances. Figure 6 compares the sampled frequency distribution of distances 

between two randomly selected inhabited square kilometers (indicated by crosses “x”) with 

the theoretical probability density function of distances between uniformly randomly chosen 

points from a square with side 728 km. We estimated the size of this square by a nonlinear 

least-square regression. The resulting root mean squared error was 0.00012 with 144 degrees 

of freedom, for distances less than 730 km. 
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Figure 6. Sampled frequency distribution of distances (indicated by crosses “x”) between 1 km × 1 km 

squares for France compared with the theoretical probability density function of distances between 

random pairs of points from a square with side 728 km (solid line up to 730 km, dotted line beyond). 

Figure 6 shows that the empirical frequency exceeds the theoretical frequency for 

distances from 730 km to 1370 km (dotted line on Figure 6). The empirical frequency slightly 

exceeds the theoretical frequency for distances up to 200 km, and it is slightly less than the 

theoretical frequency for distances from 500 km to 650 km. 

However, the surface of France is far from square, and only 375,279 of 551,500 areas 

of 1 square km are populated. The similarity of the sampled and the theoretical curves shows 
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that the presence of many uninhabited areas does not affect the center of the distribution of 

distances between inhabited areas. 

3.3 Square with non-uniformly populated areas 

We now consider non-uniformly populated areas. A square of side R is divided into 

2n equal square cells i with different population sizes, iP , assuming that individuals are 

uniformly distributed in each cell. The country’s total population is 



2

1

n

i
iPP  and the 

population density of cell i is 2

2

R
nPii  . The total number of pairs of individuals in the 

population is 

 











   

   

2 2 2

1 1 1

2 2
2
1

2
1 n

i ij

n

i

n

i
ijii PPPPPPC .   (45) 

A population of 61065  individuals, as in France, counts 15101.2   pairs of individuals. 

We determine the mean distance between individuals inhabiting the same cell. This 

case is similar to Eq. 33 for the continuous distribution, yielding a mean distance close to 
n

R
2

. 

The total number of pairs is given by the first and the third terms in Eq. 45: 

 










  
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2 22

1 1

2

1 2
1

2
1 n

i

n

i
ii

n

i

ii PP
PP

.    (46) 

The total number of pairs of individuals inhabiting different cells equals the sum of 

products ji PP  for each of the pairs of areas located at a given distance r. 

3.4 Computing with population density for Réunion and metropolitan France 
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Réunion 

Figure 7 is built from the gridded Insee data for Réunion Island on the population sizes 

of each area of 1 square km, which are the population densities. 

 

Figure 7. Frequency distribution of distances in km between pairs of individuals observed for Réunion 

Island (crosses) compared with the theoretical distribution obtained for an annulus (solid line) with 

uniform population density  

As the population is concentrated in coastal cities, we used a smaller range of internal 

and external radius values, from 18 km to 26 km, than in our comparison between inhabited 

and uninhabited areas. Omitting distances greater than 52 km, the root mean squared error for 

19 degrees of freedom is 0.007349, more than twice the previous value. The empirical 

distribution's tail is longer because the island is ellipsoidal, and has slightly higher observed 
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frequencies around 15 km, which is the distance between the island’s two largest cities: Saint-

Denis (population size 144,000) and Saint-Paul (population size 103,000). 

Metropolitan France 

The results for metropolitan France depend on the spatial scale. First we group 

distances into intervals of 100 km by aggregating the observations at the fine scale of 1 square 

km. We compare this distribution with the theoretical uniform distribution for a square 

(Figure 8). 

 

Figure 8. Frequency distribution of distances in km between pairs of randomly chosen individuals in 

France for a grouping into 100-km classes (indicated by crosses “x”), compared with the theoretical 

distribution (solid line up to 730 km, dotted line hereafter) with uniform population density on a 

square. 
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In this case, the root mean squared error is 0.01064 for 14 degrees of freedom, for a 

theoretical square with an estimated side of 791 km. The main discrepancy is for the first 

distance, where the observed frequency is more than twice the theoretical frequency. It is due 

to the population concentration in metropolitan areas.  

If distances are grouped into 5-km classes and compared to a theoretical uniform 

distribution of population in a square with an estimated side of 798 km (Figure 9), the root 

mean squared error is 0.001212 for 144 degrees of freedom, ten times higher than the value 

calculated for inhabited areas. Deviations from the theoretical curve are noteworthy. 

The local relative maxima at certain distances reflect the distribution of France’s 

population living in large cities. They correspond to “as the crow flies” distances between 

pairs of regional metropolises: around 100 km between Paris and Rouen or between Paris and 

Orléans, 200 km between Paris and Lille, 300 km between Lyon and Marseille, 400 km 

between Paris and Lyon or between Paris and Strasbourg, 500 km between Paris and 

Bordeaux, 600 km between Paris and Toulouse, 700 km between Paris and Marseille. The 

peaks at short distance corresponds to the suburbs of these metropolises, in particular the Paris 

conurbation, as already observed on the 100-km scale (Figure 8). Réunion Island also displays 

a maximum for the distance between Saint-Denis and Saint-Paul. The smooth pattern 

predicted by geometric probability is overlaid by the discrete pattern of urban concentrations, 

with large cities at distances of multiples of 100 km in France. 
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Figure 9. Frequency distribution of distances (km) between pairs of individuals in France for a 

grouping into 5-km classes (crosses), compared with the theoretical distribution (solid line up to 730 

km, dotted line beyond) of a square with estimated side 798 km with uniform population density. 

Conclusion 

For elements distributed spatially, Taylor’s law relates the mean and the variance of densities 

in sub-groups. We have shown theoretically that Taylor's law applies also to the distances 

between two randomly chosen points in various geometric shapes and under broad conditions. 

For Réunion Island and metropolitan France and at some spatial scales, the empirical 

frequency distributions of inter-individual distances are predicted accurately by the theoretical 

frequency distributions of inter-point distances in models of geometric probability based on 
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the uniform distribution. When these models predict poorly, they provide baselines against 

which to highlight concentrations of population. For example, the observed distribution of 

distances of randomly drawn pairs of people in France is close to the theoretical distribution 

when distances are grouped into intervals of 100 km, but grouping distances into intervals of 

5 km highlights peaks of observed frequency corresponding to the distances between regional 

metropolises. 
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