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CHAPTER 16

Graph Explorations with Mobile Agents

Shantanu Das

Aix-Marseille Univ., LIS, CNRS, France. <shantanu.das@lis-lab.fr>

Abstract. The basic primitive for a mobile agent is the ability to visit
all the nodes of the graph in a systematic manner. This chapter con-
siders the exploration of unknown graphs in full detail, for the specific
mobile agent model considered in this book. The graph is considered
to be finite, undirected and connected. Other than this fact, no prior
knowledge of the graph is assumed. Several exploration techniques are
introduced and explained for either a single agent, or multiple agents,
exploring either labelled or unlabelled graphs. We focus on the efficiency
of exploration and consider three different complexity measures, the time
taken, the amount of memory used by the agents and the storage needed
at each node of the graph. For exploration by multiple agents, we con-
sider collaborative exploration by a team of colocated agents as well as
distributed exploration by agents scattered in a graph. The concluding
section presents some brief ideas and references on more advanced topics
on graph exploration that are not covered in this chapter.

Keywords: mobile agents, graph exploration, undirected graph, deterministic,
anonymous

1 Introduction

Most tasks for mobile agents require them to navigate in a graph, visiting all
the nodes in a systematic manner. We call the task of visiting all the nodes
of an unknown graph as the Exploration problem. We will only consider finite
and connected graphs in this chapter. Consider a single mobile agent located in
one of the nodes of such a graph. The agent can move only along the edges of
the graph. The task of Exploration requires the agent to visit each node of the
graph at least once. Depending on the objective, further requirements for the
agent may be to terminate after visiting all nodes, or to return to the starting
node. The former is called “Exploration with stop” while the latter is referred to
as “Exploration with return”. As an example, if the agent is required to search
for some resource (or information) among the nodes of a graph, it must be able to
determine whether the target resource is actually present in the graph and if not
return back to the starting node and report failure. In such case, termination of
the exploration is important. On the hand, if the agent is required to monitor the
nodes of the graph to prevent intruders (e.g. guards patrolling an art gallery),



in such cases, we do not require the agent to terminate the exploration but
rather continue visiting all nodes repeatedly. Such an exploration where each
node needs to be visited infinitely often is called “Perpetual Exploration” of the
graph.

Throughout this chapter we assume that the graph to be explored is initially
unknown to the mobile agent. Further an agent has only local visibility restricted
to the current node where it is located. So, the agent starting at a node v sees
only the node v and the incident edges to it; the agent can not even see the
neighboring nodes at the other end of these edges. As the agent visits more
nodes, it may store in its memory the history of what it has explored so far. The
problem of reconstructing the graph from this information obtained in course of
the exploration, is called the Map Construction problem.

We distinguish the mobile agent exploration problem from the graph traversal
problem in the context of the graph data structures (as in [38]). Graph traversal
in that context does not need to be continuous as it is possible to return to
any previously visited vertex in the data-structure. However, in the context of
mobile agent exploration, the agent must always follow a path of consecutive
edges in the graphs (i.e. jumps are not allowed). Another important difference is
that the agent may not always be able to distinguish between the nodes of the
graph during the exploration. We will study both exploration of both unlabelled
graphs (where the nodes are anonymous) and labelled graphs (where each node
is assigned a unique identifier that is visible to the agent visiting that node).
Even for labelled graphs, the ability of the agent to recognize previously visited
nodes depends on its capabilities, e.g. the size of its memory.

The Model: We assume the usual mobile agent model, with an undirected
connected graphG where the edges of the graph are labelled with port numbering
λ so that an agent at any node v can deterministically choose to traverse one of
the adjacent edges, e, by selecting the port number λe of that edge. In particular
we assume that a proper port numbering which assigns the labels 0, 1, 2, . . . d− 1
to the edges incident to a node of degree d. For any such edge-labelled graph
G, we define the corresponding digraph Ĝ by replacing each edge e = (u, v) by
two directed arcs - one from u to v and the other from v to u, marked with the
port labels (λu(e), λv(e)) and (λu(e), λv(e)) respectively. The nodes of the graph
G may be labelled or unlabelled. Throughout this chapter, we will use n, m, D
and ∆ to denote respectively, the number of nodes, the number of edges, the
diameter, and the maximum degree of any node, of G.

We consider different models for communication and interaction of the agent
with the environment, including the whiteboard model, the token model and
the face-to-face model. The graph is assumed to be static and does not change
during the execution of the algorithm (in particular, there are no failures of any
kind). Exploration of dynamic graphs is fully investigated in Chapter 20. This
chapter considers only deterministic algorithm for exploration of static graphs.

Complexity: We are interested in efficient algorithms for exploration. We mea-
sure the efficiency of an algorithm using three different criteria.



– [Moves] or [Time]: The moves complexity of an algorithm is the total
number of edge traversals performed by all agents, where any single edge
traversed by a single agent counts as one move. For exploration by only one
agent, the moves complexity is same as the time complexity, assuming each
edge traversal takes one unit of time (we assume that the graph is unweighted
and all edges are similar). When there are multiple agents, we may be inter-
ested in the total energy consumption (for exploration by physical robots) or
the bandwidth consumption (for software agents exploring communication
networks); the moves complexity captures these notions.

– [Storage]: The maximum amount of information stored at any node of the
graph during the course of the exploration, is called the storage complexity
of the algorithm. Under the whiteboard model of communication, storage
is counted as the minimum size (in bits) of the whiteboard needed at each
node of the graph. Under the token model, we count storage as the maximum
number of tokens at any node. When the agents do not have the ability to
mark the nodes of the graph, we say that the algorithm is a zero-storage
algorithm.

– [Memory]: The memory complexity of an exploration algorithm is the max-
imum size of persistent memory needed by any agent during the exploration.
Here persistent memory refers to the size of the information carried by the
agent when moving from one node to another; usually this does not include
the working memory used by the agent while performing computations at
any node. If S is the set of states of the agents, then the memory complexity
is equal to log (|S|) bits. If the cardinality of S is a constant, independent
of the size of the graph or any other parameters, then the agents are called
finite state automata and we say that the algorithm is a constant-memory
algorithm. If the algorithm can be executed by agents having no persistent
memory then we say that the algorithm is a zero-memory algorithm and
that the agents are oblivious.

Bibliographical Notes

The problem of exploring an unknown graph started with the study of mazes,
labyrinths and caves, and the need for devising algorithmic strategies to traverse
such environments. An early as 1951, Shannon [37] studied exploration by a
finite state automaton (a mechanical mouse) moving in a two dimensional maze.
Later Budach [8] performed a more rigorous study showing that no automata
can explore all mazes. Blum and Kozen [6] showed that either one automaton
with just 2 pebbles, or a team of two automata can explore all mazes. These
results strongly utilize the orientation information for exploring mazes, thus the
results do not hold for arbitrary graphs where it is not possible to use a compass
to orientate. Graphs are indeed more difficult to explore than mazes as it was
shown by Rollik [36] that any finite team of finite state automata cannot explore
all graphs. A tight lower bound of Ω(logn) on the memory complexity of graph
exploration was given by Fraigniaud et al. [30], while a matching upper bound
was provided by the result of Reingold [35] who gave a log-space exploration



algorithm for all graphs. The space complexity of exploration can be reduced
to O(log log n), when the agent is provided with O(log log n) distinct tokens;
such an algorithm was provided recently by Disser et al. [24] whose idea was
to use a sequence of explored nodes as a tape of the Turing machine and store
information by writing on the tape using the tokens.

In terms of time complexity of exploration, the fastest exploration for arbi-
trary labelled graphs was given by Panaite and Pelc [34] which makes m+O(n)
moves thus having only a linear penalty with respect to any optimal traversal
algorithm which knows the graph in advance. There has been a lot of interest
on achieving fast exploration of graphs using a zero-memory agent, by assigning
specific port numbering to the edges of the graph, in order to guide the memory-
less agent. This is known as label-guided exploration. The fastest such exploration
makes 4n− 2 moves [31], while a lower bound of 2.8n− 2 has been proved [13].
For a constant memory agent, [13] provided a faster exploration with 3.5n steps
while only a trivial lower bound 2n−2 is known for this case. There are schemes
for labelling the nodes of a graph for guiding the exploration by a O(1) memory
agent. The most storage efficient scheme, given by Cohen et al. [11] provides
one bit labels to nodes (i.e. the nodes are colored in black or white) in such a
way that an agent with constant memory can explore the graph in O(m) time.
When no preprocessing of the graph is allowed, the same article provided a 2 bit
labelling scheme such that the exploring agent can itself assign the labels during
the exploration, while still achieving an exploration time linear in the number
of edges.

There has been some studies on exploration of specific families of graphs, in-
cluding trees [23], unoriented grids and tori [4], edge-labelled hypercubes [28] and
other interconnection graphs [25]. Exploration of graphs with sense of direction
labelling has been investigated by Flocchini et al. [3].

Exploring directed graphs (digraphs) is more difficult than exploring undi-
rected graphs due to the impossibility of backtracking. For labelled directed
graphs that are strongly connected, Deng et al. [20] showed that the time com-
plexity of exploration depends on the so-called deficiency of the graph which is
the number of edges that need to be added to make the graph Eulerian. The
exploration of unlabelled directed graphs was studied by Bender et al. [5] and
the best known algorithm for mapping a digraph using a single pebble has a
time cost of O(n8∆2), when the agent knows the size of the graph (or an upper
bound). When the agent does not know any upper bound on the size of the
graph, at least Ω(log log n) pebbles are necessary, as shown in the above paper.

Outline of this Chapter

We first look at some basic techniques for exploration of unknown graphs. We
then consider algorithms for single agent exploration based on the optimiza-
tion criteria : time efficiency, moves efficiency, storage efficiency and memory
efficiency. We then consider the problem of map construction when exploring
unlabelled graphs. Finally we investigate multi-agent algorithms for exploration
as well as map construction and show how the latter is related to problems



of gathering and leader election. We conclude with some observations concern-
ing more advanced topics on exploration that have not been considered in this
chapter.

2 Basic Techniques

Depth-First-Search (DFS) : The most standard technique for exploration, called
depth-first search, is based on a simple rule: At each node v, an agent chooses a
unexplored edge (if any) and traverses it; if the agent reaches an already visited
node, the agent returns back to node v. If there are no unexplored edges at v
then the agent backtracks to the node visited prior to arriving at v for the first
time. The pseudo-code for this algorithm is given in Algorithm 1.

Algorithm 1 Algorithm DFS (Depth-First Search)

if current node v has unexplored edges then
Traverse the unexplored edge with lowest port number;
if reached node is already visited then

Return to previous node v;

else
if current node v is not the starting node then

Traverse the edge used to reach v for first time;

Some properties of DFS exploration:

– The agent needs to distinguish nodes visited for the first time from nodes
previously visited during the exploration.

– For each visited node v, the agent needs to know (1) which incident edges
at v are still unexplored, and (2) which incident edge was used to enter v for
the first time.

– The exploration makes exactly 2m moves for graphs with m edges. Thus,
this is an asymptotically time optimal algorithm.

Right-hand-on-the-Wall (RHW) : The RHW algorithm is a technique used by
explorers lost in dark caves, where the idea is to follow the boundary of the cave
by feeling it with one hand (assuming the cave is too dark to see anything).
A similar strategy can be used for exploring certain port-labelled graphs; the
exploration starts at a node v by taking the edge with lowest port number (i.e.
port number 0) and at each subsequent step, the agent arriving at a node u
through port number x, leaves that node by the next port number (either port
x + 1 or port 0, if x equals the degree of u). The algorithm is shown below
(Algorithm 2).

Some properties of RHW exploration:

– The algorithm RHW performs perpetual exploration on any tree starting from
any vertex. This is a zero memory and zero storage algorithm.



Algorithm 2 Algorithm RHW (Right Hand on the Wall)

p := port number of arrival to current node (initially 0);
d := degree of current node;
Traverse the edge with port number (p + 1) mod d;

– The exploration on the tree can be terminated on reaching the starting vertex
from the port number d(v). Thus, exploration with stop can be performed if
the agent has the capability to recognize the starting vertex (e.g. by marking
with a pebble).

– The exploration with stop makes exactly 2m moves for a tree with m edges
(m = n− 1).

– On cyclic graphs having nodes of degree ≥ 3, labelled with arbitrary port
numbering, the algorithm may not visit all nodes.

One way of exploring arbitrary connected graphs using the above technique
is to perform a preprocessing on the graph G to assign specific port numbering
to the edges, that allows an agent performing RHW to explore all nodes of this
edge-labelled graph. Consider any spanning tree of the graph G. For each node
v of G, we assign port numbers greater than deg(v) to the non-tree edges and
assign port numbers 0, 1, 2, . . . d − 1 to the tree edges adjacent to v, where d is
the degree of node v in the spanning tree. An execution of Algorithm RHW on
this graph1 would visit all edges of the spanning tree and thus visit all nodes of
G. A more elegant scheme for assigning a proper port numbering to the edges of
any graph to allow the RHW algorithm to explore the graph, was provided in [13].
However, note that the preprocessing step of assigning port-numbers requires
the intervention of some central authority having prior knowledge of the graph
G or at least of a spanning tree of G.

Universal Exploration Sequences (UXS) : The idea of RHW exploration can be
adapted to arbitrary graphs with arbitrary port numbering using the concept of
universal exploration sequences which is defined below. Given any node u ∈ G,
we define the ith successor of u, denoted by succ(u, i) as the node v reached by
taking port number i from node u (where 0 ≤ i < d(u)). Let (a1, a2, . . . , at) be a
sequence of integers. An application of this sequence to a graph G at node u is the
sequence of nodes (u0, . . . , ut+1) obtained as follows: u0 = u, u1 = succ(u0, 0);
for any 1 ≤ i ≤ t, ui+1 = succ(ui, (p + ai) mod d(ui)), where p is the port-
number at ui corresponding to the edge {ui−1, ui}. A sequence (a1, a2, . . . , at)
whose application to a graph G at any node u contains all nodes of this graph
is called a universal exploration sequence (UXS) for this graph. A UXS for a
family of graphs is a UXS for all graphs in this family. The following result on
the existence of UXS is important for us.

1 Note that since this is not a proper port labelling, the algorithm should have a default
action of traversing port number 0 whenever there is no edge with the required port
number.



Property 1. For any positive integers n, there exists a UXS of length Poly(n) for
the family of all connected graphs with at most n nodes. Further such a sequence
can be computed in polynomial time using a deterministic algorithm.

The above result implies an algorithm for exploration of unlabelled graphs,
without the need for any storage at the nodes, provided that the size of the
graph is known. The construction for the UXS of polynomial size was given by
Reingold [35]. We will call the algorithm that applies the Reingold’s UXS for
exploration as RUXS algorithm. This algorithm has the following properties:

– This is a zero storage algorithm for exploration of unlabelled graphs.
– The exploration requires knowledge of the size of the graph, n, or at least

an upper bound on n.
– The algorithm performs exploration in polynomial time using O(log n) bits

of agent memory.

Rotor-Router (RR) : Another technique for exploration by a memoryless agent
uses a pointer saved in each node of the graph, which points to the next incident
edge to be explored. The agent arriving at a node v simply leaves node v by
the edge pointed to by the pointer and at that point the pointer is incremented
(modulo the degree) to point to the next incident edge. Such a system is called
Rotor router (also sometime called Propp machine). Given any connected graph
G and some port numbering λ on G, if all pointer values are properly initialized
(in a preprocessing step), then the rotor-router process moves the agent on an
Eulerian tour of the corresponding digraph Ĝ obtained from G by replacing each
edge with two directed arcs; thus the agent periodically explores all edges of the
graph with a period of at most 2m moves. On the other hand, if the pointer
values have arbitrary initial values, the process takes some time to stabilize and
after this stabilization time, the agent follows an Euler tour of the digraph Ĝ
as before. It was shown by Yanovski et al. [40] that the stabilization time is no
more than 2mD for any graph of diameter D. Thus the rotor-router can perform
an exploration of the graph in O(m · D) moves, using zero agent memory and
O(log∆) storage space per node. This algorithm is self stabilizing as both the
agent and the nodes of the graph may be in arbitrary states at the start of the
algorithm (no initialization is required).

Algorithm 3 Algorithm RRA (Rotor Router Agent)

Let p be the pointer at current node and e be the edge pointed to by p
d := degree of current node;
Set pointer p := (p + 1) mod d;
Traverse the edge e;

Some properties of the rotor router algorithm :

– Algorithm RRA is a zero memory algorithm for unlabelled graphs.



– The algorithm performs perpetual exploration visiting each node with a
period of at most 2m, after stabilization.

– The algorithm requires O(log∆) bits of storage space per node and it is a
self stabilizing algorithm.

3 Single Agent Explorations

3.1 Time Efficient Explorations

Any algorithm for exploring an unknown graph must visit all edges of the graph.
Thus the time complexity or move complexity of exploration is at least m. The
algorithm DFS makes 2m moves in total for exploring graphs of m edges. Thus
algorithm DFS is asymptotically optimal. There has been attempts at reducing
further the exploration time for unknown graphs. Panaite et al. [34] gave an
exploration algorithm that takes m+O(n) steps in the worst case for arbitrary
undirected graphs, using a modified version of DFS that reduces the number of
times the agent backtracks.

Although the DFS algorithm and its variants are asymptotically optimal in
time and moves, the algorithm may not be optimal in terms of agent memory
and storage, depending on the implementation. Note that the algorithm requires
the agent to distinguish the visited nodes from unvisited ones. In labelled graphs,
each node has a unique identifier and the agent simply needs to memorize the
identifiers of all visited nodes, in order to recognize them. Thus the agent requires
O(n log n) memory but no storage is required. On the other hand if the graph is
unlabelled, the agent needs to mark each node that it visits (by writing on the
whiteboard, or placing a token) to recognize it as a visited node; this requires
O(1) bits of storage per node. In both cases, however, the agent still needs
memory to remember the paths already visited to allow it to backtrack; In
particular the algorithm remembers a spanning tree of the visited subgraph
constructed during the exploration (this is often called the DFS tree). So, the
algorithm requires O(n log n) bits of agent memory. We state the following result
based on the standard DFS algorithm [38].

Theorem 1. There is an optimal time algorithm for exploration with stop in
unlabelled graphs, that requires O(1) bits of storage per node and O(n log n) bits
of agent memory.

3.2 Storage Efficient Explorations

When the nodes of the graph G are labelled with unique identifiers and these
are visible to the exploring agent, it is possible to explore the graph using the
DFS algorithm using zero storage. This is optimal in terms of storage complexity.
However, when the graph is unlabelled, the DFS algorithm requires O(1) bits or
1 pebble per node, and thus n pebbles in total. So, the question is whether it is
possible to explore unlabelled graphs without marking the nodes. The following
result (from folklore) gives a negative answer.



Theorem 2. There is no zero storage algorithm for exploration with stop of
unlabelled graphs irrespective of the agent memory.

Proof. Consider two unlabelled graphs: Let G1 be a simple ring of n1 = 3 nodes
and let G2 be a line of n2 nodes. Suppose each edge of the line is labelled with
port numbers (1, 2) in a consistent manner (e.g. from left to right) and each edge
of the ring is labelled with port numbers (1, 2) in the clockwise direction. With
this port numbering, all nodes of G2, except the end-points, look exactly like the
nodes of G1 to any exploring agent. If there was an algorithm for exploration
with stop, consider the execution of this algorithm on G1; the execution must
terminates after a finite number of steps t. Now if we take n2 = 2t + 2 and
we place an agent at the mid-point of the line G2, then the execution of the
same algorithm for t steps could visit only nodes at distance at most t from
the starting node, thus the agent would never reach either end-point of the line
during this time, thus visiting only the nodes which look identical to the nodes
of the ring. Thus the algorithm would terminate without visiting all nodes of G2

— a contradiction to the correctness of the algorithm.

Note that the above impossibility is due to the fact that the agent has no
prior knowledge of the graph. If the agent knows the size of the graph (either n or
D, or some upper bound) then it is always possible to perform exploration with
stop, without the need to mark the nodes. For example, if the agent known the
diameter D of the graph G, then an agent starting at node v could systematically
traverse all paths of length D starting at node v, thus visiting every node of G.
This is equivalent to traversing the view of node v in G to a depth of D. When
the agent does not know the diameter, the value of n could be used as an upper
bound on D and the same procedure would perform an exploration with stop.
The time or moves complexity of such an algorithm would be O(∆n) in the worst
case, thus this algorithm is exponential in terms of moves/time. It is possible
to have a polynomial time exploration with stop using the RUXS algorithm as
discussed before. The following result follows from the properties of the RUXS

algorithm.

Theorem 3. [35] There is a polynomial time, zero storage algorithm for explo-
ration with stop for all graphs when the value of n is known a priori.

Exploration with no knowledge : In general, we assume that the agent has no
information about the graph that is exploring. When the value of n is not known,
or can not be determined, then the agent can repetitively execute the above
algorithm, with increasing values of n̂ = 2, 4, 8, . . . , where n̂ is a guessed value
for n; when n̂ > n all the nodes of the graph would have been visited (without
the agent having the knowledge of this fact). This is gives an algorithm for
exploration without termination.

We now consider storage efficient algorithms for exploration with stop in
unlabelled graphs when no prior information about the graph is available. Due
to the impossibility result from Theorem 2 we know that that the agent needs
to store some information on the nodes. In fact, an agent with a single pebble
is capable of performing exploration with stop.



Theorem 4. There is an O(m ·n) time and O(nlogn) memory algorithm, using
one pebble, for exploration with stop in unknown graphs.

The algorithm that achieves the above result is a modified version of the DFS

algorithm. Since the agent has only one pebble, the pebble needs to be reused for
marking each new node that is visited. As before, the agent stores in its memory
the DFS-tree T which is a spanning tree of the subgraph already explored by
the agent. Whenever the agent explores any unexplored edge to reach some node
v, it places the token on v and performs a full traversal of T - if the token is
encountered during the traversal then node v already belongs to T (so, it’s not a
new node); otherwise v must be a new node. Now, the agent can return to node
v, recover the token, and continue the exploration. Thus, the agent makes an
additional O(n) moves for each edge of G, which gives a complexity of O(m · n)
moves.

The above result is tight with respect the storage complexity, so we know
that zero storage algorithms are possible only for labelled graphs and impossible
for unlabelled graphs, while 1 bit of storage (or one pebble) in total suffices to
explore unlabelled graphs. Surprisingly, it is possible to perform zero storage
exploration, even if at least one of the nodes of the graph is uniquely labelled
(and the rest of the nodes are unlabelled). We say that the unique node v is a
landmark, any agent arriving at v can recognize it immediately as the landmark
node. We now present an algorithm for zero-storage exploration when the agent
starts at the landmark node and explores the whole graph.

Exploration with a landmark : The algorithm is based on the fact that each node
w can be uniquely identified using an edge-label sequence P (v, w) corresponding
to a path from the landmark v to node w. On reaching any node u the agent
can detect whether or not the node u is distinct from node w by applying the
sequence P (v, w) at node u and checking if it leads to the landmark. Thus,
the algorithm maintains a set of so-called Root-paths, one for each new node
discovered during the algorithm. For each edge explored by the algorithm, the
agent needs to detect if the node reached has been already visited - this requires
performing the checking procedure mentioned before for each path in the set of
stored Root-paths. Thus the agent makes at most O(n2) moves for each new
edge explored by the agent. The exploration proceeds in a breadth-first manner,
visiting all nodes at depth h from the landmark, before visiting any node at
depth h + 1. The algorithm requires O(n log n) bits of agent memory to store
the tree containing all the Root-paths (See [9] for more details).

Theorem 5. There is an algorithm taking O(m · n2) time and using O(n log n)
bits of agent memory, for exploration with stop in unlabelled graphs containing
one landmark node.

Note that the above algorithm can be implemented using one unmovable
token (i.e. a one-time use token) that can be placed on the starting node to
create the landmark. This requires storage facility at only the starting node of
G. In contrast, the previous algorithm uses one moveable (i.e. reusable) token



which requires some storage at each node of the graph at some point during the
algorithm.

3.3 Memory Efficient Explorations

The optimal algorithm for exploration in terms of memory is a zero-memory
algorithm, for example, the RRA algorithm presented before. The algorithm RRA

can be used to perform exploration with stop, by adding O(1) bits of the storage
at the starting node to distinguish this node and by initializing the pointers at
each node to zero on the first visit to the node. The agent can terminate the
algorithm when it returns to the starting node and finds that the pointer value
is zero. This algorithm requires O(log∆) storage at each node and a single bit of
agent memory (to distinguish the starting state). However, if termination is not
required then it is possible to have a zero-memory algorithm taking O(m · D)
moves in the worst case. Zero-memory agents are like tokens that are moved
around by the system and such systems corresponding to many natural physical
system (e.g. chip firing games). Thus, there has been a lot of investigations on
the properties of such systems. The following result shows the optimality of the
RRA algorithm in terms of storage and moves.

Theorem 6. [32] Any zero memory algorithm for exploration requires Ω(log∆)
bits of storage per node and makes Ω(n3) moves.

There has been a lot of interest on the minimal memory required to explore
unlabelled graphs without any storage. In particular there have been several
studies on exploration of unlabelled graphs by constant memory agents (i.e.
agents with O(1) bits memory, sometime called finite automata). Whether such
agents can explore graphs of arbitrary size (possibly without termination) was
an open question for the long time, until the question was answered negatively
in [36]. The following result by Fraigniaud et al. [30] gives an exact lower bound
for the memory requirement of a single agent exploring unknown graphs without
marking.

Theorem 7. [30] Any zero storage algorithm for exploration requires Ω(log n)
bits of memory for exploration of all graphs of size n, even for constant degree
graphs.

The proof of this theorem is based on exploration of regular graphs of degree
∆ = 3. Note that in such a graph every node look the same to a visiting agent,
thus the action taken by the agent is only a function of its current state. Any
agent having log k bits of memory can be in k distinct states. If such an agent
is exploring a graph of n > k nodes then it must enter two distinct nodes of G
in the same state, and thus it must exit the node by the same port number in
both cases. Based on this fact, it is possible to construct a regular graph G of
degree 3 and k + 1 nodes where the agent forever moves in a cycle of size less
than k, thus never visiting the rest of the nodes of G.



The lower bound from the above theorem is matched by the algorithm RUXS

which can explore unlabelled graphs using O(log n) bits of memory and zero
storage. The algorithm requires the knowledge of n or an upper bound, which is
necessary in unlabelled graphs due to the impossibility result from Theorem 2.
However if the nodes of the graph are labelled with unique identifiers, then the
knowledge of n is no longer necessary and the algorithm can be adapted to
work without any prior knowledge of the graph, while still using O(log n) bits
of memory.

The only remaining question at this stage, is what is the memory complexity
of exploration, when the storage space per node is a small constant. Recall that
for storage space of Ω(log∆), it is already possible to have a zero memory
algorithm. So, it is natural to ask if there are algorithms using both constant
memory and constant storage per node. If fact, it was shown that having only 2
bits of storage per node is sufficient to circumvent the lower bound of Theorem
6 and explore all graphs using constant memory agents.

Theorem 8. [11] There is a polynomial time algorithm for exploring all graphs
using O(1) bits of agent memory and only 2 bits of storage per node, without
any prior knowledge of the graph.

The idea of the algorithm is to preprocess the graph assigning labels from a
set of three colors to all the nodes of the graph, such that nodes that are at the
same depth from the root (i.e. the starting node) are assigned the same color,
which is distinct from the color assigned to nodes one level below and one level
above. This coloring of the nodes enables the agent to determine after each move
whether it moved closer or further, or remained at the same distance from the
starting node. The algorithm enables the agent to traverse a spanning tree of the
graph in a depth first search manner, with some additional edge traversals at
each node, thus having an overall time complexity of O(m) steps. The labelling
of the nodes can be done by the agent during the exploration, provided that
each node is initialized (i.e. uncolored) at the beginning. This is the only known
algorithm that uses both constant memory and constant storage for exploring
unknown graphs.

4 Map Construction while Exploration

The problem of Map construction requires the agent to output a copy of the
graph including all port labels, at the end of the exploration. This immediately
implies that: (i) The exploration must terminate, and (ii) the agent must have
enough memory to store a copy of the graph (i.e. Ω(m log n) bits of memory).

When the nodes of the graph have unique labels, exploration is equivalent
to map construction; if the agent can remember a full history of all edges tra-
versed by it, this information is sufficient to reconstruct a map of the graph.
This is because each node (and each edge) can be uniquely identified on each
visit. However when the graph is unlabelled, this is not always the case. For
unlabelled graphs, the algorithm Exploration-with-a-landmark from Section 3.2,



can be used to build a map of the graph, since each node can be uniquely iden-
tified using its root-path. Thus if the agent is able to mark its hombase with a
token, it is possible to solve the problem of map construction. However when
marking of nodes is not allowed (i.e. in the Face-to-Face model), it is not always
possible to construct a map of the graph, even though it is always possible to
perform exploration with stop. In other words, there exists graphs which are
not recognizable by an agent even after traversing every edge of the graph and
even if the agent has an unbounded amount of memory allowing it to remember
everything that it has seen during the exploration.

Theorem 9. [39] There is no zero-storage algorithm for Map-construction in
unlabelled graphs, even if the agent has unlimited memory and knows the exact
size n of the graph.

First, consider an agent in a ring of size n where each edge is consistently
labelled with port numbers (0, 1) in the clockwise direction. An agent moving
in such ring networks cannot distinguish a ring of size n = 3 from a ring of size
n = 4. Thus, clearly map construction is not solvable with only the knowledge
of an upper bound on the size of the graph, although this knowledge suffices
for exploration as we saw in Section 3.2. Even when the agent knows the exact
size n, there exists graphs of same size that are indistinguishable. This can be
explained using the concept of graph coverings. We say that a graph G covers a
graph H if there is a homomorphism ϕ mapping nodes and edges of G to nodes
and edges of H such that for any edge e between adjacent vertices u, v ∈ G, there
is an edge connecting ϕ(u) to ϕ(v) in H (H could potentially be a multi-graph).
The quotient graph of any graph G is the smallest multi-graph B such that G
covers B, under an edge-label preserving graph homomorphism (c.f. Chapter
2). If graphs G1 and G2 cover the same quotient graph B then G1 and G2 are
indistinguishable to any mobile agent, as all the information that the agent can
gather can be represented by the quotient graph B. For example, the Figure 1
below show two graphs of size n = 16 which are non-isomorphic, but have the
same quotient graph B.

Fig. 1: (i) Graphs G1 and G2 that are indistinguishable to a mobile agent (ii)
Graph B that is the quotient graph



It is always possible to construct the quotient graph of any graph, given the
knowledge of an upper bound n̂ on the size of the graph. For example, an agent
can apply the algorithm for view construction from Section 3.2 and collapse the
view into the quotient graph by merging all ‘similar’ vertices (i.e. vertices that
have the same view up to a depth of n̂). Whenever the graph G is identical to its
quotient graph then it is possible to construct a map of the graph. Such graphs
are said to be covering minimal.

Theorem 10. There exists a zero-storage algorithm for Map-construction of
any graph G with port-labelling λ if (i) the graph (G,λ) is covering minimal,
and (ii) the agent knows an upper bound on the size n of the graph.

There exists a more exact characterization of the class of graphs which allow
map construction without marking, provided in [39]. We also remark here that
it is possible to have a more efficient algorithm for map construction of covering
minimal graphs, using the concept of signatures, introduced in [14], to identify
the nodes. Each node v in such graphs, can be uniquely identified by a sequence
of edge-labels encountered by performing by following a UXS path of sufficient
length on the graph starting from node v. Thus, it is possible to perform DFS

type exploration with a check procedure for each visited node that computes its
signature, and compares it with the signatures of the previously visited vertices.

5 Multi-Agent Explorations

When there are multiple agents available, they can together explore the graph
to reduce the time taken for exploration. However this requires coordination and
communication between the agents, making the task more difficult than single
agent exploration. On the positive side, multi-agent exploration can be robust
against failures of some agents.

We consider explorations with either colocated agents, or, with agents ini-
tially dispersed in the graph. We denote by k the number of agents present in
the graph.

5.1 Collective Exploration

Collective exploration requires a team of k agents that start from the same loca-
tion, to explore together all the nodes of the graph, such that each node is visited
by at least one of the agents. The agents are assumed to have distinct identifiers
such that each agent can be assigned a distinct path to explore. Assuming that
all agents move with the same speed (i.e. they are synchronized), the main ob-
jective is to minimize the time needed for exploration. When the graph is known
in advance, it is possible to devise a strategy to divide the task among the agents
such that each agent travels on a distinct tour and they together span the nodes
of the graph. We call this an offline strategy for exploration; finding the optimal
offline strategy that minimizes the maximum tour length of any agent for a given
graph G and team size k is known to be an NP-hard problem even for trees [29].



However, we consider the graph to be a priori unknown and the agents need to
design and adapt their strategy in an online fashion as they discover new parts
of the graph.

Any optimal exploration algorithm using k agent for exploring a graph of
diameter D must take at least O(D+ n/k) time. When G is tree, Fraigniaud et
al.[29] provided a collective algorithm for exploration in O(D + n/ log k) time.
The algorithm has a simple strategy, at each node v, the available agents are
distributed in a round robin manner among the unexplored edges; whenever a
subtree has been explored completely all agents in that subtree move to the par-
ent node. The algorithm uses the whiteboard model for communication, thus any
agent arriving at a node v can obtain knowledge about the current distribution
of agents in the subtree rooted at v. The algorithm achieves a competitive ratio
of k/ log k over any optimal offline exploration strategy. The best known lower
bound for the competitive ratio of any collective exploration algorithm using
k <

√
n agents, is Ω(log k/log log k), even with global communication between

the agents [27].
For graphs of small diameter, fast exploration by small teams of agents can be

achieved by a DFS based algorithm presented in [7] which has a time complexity
of O(n/k + Dk−1). On the other hand, for large teams of agents, there exists
an optimal algorithm for exploring general graphs in O(D) time [21], when the
number of agents k is at least D · n1+ε for any ε > 0. This algorithm does
not require whiteboards for communication and works even in the face-to-face
model. The basic strategy is to deploy a fixed number of agents from root at
each time step. Exploration of the special class of grid graphs with rectangular
holes was studied in [33], which presented a collective exploration algorithm with
competitive ratio of O(log2D) for such graphs.

5.2 Distributed Exploration

When multiple mobile agents start from distinct nodes of the graph, coordination
among the agents is more difficult. The task of exploration starting from dis-
persed locations of the graph is called Distributed Exploration. Since the agents
do not have a common reference point, direct communication is inutile in this
situation. Instead we assume that the agents communicate by writing on the
nodes (i.e. the whiteboard model of communication). Notice that if the agents
have distinct identities, each agent can individually explore the complete graph
(e.g. using the DFS algorithm) while marking each visited node with its identifier.

On the other hand if the agents are identical then the marks left on a node
by an agent would not be distinguishable from those of another agent. In this
case some cooperation between the agents seems necessary. A simple strategy is
to use a distributed version of the DFS algorithm which we call the distributed
depth-first search (DDFS) [17].

Distributed Depth-First Search : Each agent a performs DFS algorithm marking
the nodes that it visits (unless they are already marked) and labelling them with
a counter that it increments. Each node marked by the agent and the edge used



to reach it are added to DFS-tree stored in the memory of the agent. Note that
the agent treat nodes marked by any agent as visited nodes. Thus, whenever the
agent reaches an already marked node, it backtracks to the previous node, as
in the original algorithm. The tree obtained at the end of the traversal is called
the territory Ta of the agent a. It was shown in [17] that when all agents have
completed the algorithm, the territories obtained by the agents in the above
process, forms a spanning forest of the graph G. Thus, each node of the agent
is visited by some agent and the agents together have explored all nodes of the
graph. The exploration requires O(m) moves in total (instead of O(m) moves
per agent if the agents individually explored the graph).

5.3 Collision free exploration

When each node of the graph can host at most one agent at any time, then any
multi-agent exploration algorithm must prevent collisions (i.e. two agents moving
to the same node at the same time). The problem of exploring every node by
every agent while ensuring that no node is occupied by more than one agent at
any time, is called Collision-free exploration. [12] provides such an exploration
strategy in labelled graphs for k mobile agents when the mobile agents have 1-
hop visibility. The algorithm uses the concept of universal exploration sequences
and thus the time complexity is proportional to the length of the UXS. For
trees, the paper provides a faster exploration taking O(n2) time. The algorithms
require the agents to start at the same time and always move synchronously so
that agents on neighboring nodes swap places without collision.

5.4 Map Construction and Leader Election

In Section 4 we saw that Map Construction is possible by a single agent that
is allowed to mark the nodes of the graph during exploration. However when
there are multiple agents dispersed in the graph, then Map Construction is not
always possible, since multiple agents mark several distinct node simultaneously,
making it difficult to uniquely identify the nodes. In this case, the possibility of
map construction depends on the presence of symmetries in the graph as well
as the initial location of the agents. We denote by b : V → {0, 1} a bi-coloring
of the graph G(V,E) such b(v) = 1 if node v is the homebase of an agent and
b(v) = 0 otherwise.

Theorem 11. It is possible to solve Map-construction in any graph G with k
dispersed agents if (G,λ, b) is covering minimal with respect to label preserving
and color preserving coverings.

We now briefly describe an algorithm for map construction by multiple agents
in graphs where the above condition is satisfied (see [18] for more details). The
map construction algorithm proceeds in two phases. In the first phase, each
agent performs the distributed depth-first search (DDFS) algorithm discussed
previously. At the end of this phase the graph is partitioned into a spanning forest



and each agent a has a map of its DFS-tree Ta. The agent obtains its territory by
adding to this tree, all outgoing edges that are incident to any node of Ta. The
territory of an agent (including all edge labels) is encoded as an integer la that is
used by the agent in the subsequent part of the algorithm. The second phase of
the algorithm is a competition between neighboring agents, by comparison of the
encoded territories. Each losing agent merges its territory with the corresponding
winning agent and terminates the algorithm, while each winning agent updates
its territory and the same process is repeated with only the winner agents. If the
conditions of Theorem 11 hold then there would eventually be a single winner –
the leader and the territory of this agent would be a spanning tree of the graph.
As a final step, nodes of this spanning tree are assigned unique labels (based on
the unique path from the root) and thus all non-tree edges can be identified and
added to the map. The main complication in this algorithm is the process of
synchronizing the agents during each round of the competition phase. There can
be at most O(log k) such rounds in any successful execution of the algorithm and
the overall complexity of the algorithm O(m log k) moves in total. The algorithm
fails to construct a map only if the conditions of Theorem 11 do not hold and
in those cases, the agent can detect failure after at most k − 1 rounds of the
competition phase.

The above algorithm also elects a leader among the agents, which is another
fundamental task in distributed computing with agents. In fact the problems of
the leader election, gathering and map construction in a distributed setting are
almost equivalent, with the only exception in the case of symmetric trees where
leader election may be impossible but map construction is still possible.

6 Ongoing Research and Future Directions

This chapter surveyed the main techniques and algorithms for exploration by
one or more agents when the agents are deterministic, fault-free and have no
constraints on their movements. Similarly, we also assumed that the environment
explored is stable and failure-free, allowing any agent to move in any direction
on every edge of the graph. This situation is idealistic although in reality several
of these assumptions may not hold. In such cases, the task of exploration may
become more difficult. We present some directions for further research on the
exploration problem, which have been partially investigated.

6.1 Constrained Explorations

When mobile agents have constraints on their movements they may not be able
to complete the task of exploration in a single attempt. One typical constraint
is the budget constraint (i.e. having limited energy for movement) allowing any
mobile agent to traverse at most B edges. The problem of piece-meal exploration
requires an agent to return to its homebase after at most every B edge-traversals,
in order to refuel and continue again. In this case, we need to assume that no
nodes are at a distance larger than B from the starting location of the agent.



Even with this assumption, the usual techniques for exploration cannot explore
the graph efficiently. An algorithm for piecemeal exploration was provided in [1]
based on the idea of exploring strips of increasing depths from the starting
node, and performing a depth-first search in each strip. This algorithm was later
improved upon in [26], achieving an optimal time complexity of O(m) moves in
total. However, both these algorithms explore the graph to a depth of r < B
and the time complexity increases drastically as r approaches B. For piecemeal
exploration of graphs of depth r ≤ B, no efficient algorithm are known. For the
family of tree, a piecemeal version of DFS algorithm was presented in [16], and
shown to be constant competitive (i.e. the algorithm is at most 10 times worse
than any optimal offline piecemeal exploration of the same tree).

When the agents are not able to refuel, it is possible to perform constrained
exploration using many agents each having a budget of B edge traversals. For
any fixed k, the best online algorithm for tree exploration using k agents [27]
achieves a competitive ratio of 4−2/k on the value of B required for exploration.
On the other hand, given any fixed B, exploration of all trees of depth at most
B can be achieved with a competitive ratio of O(logB) for the value of k, and
this was shown to be asymptotically optimal, at least in the case of local (face-
to-face) communication between agents [15]. When both k and B are fixed, it
is not possible to completely explore an unknown tree; in this case the problem
of maximal exploration, which maximizes the number of nodes visited, has been
studied [2]. The algorithm in [2] has a competitive ratio of 3, while a lower bound
of 2.17 on the competitive ratio was shown in the same paper.

6.2 Fault-Tolerant Explorations

While most of the known results are for exploration in fault-free environments,
there have been some preliminary investigations on fault tolerant algorithms for
exploration. Exploration with faulty tokens that disappear, have been studied
in the context of the gathering problem for many agents where each agent uses
one token to mark its homebase [19]. Single agent exploration with Byzantine
tokens has also been recently studied in [22]. Here, the tokens are unmovable but
may sometime be invisible to the agent. If at least one token is fault-free and the
agent knows the total number of tokens, there is an exploration algorithm for any
unknown and unlabelled graph. Exploration and map construction of dangerous
graphs containing black holes and black links, can be performed when there are
sufficiently many agents [10] using an extended version of the distributed DFS

based algorithm discussed previously. Under the assumption that the faults do
not disconnect the graph, the algorithm builds a map of the fault-free part of
the graph whenever it is theoretically possible. Other techniques for exploration
of dangerous graphs are covered in Chapter 18.
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