Camille Akmut

Ensuring the integrity of research in the Age of open access. A proposal : hashing + public-key cryptography signing

On ensuring the integrity of research documents in the digital age, a concern of prime importance to the development of open access. New and old solutions are presented, and a utility tool (tenaciouscookie).

Introduction

In this report, we propose that where research goes, a way to ensure their integrity is given by the formula : hashing + public-key cryptography signing.

We look at the "old way" of how this would be done, and detail the steps. We look at a new way of doing this with a utility called tenaciouscookie -named so in homage to Aaron Swartz who worked in all of these areas.

In general, such utilities ought to be developed to make the life of researchers easier. And, their development expended to and included in the Web, in various forms (e.g. open access platforms, open access journals, etc., submissions (forms)).

1 Hashing, Public-key signing. The "old way"

We go through the steps of hashing and public-key cryptography signing by using a real example.

Hash functions

Given a document document.pdf (or any other document) produced by a researcher : we detail the steps of hashing followed by public-key signing, the method we propose ought to be used by researchers to digitally ensure the integrity of their research (and towards their readers).

To facilitate narration, discussion and reasoning, we choose a real document produced by a researcher 1 . This hypothetical researcher would proceed to produce what is called a "hash" (a digital signature) for (their) this file.

Hash functions, including SHA-1, are described in Chap. 11. For now it is sufficient to know that SHA-1 compresses x and computes a 160-bit fingerprint. This fingerprint can be thought of as a representative of x. 2When we talk of hashing, hashes, or hash values (more) precisely, we use terminology that is important to keep in mind : additional terms such as "digest" are often found in discussions relating to their uses, and it is good to have a correct idea of their precise meanings.

Hash functions are an important cryptographic primitive and are widely used in protocols. They compute a digest of a message which is a short, fixed-length bit-string. For a particular message, the message digest, or hash value, can be seen as the fingerprint of a message, i.e., a unique representation of a message.3

There are thus the message -that which must be encoded -and the message digest -the resulting hash value.

We demonstrate this on the basis of a primitive example.

Apply the hash function , SHA -1 , to the message " hello "; And , give back the message digest . And, in real software (here using the Python Standard Library built-in hashlib module of various hash functions), >>> hashlib . sha1 (b " hello ") . hexdigest () '6 f 9 b 9 a f 3 cd 6 e 8 b 8 a 7 3c 2 c d c e d 37 f e 9 f 5 9 2 26 e 2 7 d ' Or, >>> message = " hello " >>> hashlib . sha1 (message) . hexdigest () Traceback (most recent call last) :

File " < stdin >" , line 1 , in < module > TypeError : Unicode -objects must be encoded before hashing >>> message = " hello ". encode (' utf -8 ') >>> hashlib . sha1 (message) . On Linux systems this is done with the series of sha<variant>sum utilities e.g. sha256sum or sha512sum, as demonstrated below : This hash is unique to this file -"almost". Almost, probably : maybe.4

Theoretically, since the domain of SHA-256 contains 2 2 64-1 different messages and the value set only contains 2 256 different message digests, there must exist at least one possible output that has more than one possible pre-image.

Another important point is that SHA-256 is a deterministic function. This means that if you hash the same message twice, you will get the same digest both times. Hence, "almost unique" should be understood as meaning that SHA-256 will likely produce a different hash for each different input message. This might be false in an abstract mathematical sense, but it is probably true in a more practical sense:

In practice, uniqueness is not determined by the abstract theoretical non-existence of collisions, but by the practical non-existence of collisions. In order to find a collision in SHA-256, you would probably have to execute the algorithm some 2 128 times. It is unlikely that this will happen anytime soon, even if you count the total number of times SHA-256 will ever be executed by anyone in the entire universe combined. Does a message "exist" if it belongs to a well defined abstract set, or does it "exist" because it has actually been produced and has been represented by someone or something in the physical reality?5

The precise uniqueness of this digital signature is related to the two formula given below :

2 2 64-1 = 2 2 63 = 10 10 18.4434.. = 1 • 10 184.434..
Which describes the domain, or set, of possible different messages. (That can be passed to the SHA-256 algorithm/function, or any such algorithm/function.) We understand this to be an (almost) infinite amount, and understand henceforth 2 2 64-1 to be some approximation of (almost-)infinity.

2 256 = 1.1579.. • 10 77 Which describes the domain, or set, of possible different values ("signatures") that can be generated by (with) the SHA-256 algorithm. This is a finite set, we understand.

Public-private key signing

A researcher would then go on to create a pair of public-private keys. This is done according to the GNU Privacy Guard (GnuPG, or gpg) "The GNU Privacy Handbook" like so :

alice % gpg --gen -key With the following output, when done in actuality :

$ gpg --gen -key gpg (GnuPG) 2.2.4; Copyright (C) 2017 Free Software → Foundation , Inc . This is free software : you are free to change and → redistribute it . There is NO WARRANTY , to the extent permitted by law .

Note : Use " gpg --full -generate -key " for a full featured key generation dialog .

GnuPG needs to construct a user ID to identify your key .

Real name : researcher Email address : email Not a valid email address Email address : email@address You selected this USER -ID :

" researcher < email@address >" A user (researcher) may then check for (the existence of) their key :

$ gpg --list -keys / home /.../. gnupg / pubring . kbx --------------------------------- By which command, gpg --list-keys, only the public key will be listed. And, for their private ("secret") key : And, for both key's ID's6 :

$ gpg --list -secret -keys --keyid -format LONG gpg : checking the trustdb gpg : marginals needed : 3 completes needed : 1 trust model : → pgp gpg : depth : 0 valid : 2 signed : 0 trust : 0 -, 0q , 0n , 0m → , 0f , 2 u gpg : next trustdb check due at ... / home /.../. gnupg / pubring . kbx --------------------------------- Where DB167D229155B65B describes the public key, and CB4D605828B18EDA the private key.

The key ID's are important for operations such as deletion of keys.

$ gpg --delete -key DB167D229155B65B ... gpg : there is a secret key for public key " DB167D229155B65B "! gpg : use option " --delete -secret -keys " to delete it first .

(Finally,) Signing of a file is done like so :

The command-line option -sign is used to make a digital signature. The document to sign is input, and the signed document is output.

alice % gpg --output doc . sig --sign doc 7

And, thus :

$ gpg --output z h a n g 2 0 0 7 l a n d a u s i e g l . pdf . sig --sign → z h a n g 2 0 0 7 l a n d a u s i e g l . pdf

The output is a document zhang2007landausiegl.pdf.sig of type "detached OpenPGP signature".

$ gpg --verify z h a n g 2 0 0 7 l a n d a u s i e g l . pdf . sig gpg : Signature made ... gpg :

using RSA key → B 5 A 4 B B 4 4 5 A F 8 3 8 C A 9 B 4 2 B C 7 2 D B 1 6 7 D 2 2 9 1 5 5 B 6 5 B gpg : Good signature from " researcher < email@address >" [

→ ultimate]

We suggest the researcher uploads this -now encrypted and signed -file to any platform -it should not matter, along with the unencrypted, unsigned file for convenience. For convenience, one version is uploaded encrypted, one version is uploaded in the clear. But, should still be checked every time / in any case.

Given a signed document, you can either check the signature or check the signature and recover the original document. To check the signature use the -verify option. To verify the signature and extract the document use the -decrypt option. The signed document to verify and recover is input and the recovered document is output. blake % gpg --output doc --decrypt doc . sig 8

The signing of the original document itself through public-private key cryptography should be enough, but the hash value may be certified in the same way as well.

$ sha512sum z h a n g 2 0 0 7 l a n d a u s i e g l . pdf > → z h a n g 2 0 0 7 l a n d a u s i e g l _ p d f _ h a s h _ . txt $ $ gpg --output hash . sig --sign z h a n g 2 0 0 7 l a n d a u s i e g l _ p d f _ h a s h _ → . txt $ 2 tenaciouscookie : a utility to certify the authenticity of digitally published research.

2.1 sha3-tc.py : SHA3 class hash functions utility program.

A utility called sha3-tc.py is first presented that uses the latest class of SHA3 hashing algorithms (instead of SHA2 class algorithms like SHA-256 or SHA-512) :

$ python3 sha3 -tc . py z ha n g 2 0 0 7 l a n d a u s i e g l . pdf a 3 6 a a b f 4 8 6 4 7 1 7 8 3 4 4 5 5 5 1 b 9 7 8 2 1 e d 7 7 e 0 4 3 Here, specifically the sha3 512 implementation of the Python Standard Library is used (the highest available to our knowledge within that same library).

It belongs to the implementations officialy recognized by the SHA3 working group.9

A sha3sum utility, of the likes of the sha<variant>sum utilities, does not currently exist for Linux.

2.2 tenaciouscookie : easy signature creation. $ python3 tc3 . py z h a n g 2 0 0 7 l a n d a u s i e g l . pdf z h a n g 2 0 0 7 l a n d a u s i e g l . pdf . sig signature file created for → z h a n g 2 0 0 7 l a n d a u s i e g l . pdf

In the future, we would like to implement this as a (native) command-line utility, that may be called like so : print("\n" + "{}.sig ".format(filename) + "signature file created for " + filename) →

$

 sha256sum z h a n g 2 0 0 7 l a n d a u s i e g l . pdf 925

$

 gpg --list -secret -keys / home /.../. gnupg / pubring . kbx---------------------------------sec rsa3072 ... [SC] [expires : ...] B 5 A 4 B B 4 4 5 A F 8 3 8 C A 9 B 4 2 B C 7 2 D B 1 6 7 D 2 2 9 1 5 5 B 6 5 B uid [ultimate] researcher < email@address > ssb rsa3072 ... [E] [expires : ...]

$

 tenaciouscookie filename . pdf filename . pdf . sig signature file created for filename . pdf But, for now, this is enough. Others may improve on it. Future implementations may do hashing and signing together (in what order, or how exactly, remains an open question). -Note that this utility currently requires version 3.6 or higher or Python (3) 10 . Error : you provided ' + str(len(sys.argv)) + ' argument(s).') → 12 print('Usage : provide a file name as additional argument to the script (2 in total).')

Yitang Zhang. "On the Landau-Siegel Zeros Conjecture". https://arxiv.org/abs/ 0705.4306. Submitted on

May 2007.

Paar and Pelzl 2009. Chapter 10, 10.4.

Ibid. Chapter 11.

The issue is that of collision : when two different messages (can be made to) produce the same hash. Such collisions are evoked, including actual attacks of older versions of SHA, in[START_REF] Paar | Understanding Cryptography[END_REF]

[START_REF] Hellström | SHA-256 "almost unique[END_REF]

gpg --list-keys nor gpg --list-secret-keys alone will not give the keys' id.

The GNU Privacy Handbook.

Ibid.

"Implementations". https://keccak.team/software.html

"New in version 3.6: SHA3 (Keccak) and SHAKE constructors sha3 224(), sha3 256(), sha3 384(), sha3 512(), shake 128(), shake 256().".https://docs.python.org/3/ library/hashlib.html