Bernard Parisse

Computing huge Groebner basis like cyclic10 over Q with Giac

published or not. The documents may come

Computing huge Groebner basis like cyclic10 over with

Giac.

Introduction

In 1999, J.-C. Faugère presented the F4 algorithm ([START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F4)[END_REF]), it was illustrated with the reconstruction of the Groebner basis over Q of cyclic9, a symmetric Groebner basis with 9 variables, obtained in 18 days. The cyclic9 basis has 1344 elements, 1067837 monomials and requires 378 29-bits primes for reconstruction. Twenty years later, with more powerful computers (more RAM) and multi-CPU architectures, the same computation takes about 20 minutes with Giac/Xcas ([START_REF] Parisse | Giac/Xcas computer algebra system[END_REF])). The new big benchmark in this category is now cyclic10, with 10 variables instead of 9. The computation modulo a prime takes a few hours with a generic algorithm (i.e. without taking in account the symmetries like in [START_REF] Steidel | Gröbner bases of symmetric ideals[END_REF] or [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the non-modular case[END_REF]), the basis has 5690 elements, about 20 millions monomials (19825931 or a little less for some primes, because of cancellation). The computation over Q is a challenge 1 , because most coefficients require more than 2000 29-bits primes for reconstruction, and there are about 20 millions of coefficients to compute, i.e. the Groebner basis itself is more than 50G of RAM. Being able to solve this example is not intrinsically interesting (especially since our algorithm does not exploit any symmetries), but induced improvements in many areas in the Giac's modular gbasis algorithm implementation. I also had to implement partial computation saving.

Section 2 will briefly explain the different phases of the modular reconstruction algorithm. Section 3 will describe how to control Giac's gbasis command and show how we were able to compute the Groebner basis of cyclic10 on Q on a server with 1 as far as I know, this document reports the first successful attempt to compute cyclic10 over Q. Allan Steel reported about cyclic9 over Q in Magma 15 years ago [START_REF] Steel | Gröbner Basis Timings Page[END_REF], more recent reports are in finite fields 1 256G of RAM, 36 CPU (of 48) in about 10 days of real-time (more than 200 days of sequential time).

Modular reconstruction algorithm

The modular gbasis algorithm over Q is done in a loop with three steps : gbasis computation modulo a prime, Chinese remaindering with previous primes and rational reconstruction attempts. Rational reconstruction is not checked on each basis element after each prime, this would take too long. The basis elements are sorted by increasing revlex order, then an attempt is made to reconstruct the first basis element that is not yet reconstructed and check that it fits with the last prime. If reconstruction is successful, try the next one and so on until reconstruction fails. As a side effect, basis elements reconstruct in clusters (it is not clear if there is a better ordering strategy of basis elements to attempt reconstruction, I tried a few obvious strategies like age, but it was worse than revlex order). Already reconstructed generators are checked each time a new prime gbasis is computed.

For multi-CPU architectures, there are two ways to parallelize the computation :

• multiple primes compute the Groebner basis modulo several primes in parallel. This gives the best speed-up (about the same real-time/CPU time ratio than the number of simultaneous primes), but it requires more memory (for example with Giac, about 12G of RAM per prime for cyclic10, running more than 12 primes simultaneously is not a good idea with 256G of RAM).

• 1-prime parallelism most tasks in a modular Groebner basis computation can be paralleled: sparse linear algebra, Gaussian reduction, inter-reduction... This does not require additional memory (vs mono-threaded execution), but is not as efficient as computing multiple primes simultaneously.

Note that Chinese remaindering (and rational reconstruction) is single-threaded, because it can trigger memory allocations (and locks between threads could slow down the real-time computation). With a better knowledge of GMP memory handling, this could probably be paralleled. There are two classical optimizations :

• learning The idea is that the F4 algorithm will follow the same path for all primes: the same pairs will reduce to 0 and the same monomials will be involved ("symbolic preprocessing" information), we can record them for further runs. For more details, see [START_REF] Parisse | A probabilistic and deterministic modular algorithm for computing groebner basis over Q[END_REF].

• re-injection Some of the ideal generators have smaller coefficients than other, reconstruction can happen after a fraction of the total number of required primes (see also [START_REF] Monagan | An algorithm for spliting polynomial systems based on f4[END_REF]). Using this additional information, we can speed up the computation for the remaining primes. For example, partial reconstruction happens for cyclic10 after 390 29-bits primes (for 20 generators), then after 794 primes (for 2164 generators). Using this additional information will also save memory because the gbasis algorithm requires less intermediate computations and coefficients storage is optimized: for example a 400 bits reconstructed rational (with numerator and denominator of size 200 bits) takes 3 times less memory than it's integer representant modulo a 1200 bits integer.

Examples of observed real-time speeds computing cyclic10 gbasis modulo a 29 bits prime using at most 36 CPU (cocalc: Intel Xeon CPU E5-2687W v4 @ 3.00GHz, first part of the table) or at most 24 CPU (ifnode2: Intel Xeon CPU E5-2640 v3 @ 2.60GHz, second part). Run 1 means first prime run modulo a 29 bit prime (includes storing learning information for further runs). Run 2 means next primes runs modulo a 29 bits prime with learned information. [START_REF] Eder | Implementing Parallel Gröbner Basis Algorithms over Finite Fields[END_REF] (generic code w/o learning: about 1 hour) and [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the non-modular case[END_REF] (code using symmetries, without learning, computes the gbasis for a 16-bits prime in 5 minutes with slower hardware, our run 2 with generic code does a 29-bits prime in 12.5 minutes).

Therefore the modular algorithm is done in several phases :

• phase 0 : 1st prime run with parallelism, collect information for further runs

• phase 1 : next runs (several primes, for each prime parallelism by number of CPU available divided by number of simultaneous prime runs). No re-injection at this stage yet. Partial reconstructions attempts.

• phase 2 : if at some point, partial reconstruction of a significant number of generators is realized in phase 1, re-inject reconstructed generators, clear learned information, redo phase 0 with initial generators+reconstructed generators, then redo phase 1 until final reconstruction, or partial reconstruction of a larger part of the basis (phases 3 or more)

• phase 3, 4, ... like phase 2 with a more complete partial reconstructed basis

For huge computations, it may be desirable to save partial computations, this can be done here by archiving reconstructed generators. Further computations can start at phase 2 instead of phase 0.

3 Fine-tuning Giac gbasis

Fine-tuning commands

In addition to the threads:=n command to control the number of threads, Giac 1.5.0-49 introduces some new instructions to control the gbasis implementation :

• gbasis_simult_primes(n) gbasis_simult_primes(n1,p1,n2,p2,n3) This parameter controls the number of simultaneous modular prime computations. With 5 arguments instead of 1, the number of simultaneous modular computation is defined as n1 until p1 primes are computed, then n2 until p2 primes, then n3.

The best real-time is obtained by choosing the highest number of primes compatible with the RAM available, then divide the number of available threads by this number of primes and give it for each 1-prime parallelism.

• gbasis_reinject(ratio,speed_ratio) Change defaults re-injection parameters. If the number of reconstructed generators over the number of elements of the basis is greater than ratio and the speed ratio of the second run (with learning information) vs first run (without learning information) is greater than speed_ratio, then re-injection will happen.

• gbasis_reinject(-n) With a negative integer as argument, this will stop the computation as soon as at least n elements of the Groebner basis are reconstructed and gbasis will return a partial Groebner basis. This is used in conjunction with archive("filename",gbasis(list_generators,vars)) for a computation in several stages. Further stages will call gbasis(list_generators,vars,gbasis_reinject=unarchive("filename"))

• gbasis_max_pairs(n) Maximal number of pairs that will be reduced simultaneously in the F4 algorithm. This can reduce time and memory for a 1-prime computation but it seems to be less efficient on further runs.

Example with cyclic9

The computation of cyclic9 can be done in 1 stage with the following script

Uncommenting gbasis_reinject(-500); will stop the computation after 500 basis elements are reconstructed. To finish the computation, run gbasis(cyclic9,indets(cyclic9),gbasis_reinject=unarchive("H9")).

How to compute cyclic10 over Q

The computation of cyclic10 was done in 2 stages on cocalc by calling icas (Giac text interpreter) on the following script The second stage runs in about 1.5 days and requires about 220G of memory. Make sure you have enough disk space to save the full basis (about 100G) or make a partial save, like this : time(H:=gbasis(sys,vars,gbasis_reinject=unarchive("H10_2205"))); archive("H10",eval(H,1)[0..100]):;

Stage 2 may be split in several steps to save the temporary memory required, for example gbasis_reinject(-3263) will save the 3263 first basis elements (this requires much less RAM, because we compute about 1000 new basis elements instead of about 3000 5690 An attempt was made to re-inject the partial reconstruction of the 41 first generators, but instead of speeding up the computation, it slowed it down (more precisely, the 1st run with re-injection was about twice as fast, but further runs were slower, as if learning was fully ineffective). We observed the same behavior trying to decrease the maximal number of pairs with gbasis_max_pairs, this make the 1st run faster, but after that learning is much less effective and next runs are slower.

Conclusion

In 1999, J.C. Faugère stated about the cyclic 9 computation on Q "This success is also a failure in some sense: the size of the output is so big that we cannot do anything with this result". I don't think this is true anymore, the output of cyclic9 can be used nowadays. Perhaps 20 years from now, the output of cyclic10 on Q will be used ?

 Time does not include Chinese remaindering (varying from a few seconds at stage 1 start to almost 1 minute per prime at stage 2 end) or rational reconstruction (negligible except when clusters of generators reconstruct)

	Run Re-inject. simult. primes threads per prime minutes per prime
	1	No	1	24	200
	2	No	4	6	21.25
	2	No	3	8	24
	2	No	2	12	50 2
	1	2205	1	24	5
	2	2205	4	6	1
	1	No	1	36	180
	2	No	12	3	12.5
	2	No	9	4	15
	1	2205	1	36	5
	2	2205	9	4	0.5
	For comparison with a few other implementations, see for example

). Reconstruction in cyclic10 happens after the following numbers of

	primes	
	Number of primes Reconstructed basis elements
	3	21
	388	41
	794	2205
	1041	2351
	1426	2636
	1933	3263
	2225	

Acknowledgements

Many thanks to William Stein for letting me run most of these computations on cocalc.sagemath.org and to S. Lelièvre for his interest.