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Abstract

We present a short description on how to fine-tune the modular algorithm im-

plemented in the Giac computer algebra system to reconstruct huge Groebner basis

over Q. The classical cyclic10 benchmark will serve as example.

1 Introduction

In 1999, J.-C. Faugère presented the F4 algorithm ([3]), it was illustrated with the re-

construction of the Groebner basis over Q of cyclic9, a symmetric Groebner basis with

9 variables, obtained in 18 days. The cyclic9 basis has 1344 elements, 1067837 mono-

mials and requires 378 29-bits primes for reconstruction. Twenty years later, with more

powerful computers (more RAM) and multi-CPU architectures, the same computation

takes about 20 minutes with Giac/Xcas ([6])). The new big benchmark in this cate-

gory is now cyclic10, with 10 variables instead of 9. The computation modulo a prime

takes a few hours with a generic algorithm (i.e. without taking in account the sym-

metries like in [8] or [2]), the basis has 5690 elements, about 20 millions monomials

(19825931 or a little less for some primes, because of cancellation). The computa-

tion over Q is a challenge1, because most coefficients require more than 2000 29-bits

primes for reconstruction, and there are about 20 millions of coefficients to compute,

i.e. the Groebner basis itself is more than 50G of RAM. Being able to solve this exam-

ple is not intrinsically interesting (especially since our algorithm does not exploit any

symmetries), but induced improvements in many areas in the Giac’s modular gbasis

algorithm implementation. I also had to implement partial computation saving.

Section 2 will briefly explain the different phases of the modular reconstruction

algorithm. Section 3 will describe how to control Giac’s gbasis command and show

how we were able to compute the Groebner basis of cyclic10 on Q on a server with

1as far as I know, this document reports the first successful attempt to compute cyclic10 over Q. Allan

Steel reported about cyclic9 over Q in Magma 15 years ago [7], more recent reports are in finite fields
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256G of RAM, 36 CPU (of 48) in about 10 days of real-time (more than 200 days of

sequential time).

2 Modular reconstruction algorithm

The modular gbasis algorithm over Q is done in a loop with three steps : gbasis com-

putation modulo a prime, Chinese remaindering with previous primes and rational re-

construction attempts. Rational reconstruction is not checked on each basis element

after each prime, this would take too long. The basis elements are sorted by increasing

revlex order, then an attempt is made to reconstruct the first basis element that is not yet

reconstructed and check that it fits with the last prime. If reconstruction is successful,

try the next one and so on until reconstruction fails. As a side effect, basis elements

reconstruct in clusters (it is not clear if there is a better ordering strategy of basis el-

ements to attempt reconstruction, I tried a few obvious strategies like age, but it was

worse than revlex order). Already reconstructed generators are checked each time a

new prime gbasis is computed.

For multi-CPU architectures, there are two ways to parallelize the computation :

• multiple primes

compute the Groebner basis modulo several primes in parallel. This gives the

best speed-up (about the same real-time/CPU time ratio than the number of si-

multaneous primes), but it requires more memory (for example with Giac, about

12G of RAM per prime for cyclic10, running more than 12 primes simultane-

ously is not a good idea with 256G of RAM).

• 1-prime parallelism

most tasks in a modular Groebner basis computation can be paralleled: sparse

linear algebra, Gaussian reduction, inter-reduction... This does not require addi-

tional memory (vs mono-threaded execution), but is not as efficient as computing

multiple primes simultaneously.

Note that Chinese remaindering (and rational reconstruction) is single-threaded, be-

cause it can trigger memory allocations (and locks between threads could slow down

the real-time computation). With a better knowledge of GMP memory handling, this

could probably be paralleled.

There are two classical optimizations :

• learning

The idea is that the F4 algorithm will follow the same path for all primes: the

same pairs will reduce to 0 and the same monomials will be involved (“symbolic

preprocessing” information), we can record them for further runs. For more

details, see [5].

• re-injection

Some of the ideal generators have smaller coefficients than other, reconstruc-

tion can happen after a fraction of the total number of required primes (see also

[4]). Using this additional information, we can speed up the computation for
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the remaining primes. For example, partial reconstruction happens for cyclic10

after 390 29-bits primes (for 20 generators), then after 794 primes (for 2164 gen-

erators). Using this additional information will also save memory because the

gbasis algorithm requires less intermediate computations and coefficients stor-

age is optimized: for example a 400 bits reconstructed rational (with numerator

and denominator of size 200 bits) takes 3 times less memory than it’s integer

representant modulo a 1200 bits integer.

Examples of observed real-time speeds computing cyclic10 gbasis modulo a 29 bits

prime using at most 36 CPU (cocalc: Intel Xeon CPU E5-2687W v4 @ 3.00GHz,

first part of the table) or at most 24 CPU (ifnode2: Intel Xeon CPU E5-2640 v3 @

2.60GHz, second part). Run 1 means first prime run modulo a 29 bit prime (includes

storing learning information for further runs). Run 2 means next primes runs modulo a

29 bits prime with learned information. Time does not include Chinese remaindering

(varying from a few seconds at stage 1 start to almost 1 minute per prime at stage 2 end)

or rational reconstruction (negligible except when clusters of generators reconstruct)

Run Re-inject. simult. primes threads per prime minutes per prime

1 No 1 24 200

2 No 4 6 21.25

2 No 3 8 24

2 No 2 12 502

1 2205 1 24 5

2 2205 4 6 1

1 No 1 36 180

2 No 12 3 12.5

2 No 9 4 15

1 2205 1 36 5

2 2205 9 4 0.5

For comparison with a few other implementations, see for example [1] (generic code

w/o learning: about 1 hour) and [2] (code using symmetries, without learning, com-

putes the gbasis for a 16-bits prime in 5 minutes with slower hardware, our run 2 with

generic code does a 29-bits prime in 12.5 minutes).

Therefore the modular algorithm is done in several phases :

• phase 0 : 1st prime run with parallelism, collect information for further runs

• phase 1 : next runs (several primes, for each prime parallelism by number of

CPU available divided by number of simultaneous prime runs). No re-injection

at this stage yet. Partial reconstructions attempts.

• phase 2 : if at some point, partial reconstruction of a significant number of gen-

erators is realized in phase 1, re-inject reconstructed generators, clear learned

information, redo phase 0 with initial generators+reconstructed generators, then

redo phase 1 until final reconstruction, or partial reconstruction of a larger part

of the basis (phases 3 or more)

• phase 3, 4, ...

like phase 2 with a more complete partial reconstructed basis
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For huge computations, it may be desirable to save partial computations, this can be

done here by archiving reconstructed generators. Further computations can start at

phase 2 instead of phase 0.

3 Fine-tuning Giac gbasis

3.1 Fine-tuning commands

In addition to the threads:=n command to control the number of threads, Giac

1.5.0-49 introduces some new instructions to control the gbasis implementation :

• gbasis_simult_primes(n)

gbasis_simult_primes(n1,p1,n2,p2,n3)

This parameter controls the number of simultaneous modular prime computa-

tions. With 5 arguments instead of 1, the number of simultaneous modular com-

putation is defined as n1 until p1 primes are computed, then n2 until p2 primes,

then n3.

The best real-time is obtained by choosing the highest number of primes com-

patible with the RAM available, then divide the number of available threads by

this number of primes and give it for each 1-prime parallelism.

• gbasis_reinject(ratio,speed_ratio)

Change defaults re-injection parameters. If the number of reconstructed genera-

tors over the number of elements of the basis is greater than ratio and the speed

ratio of the second run (with learning information) vs first run (without learning

information) is greater than speed_ratio, then re-injection will happen.

• gbasis_reinject(-n)

With a negative integer as argument, this will stop the computation as soon as at

least n elements of the Groebner basis are reconstructed and gbasiswill return

a partial Groebner basis. This is used in conjunction with

archive("filename",gbasis(list_generators,vars))

for a computation in several stages. Further stages will call

gbasis(list_generators,vars,gbasis_reinject=unarchive("filename"))

• gbasis_max_pairs(n)

Maximal number of pairs that will be reduced simultaneously in the F4 algo-

rithm. This can reduce time and memory for a 1-prime computation but it seems

to be less efficient on further runs.

3.2 Example with cyclic9

The computation of cyclic9 can be done in 1 stage with the following script

cyclic9:=[x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9, x1*x2 + x2*x3

+ x3*x4 + x4*x5 + x5*x6 + x6*x7 + x7*x8 + x1*x9 + x8*x9, x1*x2*x3

+ x2*x3*x4 + x3*x4*x5 + x4*x5*x6 + x5*x6*x7 + x6*x7*x8 + x1*x2*x9

+ x1*x8*x9 + x7*x8*x9, x1*x2*x3*x4 + x2*x3*x4*x5 + x3*x4*x5*x6 +
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x4*x5*x6*x7 + x5*x6*x7*x8 + x1*x2*x3*x9 + x1*x2*x8*x9 + x1*x7*x8*x9

+ x6*x7*x8*x9, x1*x2*x3*x4*x5 + x2*x3*x4*x5*x6 + x3*x4*x5*x6*x7 +

x4*x5*x6*x7*x8 + x1*x2*x3*x4*x9 + x1*x2*x3*x8*x9 + x1*x2*x7*x8*x9

+ x1*x6*x7*x8*x9 + x5*x6*x7*x8*x9, x1*x2*x3*x4*x5*x6 + x2*x3*x4*x5*x6*x7

+ x3*x4*x5*x6*x7*x8 + x1*x2*x3*x4*x5*x9 + x1*x2*x3*x4*x8*x9 + x1*x2*x3*x7*x8*x9

+ x1*x2*x6*x7*x8*x9 + x1*x5*x6*x7*x8*x9 + x4*x5*x6*x7*x8*x9, x1*x2*x3*x4*x5*x6*x7

+ x2*x3*x4*x5*x6*x7*x8 + x1*x2*x3*x4*x5*x6*x9 + x1*x2*x3*x4*x5*x8*x9

+ x1*x2*x3*x4*x7*x8*x9 + x1*x2*x3*x6*x7*x8*x9 + x1*x2*x5*x6*x7*x8*x9

+ x1*x4*x5*x6*x7*x8*x9 + x3*x4*x5*x6*x7*x8*x9, x1*x2*x3*x4*x5*x6*x7*x8

+ x1*x2*x3*x4*x5*x6*x7*x9 + x1*x2*x3*x4*x5*x6*x8*x9 + x1*x2*x3*x4*x5*x7*x8*x9

+ x1*x2*x3*x4*x6*x7*x8*x9 + x1*x2*x3*x5*x6*x7*x8*x9 + x1*x2*x4*x5*x6*x7*x8*x9

+ x1*x3*x4*x5*x6*x7*x8*x9 + x2*x3*x4*x5*x6*x7*x8*x9, x1*x2*x3*x4*x5*x6*x7*x8*x9

- 1]:;

proba_epsilon:=1e-7;

debug_infolevel:=1;

//gbasis_reinject(-100);

threads:=36;

time(archive("H9",gbasis(cyclic9 ,indets(cyclic9))));

Uncommenting gbasis_reinject(-500); will stop the computation after 500

basis elements are reconstructed. To finish the computation, run

gbasis(cyclic9,indets(cyclic9),gbasis_reinject=unarchive("H9")).

3.3 How to compute cyclic10 over Q

The computation of cyclic10 was done in 2 stages on cocalc by calling icas (Giac

text interpreter) on the following script

debug_infolevel:=1;

threads:=36;

gbasis_simult_primes(12,800,9,1600,2); // 12 simult up to 800 primes,

then 9, then 2

// gbasis_reinject(.05,.05);

gbasis_reinject(-2205); // so that we reinject the 2205 first basis

elements after 796 primes

vars := [x0,x1,x2,x3,x4,x5,x6,x7,x8,x9];

sys := [x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9, x0*x1 +

x0*x9 + x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x6 + x6*x7 + x7*x8 + x8*x9,

x0*x1*x2 + x0*x1*x9 + x0*x8*x9 + x1*x2*x3 + x2*x3*x4 + x3*x4*x5 +

x4*x5*x6 + x5*x6*x7 + x6*x7*x8 + x7*x8*x9, x0*x1*x2*x3 + x0*x1*x2*x9

+ x0*x1*x8*x9 + x0*x7*x8*x9 + x1*x2*x3*x4 + x2*x3*x4*x5 + x3*x4*x5*x6

+ x4*x5*x6*x7 + x5*x6*x7*x8 + x6*x7*x8*x9, x0*x1*x2*x3*x4 + x0*x1*x2*x3*x9

+ x0*x1*x2*x8*x9 + x0*x1*x7*x8*x9 + x0*x6*x7*x8*x9 + x1*x2*x3*x4*x5

+ x2*x3*x4*x5*x6 + x3*x4*x5*x6*x7 + x4*x5*x6*x7*x8 + x5*x6*x7*x8*x9,

x0*x1*x2*x3*x4*x5 + x0*x1*x2*x3*x4*x9 + x0*x1*x2*x3*x8*x9 + x0*x1*x2*x7*x8*x9

+ x0*x1*x6*x7*x8*x9 + x0*x5*x6*x7*x8*x9 + x1*x2*x3*x4*x5*x6 + x2*x3*x4*x5*x6*x7

+ x3*x4*x5*x6*x7*x8 + x4*x5*x6*x7*x8*x9, x0*x1*x2*x3*x4*x5*x6 + x0*x1*x2*x3*x4*x5*x9
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+ x0*x1*x2*x3*x4*x8*x9 + x0*x1*x2*x3*x7*x8*x9 + x0*x1*x2*x6*x7*x8*x9

+ x0*x1*x5*x6*x7*x8*x9 + x0*x4*x5*x6*x7*x8*x9 + x1*x2*x3*x4*x5*x6*x7

+ x2*x3*x4*x5*x6*x7*x8 + x3*x4*x5*x6*x7*x8*x9, x0*x1*x2*x3*x4*x5*x6*x7

+ x0*x1*x2*x3*x4*x5*x6*x9 + x0*x1*x2*x3*x4*x5*x8*x9 + x0*x1*x2*x3*x4*x7*x8*x9

+ x0*x1*x2*x3*x6*x7*x8*x9 + x0*x1*x2*x5*x6*x7*x8*x9 + x0*x1*x4*x5*x6*x7*x8*x9

+ x0*x3*x4*x5*x6*x7*x8*x9 + x1*x2*x3*x4*x5*x6*x7*x8 + x2*x3*x4*x5*x6*x7*x8*x9,

x0*x1*x2*x3*x4*x5*x6*x7*x8 + x0*x1*x2*x3*x4*x5*x6*x7*x9 + x0*x1*x2*x3*x4*x5*x6*x8*x9

+ x0*x1*x2*x3*x4*x5*x7*x8*x9 + x0*x1*x2*x3*x4*x6*x7*x8*x9 + x0*x1*x2*x3*x5*x6*x7*x8*x9

+ x0*x1*x2*x4*x5*x6*x7*x8*x9 + x0*x1*x3*x4*x5*x6*x7*x8*x9 + x0*x2*x3*x4*x5*x6*x7*x8*x9

+ x1*x2*x3*x4*x5*x6*x7*x8*x9,x0*x1*x2*x3*x4*x5*x6*x7*x8*x9-1];

time(archive("H10_2205",gbasis(sys ,vars)));

This computation ran in about one week on cocalc (real time on cocalc 0.68e6

seconds=7.9 days, CPU time 16.7e6 seconds=193 days) and outputs the 2205 first gen-

erators of the Groebner basis in the file H10_1. I could also run with 64G of RAM in

2 weeks on ifnode2 with this configuration

threads:=24;

gbasis_simult_primes(4,250,3,600,2);

The output (compressed in gzip format) is available here

https://www-fourier.ujf-grenoble.fr/~parisse/giac/benchmarks/H10_2205.gz

Now we can run icas on a copy of the script above, after commenting the line

// gbasis_reinject(-2205),

uncommenting the line

gbasis_reinject(.05,.05);,

and replacing the last line by

time(archive("H10",gbasis(sys,vars,gbasis_reinject=unarchive("H10_2205"))));

The second stage runs in about 1.5 days and requires about 220G of memory. Make

sure you have enough disk space to save the full basis (about 100G) or make a partial

save, like this :

time(H:=gbasis(sys,vars,gbasis_reinject=unarchive("H10_2205")));

archive("H10",eval(H,1)[0..100]):;

Stage 2 may be split in several steps to save the temporary memory required, for

example gbasis_reinject(-3263) will save the 3263 first basis elements (this

requires much less RAM, because we compute about 1000 new basis elements instead

of about 3000). Reconstruction in cyclic10 happens after the following numbers of

primes

Number of primes Reconstructed basis elements

3 21

388 41

794 2205

1041 2351

1426 2636

1933 3263

2225 5690

An attempt was made to re-inject the partial reconstruction of the 41 first gener-

ators, but instead of speeding up the computation, it slowed it down (more precisely,
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the 1st run with re-injection was about twice as fast, but further runs were slower, as if

learning was fully ineffective). We observed the same behavior trying to decrease the

maximal number of pairs with gbasis_max_pairs, this make the 1st run faster,

but after that learning is much less effective and next runs are slower.

4 Conclusion

In 1999, J.C. Faugère stated about the cyclic 9 computation on Q “This success is also

a failure in some sense: the size of the output is so big that we cannot do anything

with this result”. I don’t think this is true anymore, the output of cyclic9 can be used

nowadays. Perhaps 20 years from now, the output of cyclic10 on Q will be used ?
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