
HAL Id: hal-02081938
https://hal.science/hal-02081938v1

Submitted on 27 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AOLOA: A Composable Framework for Third-Party
Applications for Smart Home Gateways

Eric Simon, Albert Royo Manjon, Sébastien Jean

To cite this version:
Eric Simon, Albert Royo Manjon, Sébastien Jean. AOLOA: A Composable Framework for Third-Party
Applications for Smart Home Gateways. 2014 IEEE International Conference on Services Computing
(SCC), Jun 2014, Anchorage, France. pp.621-628, �10.1109/SCC.2014.87�. �hal-02081938�

https://hal.science/hal-02081938v1
https://hal.archives-ouvertes.fr

AOLOA: a composable framework for third-party applications

for smart home gateways

Eric Simon, Albert Royo Manjón and Sébastien Jean

Univ. Grenoble Alpes, LCIS (CTSYS Research group),

 F-26900 VALENCE, France {f_author, s_author}@lcis.grenoble-inp.fr

Abstract—In the last few years, the amount of smart devices in

domestic environments has incredibly increased. Nowadays, a

smart home is usually managed via a gateway offering value-

added applications by connecting devices to the cloud. Every new

device comes with its own features and protocols or cloud

services. There is, consequently, a strong need for constantly

modifying the gateway’s behavior by deploying, removing or

updating applications. However, there is no software architecture

ensuring enough flexibility and trust to sustain this need. We

consequently propose in this article a framework that allows to

easily compose modular and context-aware software

architectures intending to host third-party applications. This

framework – called AOLOA (Another OSGi-Like On Another) – is

based on OSGi and Java permissions. It ensures applications

isolation, separates business-logic (higher level) and platform

(lower level) layers and allows their trusted management.

Service-Oriented Computing, Ubiquitous Computing, Security,

Software Isolation, OSGi, Java Security

I. INTRODUCTION

The next section introduces the context of our work and
discusses its motivations.

A. Context

Our home is where most of our ubiquitous computing [1]
experience takes place. The smart devices we bring (such as
phones, watches or glasses) meet those already populating our
home (like tablets, connected TVs or sensors) as well as the
cloud, in order to offer us more and more connected services.
Our home is smart enough to take decisions without us when
we are out, but most often it lets us have remote control.

These services are usually orchestrated by a gateway,
connected to the cloud and to our devices, hosting services that
act as glue between them and where we can define context-
aware behaviors.

Designing such gateways is not an issue, but performing
this task becomes much more complicated when dynamism
becomes a major concern. Existing software architectures
already allow dynamically deploying or removing third-party
applications (like Android, OpenHAB [2] or HomeOS [3]).
These applications are generally made of software services,
following the Service-Oriented Architecture (SOA) principles.
In some cases, applications are provided from remote
repositories in a "Foo-store" manner (like Android or iOS).
However, these platforms are assumed to be used in a
particular context (protocols, devices …) and consequently rely
on a prebuilt and unmodifiable basis. Android, for example,

considers only a predefined set of sensors/actuators and
network interfaces. Taking into account a new sensor
consequently implies updating the entire operating system.

As presented in Figure 1, home gateways traditionally
distinguish several actors, with different roles:

 the Gateway Owner (GO) who is the resident and
gateway's main end-user;

 the Gateway Provider (GP) who delivers the gateway
to the GO;

 Applications Providers (AP) who design third-party
applications and make them remotely available on
applications stores (GPs can also be APs).

Services are often considered as building blocks of larger
logical units called components. Components may provide
several services and reciprocally require services provided by
other components. Applications can then be considered as
assemblies of components. Services running on gateways can
be distinguished with regards to two major concerns. On one
hand, technical services aim at providing hardware or
communications abstractions (device drivers, network
protocols …) as well as utility or administration features
(logging, persistency, back-end …). On the other hand,
business services embody the application’s logic behavior.

B. Motivations and approach

Home gateways deserve better customizability. Our
motivations are to enhance home gateways flexibility in order
to make them as reusable as possible. In this article, we only
focus on service-oriented gateways.

As previously said, services have different concerns.
Technical services take place at a platform level, whose goal
should be to customize the bare service runtime in order to take
into account specific application domain and hardware. From a
minimalistic point of view, GPs could deliver blank gateways,
with a platform nevertheless tailored to their domain and
hardware requirements. Business services, on the opposite, take
place at an (upper) application level, and should allow
customizing the platform for a specific use. This customization
could ideally be done by the GO by deploying (and further
updating/removing) third-party applications from remote
stores. It is also conceivable that the platform level could also
be partly customized by the GO (by GP delegation) or by an
autonomic manager [4][5].

This customization makes more sense only if business and
technical components’ lifecycle can also be easily and
dynamically managed. Nevertheless, because of the cost of
such gateways as well as their energy consumption having to

remain low, the underlying software architecture must match
classical embedded devices’ footprints (typically, those of a
Raspberry Pi or equivalent).

Figure 1. System actors

Finally, allowing third-party services to co-exist on top of a
customizable basis, as well as allowing the end-user to deploy
technical or business services, requires addressing some issues
with regards to security and safety. As illustrated on Figure 1,
our approach thus consists in clearly distinguishing the
platform and applications layers, isolating services execution,
and controling administration-related actions with roles and
permissions. This approach is detailed in section III, after
having presented some related work. Before concluding and
drawing the lessons learned from our experiments, we
introduce a reference implementation for the framework in
section IV.

II. RELATED WORK

Our work is an architectural solution that addresses various
research domains, mainly isolation and security. Note that our
framework – called AOLOA – aims at building a customized
platform for a specific context. Consequently, some approaches
cited in this related work section can be used in addition to our
framework.

It is possible to classify “isolation” according to four layers
that we further use to reference some relevant works.

 Service isolation (a usage scope of services), for
example OSGi service Hook (cf. [6] pp.353-366) or
Region subsystem (cf. [7] pp. 557-616)

 Class isolation (a use scope of classes) that can consist
in import-export mechanism between class loaders (as

in OSGi), in hiding packages for one or several groups
(i.e. Bundle Hook (cf. [6] pp. 345-352), Region
subsystem (cf. [7] pp. 557-616)), or in embedding
systems in other ones (i.e.: Region or V-OSGi [8]).

 Process isolation (threads’ execution separated in
different system processes) requires in practice
modifying the virtual machine in order to implement it.
This is the case of I-JVM [9][10].

 Virtual Machine isolation, where applications and
platform are hosted in different virtual machines is,
here, a conceptual nonsense.

Our work can be seen as the continuation of [8]. In short,
Virtual OSGi (V-OSGi) allows creating several application
layers for a multiple-stakeholder context. In [11], authors
blame that their work does not really address the problem of
isolation for multi-stakeholder issues. This lack has motivated
the I-JVM project (process isolation) [10]. Indeed, OSGi does
not define any “process isolation” although it is required for
multi-stakeholder. However, it is not an issue in our context
where there is only one stakeholder, only one “owner”, and
some third-party applications which can be forced by security.

Concerning security issues, the framework proposed in this
article is easily customizable, connected, and the dynamism
and sharing mechanisms involve “some” complexity. In short,
as discussed in [12], security for such a framework is essential,
but also more complicated to implement. In this article, G.
McGraw and G. Morrisett expose a methodology and
classifications of attacks and solutions to establish the system
security. Following [12] and [13], we have improved the
security mechanisms of the AOLOA framework. Indeed, as
explained above, we have similarities with the Android system:
providing a platform, hosting third-party applications and
provisioning through repositories/stores. Despite the fact that
Android runs over a Unix system, it does not base this security
on it, but on two main mechanisms: applications identification
associated to a permissions list (IBAC) and (process) isolation
maintained between applications and platform. All
communications pass through the platform that checks through
the ICC level. However, and also the platform dynamic
management, in AOLOA – that are based on OSGi –
applications can directly communicate with each other, but
they must declare authorization to reach each other. This
approach is also similartothe security-by-contract [14][15].
However, in the future, it will certainly be necessary to
intercept communications to log and verify their content.

III. A CUSTOMIZABLE PLATFORM FOR THIRD-PARTY

APPLICATIONS

To sum up our motivations, the framework enhancing
gateway customizability must:

 allow dynamically deploying and managing technical
components on the platform layer;

 allow dynamically deploying and managing business
components – which can be provided by third-party
companies – on the applications layer from the
platform;

 provide a mechanism to share targeted technical
services with the business components of the
applications layer.

c
o
n
fi
g

u
re

Platform layer

Communication

Applications layer

Gateway
provider

Gateway

owner

Devices,
sensors …

Remote

Services

Defines and
manages

Users

use

Applications
providers

Applications
store

Company
store

provides

Technical Services Secured Access

Defines and
manages

provide

The framework also has to take into account the following
constraints:

 it must secure the execution environment from
malicious actions coming from the applications layer;

 it must prevent and protect the platform from errors
and faults originating from the applications layer;

 it should be resource-friendly.
This section briefly discusses the minimal targeted

hardware before introducing our approach with regards to
safety and security, as well as their impact on software
architecture. Finally, it details the deployment unit’s life-cycle.

A. Targeted hardware

Dynamism is a main concern in our approach, as
deployment and management of both applications and platform
could be done “on the fly”. However, deployment and dynamic
binding usually rely on either interpreted languages or virtual
machines (HomeOS[3], OSGi[6], Kevoree[16]). Our approach
thus considers using an embedded platform able at least of
hosting a virtual machine. In our experimentations, we have
been using a Raspberry Pi model B

1
.

B. Security and safety mechanisms

Obviously, the Gateway Provider cannot trust third party
application providers. An application can indeed be badly
implemented or malicious. The framework must consequently
have safety and security mechanisms: safety to prevent and
protect the platform layer from faults originating from
applications, security in order to block malicious actions. To
ensure these properties, our framework relies on isolation and
access control.

1) Isolation
As mentioned in the related work section, isolation

mechanisms can be basically classified according to several
layers: object/class isolation where it must not be possible
respectively for an object/class to access to another object/class
outside of its usage scope; process isolation where threads can
be separated and isolated in different system processes; and
finally Virtual Machine isolation where applications are
executed in different virtual machines.

It is, here, a conceptual nonsense to isolate the platform
layer and the applications layer in two virtual machines (not to
mention the strong impact on performance). Process isolation
offers a great isolation between layers running in the same VM.
However, it supposes that the VM supports it and that is not the
case for the classical Java or .Net VMs. Our technological
choices – discussed in the section IV – imply using the Java
VM. Consequently, implementing process isolation requires to
modify the VM for each gateway. It is not consistent with our
goal of alleviating the burden of the gateway provider when
designing platforms.

We consequently focus on the classes and objects isolation.
In opposition to [10][11], the gateway provider is, in our
execution context, responsible for the platform layer while the
gateway owner is responsible for the applications layer. As
there is no multi-stakeholder, process isolation is consequently
not mandatory. This isolation mechanism can be implemented
by simulating several execution spaces where shared resources

1
 http://www.raspberrypi.org/

must seem stateless and private resources must be hidden (cf.
[7] pp. 557-616). It can also be implemented by truly
separating execution spaces. The latter approach simplifies
security management and allows defining platform and
application with few side effects. Although classes and objects
are isolated between both layers, the framework provides a
mechanism to export packages and services.

2) Security
We identified three angles of attack in the proposed

framework (cf. locks of the Figure 1):

 Malicious access made from the web administration
(apps and platform) interface;

 Malwares contained by corrupted components coming
from unofficial (considered unsecured) repositories;

 Data collection and malicious behavior from an
“official” signed component.

The subsection I.B has underlined three “roles” (apps user,
gateway owner, gateway provider) and three “uses” (use apps,
manage apps and manage platform). The table below sums up
“uses” authorized for each of the roles. To prevent attacks
through the web administration interface, the framework

should have a RBAC (Role-Based Access Control) [17]
mechanism that applies on all administration operations.

TABLE I. ROLE/USE MATRIX

 Authentication required

 Locally use
apps

Manage Apps
Manage
Platform

User Yes No

Owner Yes Limited by the
provider

Provider Limited Yes

It is necessary to scan (cf. “Scanning for Known Malicious

Code” section of [12]) potentially corrupted components before
their installation. Generally, this scan is made when
components are pushed to the official repository. However, if
the gateway owner deploys from an unofficial repository, the
framework integrity can be broken. Consequently, the

installation mechanism should scan components after their
transfer and before their installation.

Finally, the main security issue is to execute (without trust)
third-party applications. Indeed, an application downloaded
from an “official” repository does generally what it was
intended to do. But sometimes, it has malicious behavior (in
general, stealing users’ information). Identifying malicious
applications is more complicated because they do not
necessarily have virus signature (detected by scan) and they do
what they say they do. To detect them, it is necessary to have
two mechanisms: resources access control and communications
log.

The applications layer must perform access control on
every resource in the execution environment. This access
control is based on permissions declared by each business
component (indeed, the gateway provider cannot define it a
priori and exhaustively). Consequently, each business
component must declare every access to framework resources:
classes, business and technical services, files, system
properties… It must also declare which of its resources could
further be used by other components: business services,

http://www.raspberrypi.org/

packages… Unspecified actions are automatically denied (file
access, life-cycle change, socket access…). This list is provided
to the deployer (GO or GP) that can dynamically grant or reject
all or part of them. Thus, permission management of IBAC
(Identity-Based Access Control) type is delegated to the
deployer. Conversely, a business component can provide
business services that want to restrict the use to a subset of
business component always running on platform. For that, it
should provide rules or signatures that the components must
provide to use it: it is the purpose of security-by-contract
[14][15].

Communication protocols (from/to outside) must be
provided and controlled (logged) by the platform layer.

If these mechanisms are implemented, and thanks to the
isolation between both layers, the platform layer can then be
considered as a DMZ (DeMilitarized Zone). Consequently,
installation and execution of technical components, usually
managed by the gateway provider, no longer require any
particular access control because they share the same level of
trust. Then, the composition and management of the platform
layer are simplified. However, as the platform layer can export
some technical services and consequently share the associated
classes, our framework must also isolate exported services,
classes and classloaders. In our case, it is done through the use
of proxies and temporary classloaders.

C. Deployment-unit concepts

In this article, we abusively use the word component to
refer to the deployment unit (the atomic element to transfer).
Indeed, a “true” component-model will further be defined and
considered as an overlay of our framework because it is
domain-specific. The only paradigm imposed by our
framework is that platform and applications should be built on
top of the SOA (Service-Oriented Architecture) of each layer.
Thanks to SOA’s loose coupling, the dynamic reconfiguration
of layers is eased.

Life-cycle operations that apply to these components are
currently the classic ones: transfer into the framework, loading,
activation, deactivation, unloading, updating and removal.
However, the isolation and security mechanisms impact the
components life-cycle. Thus, a business component must
declare the permissions to access resources.

The following example is further used to explain these
mechanisms.

The purpose of this application example is to monitor
ambient inside and outside temperatures and to notify an alert
via emails when these temperatures exceed a predefined
threshold. As shown in Figure 2, this application is composed
of five deployment-units:

 SMTP-Client Service (MS) provides a service which
allows receiving and sending emails using an IMAP
mail server account.

 Sensors Discovery Service (DS) provides a service
which allows registering a handler for each sensor type
to receive their notifications. This service embeds a
plug and play protocol such as UPnP or DPWS that
interfaces a business-oriented overlay for these sensors.

 HTTP Service provides a service through which it is
possible to register HTTP servlets to an embedded
HTTP server.

 Aggregator Service (AS) aims at aggregating data
coming from sensors and sending alert email when a
predefined threshold is passed. For that, it provides a
service which allows configuring the email account of
the sender as well as that of the receiver. This service
also allows configuring the inside and outside
temperature threshold and getting the current
temperature. Consequently, it uses MS and DS.

 SenseUI Service is the Web interface (Servlet) enabling
AS access. So, it uses the AS service.

Figure 2. Application example using AOLOA

In this example the Aggregator Service (AS) requires the
Discovery Service (DS) and the SMTP Client Service (MS), and
provides a service used by the SenseUI graphical interface.

The AS must consequently declare three requirements to
both get and register these services. It must also provide a
capability that defines the permission required to use its
service. Finally, the AS must declare, with the same logic,
provided and required packages.

We have generalized the approach through the following
model (cf. Figure 3):

Figure 3. Deployment-Unit security model

 A deployment-unit provides capabilities (provided
resources) and has requirements (required resources)
to/from the execution environment.

 A capability is a resource provided by the deployment-
unit. It is defined by its type (for example: service,
event, data), the name of the targeted resource and the
location or the signature of the deployment-unit
authorized to use it. If neither the signature nor the
location is specified, everyone is authorized to use it.

 A requirement is a required resource. It is defined by
the type of the targeted resource, the target of the
permission, the actions on the resource, and the fact
that the requirement is optional or not (deployment-
unit can be started without this resource).

These permissions are checked by the framework and
prompted to the deployer (gateway owner), who might have to

validate them (or not). This step implies adding a specific state
in the deployment-unit life-cycle.

D. Deployment Unit Life-cycle

The deployment-unit life-cycle that applies to the
applications layer has the seven following states (cf. Figure 4):

Figure 4. Business deployment-unit life-cycle

 Installed: The deployment unit is installed: the transfer
has been done and it is ready to load.

 Waiting for validation: This state means that the
deployment unit is frozen until its deployer accepts or
rejects the set of required permissions.

 Loaded: This state means that the permissions have
been checked and the classes and static resources
(pictures…) have been loaded in the layer. At this
state, the deployment-unit is ready to start.

 Starting: It is a transition state between the loaded and
the active states, where the notifications are sent and
the context of the deployment unit is initialized.

 Active: This state means that the deployment-unit,
which was in the “starting” state, has been started and
is now running.

 Stopping: During this state, notifications of the
termination are sent. When the stop and underlying
operations are processed, the deployment-unit returns
to the loaded state.

 Uninstalled: The deployment-unit is uninstalled.
The deployment unit life-cycle in the platform layer has (cf.

Figure 5) the Installed, Loaded, Starting, Active, Stopping
and Uninstalled states previously defined for the applications
layer.

However, it also has the Exported state. Indeed, once the
deployment-unit is started and active, the framework checks
whether resources must be exported to the applications layer. If
the applications layer is started and if related exports have been
made, the deployment unit then moves to the “exported” state.

Figure 5. Technical deployment-unit life-cycle

If the applications layer is stopped, then the deployment
unit comes back to the “active” state.

As suggested by the “exported” state, the applications layer
itself has a lifecycle. Indeed, any modification in the platform
layer may require the restarting of the applications layer. It is
also possible to shut down the applications layer if there is no
third-party application running.

Consequently, the applications layer’s life-cycle (cf. Figure
6) has three states:

Figure 6. Applications layer’s life-cycle

 Active: the applications layer is started and
operational;

 Destroyed: the applications layer has been stopped,
and all references to it have been released;

 Should be reloaded: a modification in the framework
may require restarting the applications layer. It is up to
the platform layer to decide when it is appropriate to
operate this restart.

E. Synthesis

Our main objective is to give to the gateway provider the
ability to design, deploy and dynamically manage its platform
as a classic modular application-based service, where the life-
cycle of applications is ruled by security mechanisms and the
life-cycle of the platform itself.

There are three main concerns in the proposed framework:

 Security: inherent in the third-party applications
hosting;

 Dynamic management: inherent in a constantly varying
open environment;

 Resource-friendly: related to the economical aspect of
technology adoption.

In this approach, technical components (cf. Figure 7) aim
either at providing services and features for business
components (like device communication protocols or remote
services), or at refining and controlling both the platform’s and
applications’ life-cycles.

For example, a technical component exposes a service to
drive the house’s HVAC, while a business component (cf.
Figure 7) uses it to regulate inside temperature. Classes
required to use services are shared with the applications layer,
and service objects are exported/registered in the applications
layer.

A modification (install, removal…) in the applications layer
does not impact the platform layer. The reciprocity is false, the
applications’ life-cycle being linked to the platform’s life-
cycle. Consequently, a change occurring in the platform may
have an impact on the application life-cycle. This is the case,
for example, when a business component using a technical
service or a technical API must be updated.

Both the security mechanisms (IBAC for the third-party
applications, RBAC for the administration and “scan” before
install) and the isolation mechanism finally allow considering

the platform layer as a DMZ. It consequently facilitates the
composition and the management of the platform by the
gateway provider.

Figure 7. Framework architecture

IV. AOLOA IMPLEMENTATION AND EXPERIMENTATIONS

In this section, we firstly describe our technical solution.
Then, we introduce some execution metrics gathered from
experiments on a PC and a Raspberry Pi Model B.

A. Technical solution

The AOLOA framework – for Another OSGi-Like On
Another – is developed in Java-SE6 and uses the Felix OSGi
implementation to develop both platform and applications
layers. Security mechanisms are implemented by using the
Felix security bundle (PermissionAdmin). AOLOA framework
combines the OSGi and Java permissions and extends the
OSGi bundle life-cycles for the both layers.

Figure 8. AOLOA framework launch hierarchy

AOLOA is currently (version 1.2.4) available
2
, but some

features are only partially implemented or unavailable. The
current version has 8004 lines of code (obtained with sonar
tool

3
) for 91 classes and 32 packages and dispatched in 6

modules (Classic Jar and Bundles). The unit test coverage of
the core (excluding shell and GUI) is 46% (51,2% for the lines
and 34,5% for the branches).

These 6 modules are:

 aoloa-security-maven-plugin is a maven plugin to
generate security permissions used for the application
layer. This plugin uses the maven-bundle-plugin
properties and declared metadata (for example an
access permission to a file) to generate the list required
by the business component to be executed. The
following snippet has been generated – with this plugin
– in the Aggregator Service manifest from the maven-
bundle-plugin information.

required-permissions:
[…].AdminPermission\$this\listener,metadata;
[…].ServicePermission\fr.lcis.ctsys.aoloa.services.discov
ery.demo.service.api.ServicesPublicationService\get;
[…].ServicePermission\fr.lcis.ctsys.aoloa.demo.alert.mail
.sender.api.AlertMailSenderService\get;
[…].ServicePermission\fr.lcis.ctsys.aoloa.demo.aggregator
.DataAggregatorService\register;
[…].PackagePermission\org.osgi.framework\import;
...
[…].PackagePermission\fr.lcis.ctsys.aoloa.demo.aggregator
\exportonly,import;

 aoloa-bootstrap initializes the boot classloader to
share a static and unique API and libraries for the
different framework layers (cf. Figure 9). This module
is the environment launcher and allows starting and
stopping the platform layer (aoloa-platform-launcher)
(cf. Figure 8).

Figure 9. AOLOA Classloader architecture

 aoloa-platform-launcher initializes a classloader used
to launch an OSGi implementation (platform layer) –

2
 https://sourcesup.renater.fr/projects/aoloa/

3
 http://www.sonarqube.org/

Applications layer

Platform layer

Te

ch
n

ic
al

D

e
p

-u
n

it

Te

ch
n

ic
al

D

e
p

-u
n

it

Te

ch
n

ic
al

D

e
p

-u
n

it

…

B

u
si

n
e

ss

D
e

p
-u

n
it

…

B

u
si

n
e

ss

D
e

p
-u

n
it

B

u
si

n
e

ss

D
e

p
-u

n
it

Exported Service

Provided Service

Required Service

Communication Native security
Platform security

Bundle/Classic Jar classloader

Applications layer

Platform layer

Felix.jar

Felix.jar
Bundle 1 Bundle 2

JVM SE

Bootstrap lib1 lib2

Bundle A Bundle B

Parent
Delegation

https://sourcesup.renater.fr/projects/aoloa/
http://www.sonarqube.org/

here org.apache.felix – and provides two services: one
to manage (cf. Figure 6) the applications layer (aoloa-
apps-launcher) and export packages and services,
another to manage (cf. Figure 4) the bundles from the
applications layer.

 Aoloa-apps-launcher initializes a classloader allowing
delegating some packages to the bundle from the
platform layer (cf. Figure 9). This classloader is used to
launch another Felix for the applications layer where
the felix.security component runs (cf. Figure 8).

 aoloa-platform-command and aoloa-visu are
respectively a Java Swing GUI and a Web-GUI used to
manage both the application and the platform layers.

The AOLOA framework combines a classic classloader
hierarchy with the classloader delegation network from OSGi
(cf. Figure 9). It allows launching two distinct OSGi
frameworks in a same classloader and shares packages and
services from the platform layer to the applications layer.

B. Metrics

We have extracted some metrics from the current
implementation of AOLOA. These metrics are:

 the starting time (ST) for the boot, the platform layer
and the applications layer;

 the framework memory footprint (MF) (used memory
is raised after a garbage collector execution at the
starting and when the initialization is done).

The procedure to gather these metrics is classic: the
framework is launched 100 times, the 10 min and 10 max
values are removed, and the result is the average value.

This procedure has been performed both on a laptop (Dell
Latitude E6420, Windows 7, Oracle JDK1.6.0_35) and on a
Raspberry Pi (Model B, Raspbian, Open JDK 1.6.0_27).

TABLE II. EXECUTION METRICS

 Dell Latitude
E6420

Raspberry Pi Model
B

Boot ST 36ms 581ms
Platform ST 543ms 7524ms

Applications ST 321ms 9883ms
Framework MF 2,78Mo NC

The framework memory footprint is not communicated
because it seems wrong (>0,4Mo). We currently cannot explain
why the platform layer starts faster than the applications layer
on the laptop and inversely for the Raspberry Pi (CPU
instruction? JDK?...); this issue will be analyzed further.

C. Experimentation

To experiment the AOLOA features, we have developed
the “ambient temperatures monitoring” application described
previously (cf. subsection III.C). In the initial case, the HTTP
service and the AOLOA Visualization service (web
administration interface) were pre-installed on the platform-
layer. By the way of the Visualization, the Services Discovery
Service (based on an ad’hoc discovery protocols) and the
SMTP mail service were installed and started into the platform
layer. Next, the Aggregator Service and the SenseUI service
were installed. However, and in opposition to the technical
services, we were prompted during their installation to validate

the resources’ access permissions. The gateway administration
service has alerted about the fact that the AS requires to bind to
both the DS and MS services. Once the permissions have been
granted, the AS service has been started properly. The same
permissions granting step has occurred while installing the
SenseUI service and before it turns active. Once the application
has been activated and operational, the previous services have
been stopped and uninstalled.

This scenario has been considered as an acceptance testing.
These experiments allowed us to underline a set of theoretical
and technical problems, most of which are discussed in the
following section.

V. LESSON LEARNED AND ROADMAP

Since AOLOA is still under development, some features are
not yet totally implemented. This is particularly the case for the
capabilities, where only requirements are yet developed.
However, through the different experimentations, we have
learned the following lessons.

A. Theoretical issues

The motivation of security in a dynamic and open context is
easy to understand. In opposition, its effective implementation
is extremely complicated. In a first step, the “attack endpoints”
of the system must be identified and typed. Then, for each of
them, well-known mechanisms can be applied. A formal
verification could be performed to check the closure of the
system. However, the platform running on AOLOA is not
predefined and the deployer must validate (or not) the security
permission applying to the third-party applications. A major
problem occurs with the last point: the end user is prompted.
Indeed, he does not necessarily have the security skills and so
he can compromise the integrity of the security system (e.g.: in
authorizing writing to file system or Java reflection). One of the
questions we have been asking ourselves for some time: should
we protect the user from himself? And in such case, how?

B. Technical issues

AOLOA was designed and developed from the OSGi
specifications in hoping to be able to substitute the OSGi
framework implementations (e.g.: Felix, Equinox or mBS of
PROSYST). Although OSGi standardizes a way to launch the
OSGi framework allowing embedding it in another framework;
this does not mean that the OSGi implementations and their
“official” bundles take it into account. We have identified
technical problems while using the Felix OSGi
implementation; especially the two mentioned below.

AOLOA uses the framework bundle context from the
applications layer to delegate on the other bundle from the
platform layer, in substituting its classloader parent with ours.
Of course, we check that the desired class belongs to an
exported package, and that the application has the required
permissions. However – for some reason we have not yet
identified – the context used for permissions is not the
application’s, and therefore it does not have permission (in the
experiments).

The second problem is related to the persistence of states
when the platform restarts: some components can be restarted
before the end of the AOLOA security mechanism initialization
and consequently have an unsafe behavior.

In these two cases, we have found a “neat” solution, that
requires changing the source code of the OSGi implementation
(here Felix) and a “dirty” one (costly in terms of performance
and bad in terms of software engineering in comparison with
the “neat” one), but that does not require changing the source
code.

C. Roadmap

In parallel with the previous technical and theoretical
problem resolution, we will begin the following roadmaps: one
that could be named “engineering” (that we must deal with in
the case of industrial partnerships) and the other one being
more “research-related”.

In the “engineering” roadmap, we must develop the Web
administration interface with a Role-Based Access Control, and
a repository with the associated client pro-active in the
malicious code detection.

In the case of the “research” roadmap, we should study the
“real” component models like SCA [18], Blueprint [19] or
iPOJO [20] and the associated security.

Finally, once we have all these bricks, we will finally
address the autonomic management for the platform and the
applications, and the active analysis of the security logs.

VI. CONCLUSION AND PERSPECTIVE

The approach proposed in this article aims at providing a
composable framework dedicated to host third-party context-
aware applications on gateways. Existing software
architectures already allow dynamically deploying or removing
third-party applications. However, they generally assume being
used in a particular domain and so rely on a prebuilt basis. The
number of possible domains is wide. Consequently, our goal is
to provide a generic basis that allows to quickly and easily
compose a domain-specific platform.

The proposed framework is composed of two layers: one to
define and manage the domain-specific platform and the
second to deploy and run third-party applications. The platform
layer allows managing the applications layer and sharing
resources (classes, services…) with it. Consequently, Security
and isolation are two major concerns.

Users do not trust third-party applications that are
dynamically installed. When a deployment unit is to be
installed, the framework has to check the declared security
permissions and delegate the acceptance or the rejection of all
or part of these permissions to the deployer.

On the other side, the framework ensures isolation,
forbidding access to resources that are not to be shared between
both layers and to limiting the side effects. Layers are isolated
thanks to a combination of a classical Java classloader
hierarchy and OSGi classloader delegations networks.

This approach has led to the development of the AOLOA
framework (An OSGi-Like On Another) based on Java6 and
OSGi (Felix implementation). To validate it, an “ambient
temperatures monitoring” example has been developed and
rolled out over a PC and a Raspberry Pi.

Although our approach is still incomplete, initial
experiments are quite encouraging, pushing us to continue
established roadmaps.

REFERENCES

[1] T. Kindberg & a. Fox, “System software for ubiquitous computing”,

Pervasive Computing, IEEE, 2002, 1, 70-81

[2] OpenHAB. Open HAB site. http://www.openhab.org/index.html

[3] C. Dixon, R. Mahajan, S. Agarwal, A.J. Brush, B. Lee, S. Saroiu, & V.

Bahl, “The Home Needs an Operating System (and an App Store)”, in

HotNets IX, ACM, 20 October 2010

[4] P. Horn, “Autonomic computing: IBM's Perspective on the State of

Information Technology”, IBM, IBM, 2001

[5] J.O. Kephart & D.M. Chess, “The vision of autonomic computing”,

Computer , vol.36, no.1, pp.41,50, Jan 2003

[6] OSGi Alliance. OSGi Core Release 5 specification.

http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf

[7] OSGi Alliance. OSGi enterprise Release 5 specification.

http://www.osgi.org/download/r5/osgi.enterprise-5.0.0.pdf

[8] Y. Royon, S. Frénot & F. Le Mouël, “Virtualization of service gateways

in multi-provider environments”, Proceedings of the 9th international

conference on Component-Based Software Engineering (CBSE’06),

Springer-Verlag, 2006, 385-392

[9] N. Geoffray, G. Thomas, B. Folliot & C. Clément, “Towards a new

isolation abstraction for OSGi”, Proceedings of the 1st workshop on

Isolation and integration in embedded systems, ACM, 2008, 41-45

[10] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot & B. Folliot,

“I-JVM: a Java Virtual Machine for Component Isolation in OSGi”,

Proceedings of the 39th International Conference on Dependable

Systems and Networks (DSN 2009), IEEE Computer Society, 2009,

544-553

[11] S. Frénot, F. Le Mouël, J. Ponge & G. Salagnac, “Various Extensions for

the Ambient OSGi Framework”, International Journal Adapt. Resilient

Auton. Syst., IGI Global, 2011, 2, 1-12

[12] G. McGraw & G. Morrisett, “Attacking Malicious Code: A Report to the

Infosec Research Council”, Software, IEEE , vol.17, no.5, pp.33,41,

Sept.-Oct. 2000

[13] W. Enck, M. Ongtang, & P. McDaniel, “Understanding Android

Security”, Security & Privacy, IEEE , vol.7, no.1, pp.50,57, 2009

[14] A. Philippov, O. Gadyatskaya & F. Massacci, “Security of the OSGi

Platform”, Proceedings of the Doctoral Symposium of the International

Symposium on Engineering Secure Software and Systems (ESSoS

2012), 2012, 11-16

[15] N. Dragoni, F. Massacci, C. Schaefer, T. Walter & E. Vetillard, “A

Security-by-Contract Architecture for Pervasive Services”, Proceedings

in Security, Privacy and Trust in Pervasive and Ubiquitous Computing,

(SECPerU 2007). 2007, 49-54

[16] Kevoree project. http://kevoree.org/

[17] R S. Sandhu, E.J. Coyne, H.L. Feinstein & C.E. Youman, “Role-based

access control models”, Computer , vol.29, no.2, 1996

[18] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni & J.-B

Stefani, “A Component-Based Middleware Platform for Reconfigurable

Service-Oriented Architectures”, In Software: Practice and Experience,

Wiley, 2012, 42, 559-583

[19] IBM. OSGi Blueprint Container Specification

http://pic.dhe.ibm.com/infocenter/radhelp/v8/index.jsp?topic=%2Fcom.i

bm.osgi.common.doc%2Ftopics%2Fcosgiblueprint.html

[20] C. Escoffier, R.S. Hall & P. Lalanda, “iPOJO: an Extensible Service-

Oriented Component Framework”, Proceedings in International

Conference on Services Computing SCC 2007, 2007, 474-481

http://www.openhab.org/index.html
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://www.osgi.org/download/r5/osgi.enterprise-5.0.0.pdf
http://kevoree.org/
http://pic.dhe.ibm.com/infocenter/radhelp/v8/index.jsp?topic=%2Fcom.ibm.osgi.common.doc%2Ftopics%2Fcosgiblueprint.html
http://pic.dhe.ibm.com/infocenter/radhelp/v8/index.jsp?topic=%2Fcom.ibm.osgi.common.doc%2Ftopics%2Fcosgiblueprint.html

