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Abstract  

Fitts' law says that T, the time it takes to reach a target of width W located at distance D, varies as 

a logarithmic or power function of the quotient of D/W. The received, strong version of the law 

requires isochrony―namely, the invariance of T across different D/W conditions with the same 

quotient. However, there is room for a weaker, yet nontrivial version of Fitts' law where the 

effect of scale does show up while combining in an additive way with that of the crucial quotient. 

The paper revisits Fitts’s (1954) classic experiments in light of Cartesian/polar analysis 

(Guiard, 2009) and reports intriguing new results. The strong, isochronous version of Fitts’ law 

holds true for tapping, but contrary to a widely-held view the other two experiments were not just 

half-failed corroborations. While the disc-transfer data eloquently illustrate the weak, non-

isochronous version of Fitts’ law, the pin-transfer data definitely violate the law by showing a 

strong interaction between scale and the quotient of D/W. Surprisingly, however, the results of 

the pin-transfer experiment are remarkably simple in the alternative Cartesian description system, 

as D and W exerted separate, additive effects on T.  
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Public Significance Statement 

Sixty years ago Fitts published the first experimental demonstration of the quantitative rule 

famously known today as Fitts' law. This paper reports a complete reanalysis of the numerical 

data that Fitts tabulated in detail in his article, revealing patterns of remarkable coherence that 

had been so far unsuspected due to undetected ambiguities concerning the dimensions of Fitts' 

law. One particular intriguing discovery is that there exist two different versions of Fitts' law, 

both eloquently illustrated by Fitts’s own data. 
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4 
 

In a famous article1 Fitts (1954) reported the first experimental demonstration that in general the 

time T needed to reach a target of width W located at distance D varies about linearly with the 

logarithm of the quotient of the division of D by W. This simple quantitative rule of thumb, 

famously known today as Fitts’ law, has been abundantly praised for its robustness and generality 

(e.g., Kelso, 1992; Meyer, Abrams, Kornblum, Wright, & Smith, 1988; Soukoreff & MacKenzie, 

2004). Ever since Fitts (1954), however, there has been considerable debate about the exact 

mathematical description of the rule (e.g., Guiard & Olafsdottir, 2011; Hoffmann, 2013; 

Kvalseth, 1980; MacKenzie, 1992) as well as about its substantive theoretical explanation (e.g., 

Crossman & Goodeve, 1983; Guiard & Rioul, 2015; Meyer, Abrams, Kornblum, Wright, & 

Smith,1988; Plamondon & Alimi, 1997; Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979).  

It should be noted that the present paper is not about the possible explanatory mechanisms 

of Fitts’ law, nor about the comparative merits of the various mathematical functions that can be 

conjured up to formulate the rule. Our focus here is the basic structure of the formulation, which 

more often than not consists of a mathematical function of the form T = f (x), where movement 

time T is made to depend on a single independent variable x―typically some index of difficulty 

computed from the dimensionless quotient of D/W. The paper argues that this description of Fitts' 

law data is logically problematic given that the factorial design needed to obtain Fitts' law data 

requires the orthogonal manipulation of two factors. Since the question asked in any Fitts' law 

experiment involves two degrees of freedom (DoF), so should the answer―i.e., the description of 

the data. Thus the statement of Fitts' law should be of the form T = f (x, z), with two independent 

variables (Guiard, 2009). Using Fitts’s (1954) classic data set as an illustration benchmark, this 

paper shows that a complete two-DoF approach considerably improves our understanding of 

Fitts’ law data. 

 

 

 

 

                                                             
1 Google Scholar (December 2, 2018) counts 7,748 citations of Fitts’s (1954) article.  



5 
 

1.  Fitts’s (1954) Data and Fitts’ Law 

Fitts’s own formulation of the rule, which he gave explicitly in Fitts and Peterson (1964), reads 

ܶ = ܽ +  (1a)          ,ܦܫ ܾ

where a and b denote empirically adjustable coefficients. T stands for mean movement time, and 

ID for what Fitts (1954) called the index of difficulty, which he defined as a function of target 

distance D and target width W: 

ܦܫ = logଶ ቀ
ଶ஽
ௐ
ቁ.         (1b) 

 

1.1. The Evolution of Fitts’s Claim and His Experimental Evidence 

The thesis submitted by Fitts in his 1954 article (see also Fitts, 1953) was in fact stronger than 

Equation 1. He actually proposed the generalization that the ratio ID/T―in his interpretation an 

estimate of information transmission rate in bits/s―was constant, which implied the 

proportionality of movement time to ID: 2 

ூ஽
்

= ݇.           (2) 

However, Fitts refrained from writing his first thesis in explicit mathematical form and 

presented it as just tentative, using exceedingly prudent words. For example he concluded the 

abstract of his 1954 paper as follows: “The consistency of these results supports the basic thesis 

that the performance capacity of the human motor system plus its associated visual and 

proprioceptive feedback mechanisms, when measured in information units, is relatively constant 

over a considerable range of task conditions. This thesis offers a plausible way of accounting for 

what otherwise appear to be conflicting data on the durations of different types of movements.” 

(Fitts, 1954, p. 268, emphases added). 

                                                             
2 There has been controversy on the necessity of a zero-intercept in Fitts’ law (e.g., Soukoreff & MacKenzie, 2004; 
Zhai, 2004). If possibly useful for comparison purposes, the intercept is uninterpretable in and of itself because the 
difficulty continuum has an arbitrary zero (Guiard & Olafsdottir, 2011). For example Fitts’s ID = log2 (2D/W) zeroes 
out at the limit where W becomes so large as to equal 2D―in no way the point where task difficulty zeroes out, but 
rather the point where the target interval begins to include the start point, meaning that the movement task 
disappears.  
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Figure 1. The movement time data of Fitts (1954, Tables 1, 2, and 3) with Equation 2 fitted. 

 Indeed Fitts’s (1954) evidence came from three experiments on “different types of 

movement”, namely, stylus tapping, disc transfer, and pin transfer. As is visible in Figure 1, 

which represents graphically the numerical data of his Tables 1, 2, and 3 (pp. 385, 386, and 388, 

respectively), the support for his proportionality claim was mediocre. Except for tapping the 

proportion of the variance of T left unexplained by Equation 2 was rather high.3 Only the tapping 

experiment was an undisputable success.  

In his next study, ten years later (Fitts & Peterson, 1964), Fitts introduced two changes. 

For one thing he replaced his rather risky proportionality hypothesis with the more flexible two-

parameter model of Equation 1, given it the explicit form of a mathematical formula (p. 104). The 

other change introduced by Fitts and Peterson is that the disc-transfer and the pin-transfer tasks of 

the 1954 study disappeared discreetly from the scene, leaving tapping as the exclusive focus. The 

fresh results that Fitts and Peterson (1964) obtained in a novel, discrete variant of the tapping task 

allowed them to conclude that “the times for discrete movements follow the same type of law as 

was found earlier to hold for serial responses” (p. 103). But here the meaning of the term 

“movement” is more narrow: Fitts was no longer referring to the variety of movements he had 

actually investigated in 1954, but specifically to stylus-tapping.  

That posterity usually gives credit to Fitts (1954) for the formulation of Equation 

1―which he in fact proposed ten years later with Peterson―is just a minor historic inaccuracy. 

What is more of a concern is that since Fitts and Peterson (1964) it has become a tradition to put 

                                                             
3 With the intercept treated as a second free parameter, to match Equation 1a, the improvement is very small for the 
disc-transfer data (r² = .844 instead of .799) and for the pin-transfer data (r² = .890 instead of .888).  

A B C 
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aside two of the three carefully-run experiments that Fitts reported in full detail in his celebrated 

article of 1954.  

 

1.2. Comparative Merits and Weaknesses of Fitts’s (1954) Three Experiments 

Fitts’s (1954) three experiments are variations on the same theme of aimed movement. All three 

capitalized on the measurement of minimized T, all three involved the experimental manipulation 

of D and W using the same orthogonal design4, and all three used the same serial, or reciprocal 

protocol.  

One weakness common to all three experiments is that they used the reciprocal protocol. 

Although that protocol has the obvious merit of allowing high rates of data production ―which 

makes it practical in applied-research contexts―it has some drawbacks for the analytic mind, as 

later recognized by Fitts himself (Fitts & Peterson, 1964; see also Guiard, 1997). As far as 

tapping is concerned, one drawback is that endpoint variability results in part from the execution 

of the movement and in part from the variability of the start point, inherited from the previous 

movement. Another drawback is that T measures not just the time it takes to execute the current 

movement, but also the time it takes to correct the error inherited from the previous movement as 

well as the time it takes to prepare the next. Concerning the other two tasks, one drawback of the 

reciprocal protocol is to permit just the global indiscriminate timing of a cycle of different acts 

(grasping one object, transporting it, inserting it, moving the hand back, grasping the next object, 

etc.). 

In one important technical regard the tasks of Exp. 2 and 3 were better suited to the study 

of aimed movement than tapping. The disc-transfer and the pin-transfer tasks demand that objects 

be put in place, thus forcing by construction a 0% error rate. This is a serious advantage over 

tapping, where a proportion of target misses inevitably occur, raising a serious concern about the 

reliability of the time measures. The speed and accuracy of performance always trading with each 

other in speeded tasks, if error is allowed both will tend to be affected by any manipulated factor. 

Indeed it is easy to check in Fitts’s Table 1 (p. 385) that in his tapping experiment there was a 

                                                             
4 In the two transfer tasks W was simply the difference between hole diameter and pin diameter. 
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high level of overall correlation between T and error rate (r = .82), clearly an undesirable 

outcome. 

In the face of the tricky speed/accuracy trade-off problem Fitts (1954) took the traditional 

stance. His task instructions―specifically, “hit as many targets as you can” [in the 30s allotted to 

the trial] and “emphasize accuracy rather than speed” (p. 384, emphasis in the original)―were 

aimed at lowering the error rates down to a point where it may seem reasonable to ignore them. 

With less than 2% target misses on average in the tapping experiment, one may be tempted to 

conclude that Fitts’s strategy was successful. Unfortunately, however, the intuition behind the 

traditional strategy is false. As has been known since the nineteen seventies, in general the form 

of trade-off functions is such that minute variation of the probability of error can be obtained at 

the expense of potentially considerable variations of speed. Worse―somewhat ironically―it is 

precisely at very low levels of error-rate that the variation of performance time can become 

enormous for extremely small differences in error percentages (Pachella, 1973; Wickelgren, 

1977).5    

As far as mental chronometry, the target of the Pachella-Wickelgren objection, was 

concerned, the only serious response would have been to replace the measurement of response 

time with the study of entire speed/accuracy trade-off functions, that is, to accept to have to 

tackle two dependent measures at the same time. But such an option complicates things to a 

considerable extent and, unsurprisingly, the recommended revision never happened (Luce, 1986). 

Notice, however, that Fitts’s paradigm has nothing to do with mental chronometry―it considers 

the chronometry of overt, rather than covert processes. If it is presumably impossible to obtain 

exactly 0% error in a mental chronometry experiment, it is in fact fairly easy to meet this 

requirement in an aimed-movement task: it suffices to make sure the process under study (here 

the movement) is complete at the time the timer is stopped, and this is precisely what Fitts (1954) 

did in his Exps. 2 and 3 with his disc- and pin-transfer tasks.  

The weakness of Fitts’s tapping paradigm with regard to the error issue has not escaped 

the attention of Fitts’ law students. Following Crossman (1956), an abundant literature has 

accumulated on how to adjust the T data in Fitts' law experiments so as to try to compensate for 

                                                             
5 These authors were discussing reaction time specifically but their objection is quite general and obviously applies 
to the study of movement time. 
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non-constant error rates. A practical consensus has been reached within some communities of 

researchers (Soukoreff & MacKenzie, 2004; ISO, 2000) but the issue is still unsettled. Thus, all 

in all, it is the most fragile of Fitts’s (1954) three experiments that posterity has retained. One 

reason for seriously considering his long forgotten Exps. 2 and 3 is that in them he elegantly 

avoided the complicated speed/accuracy trade-off problem that plagued his famous Exp. 1. 

Thus with respect to the error issue Exps 2 and 3 were smarter than tapping. In another, 

more minor respect, however, they were not quite as smart. One astute option taken by Fitts in his 

tapping experiment was to use elongated rectangular target plates so that the tolerance constraint 

was manipulated selectively in the direction of the movement―giving D and W the status of 

strictly collinear lengths. In the disc-transfer and pin-transfer tasks, however, Fitts defined 

tolerance as a diameter difference, meaning that he manipulated W both in the direction of the 

movement and in the perpendicular direction. Presumably a strictly 1D version of these tasks 

would have been preferable. 

To this writer’s knowledge the results of Fitts’s (1954) disc-transfer and pin-transfer 

experiments have never been understood, not even by Kvalseth (1980), one of the few who 

attempted a complete reanalysis of Fitts’s three tables. This author showed that all three scatter 

plots of Figure 1 are slightly more accurately summarized with a power function of the form T = 

a (D/W)b with b < 1, than they are with the logarithmic function of Equation 1. However, 

Kvalseth never explained why, using no more than two free parameters, the power model, which 

does an excellent job with the data of Figure 1A (r² = .986), does so mediocre a job with the data 

of Figure 1B (r² = .90) and 1C (r² = .85). It is hard to be content with a mathematical summary 

that still overlooks up to 15% of the variance at hand. 

In fact, so long as we stick to the traditional representations of Figure 1, there is no hope 

to do better than Kvalseth. As will be explained below, that representation is potentially 

misleading because it just shows a two-dimensional projection of a three-dimensional object. The 

portray given in Figure 1 of the data of Fitts (1954)―or for that matter of the data of any 

experiment using the Fitts time-minimization paradigm―is like the shadow of a vertical cylinder 

projected on a nearby wall: one dimension being lost, there is no warranty that one will be able to 

tell from that shadow whether the object is, say, a cylinder or a rectangular parallelepiped.  
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Fitts’s mistake―overlooking one of the two independent variables that his paradigm 

actually involves―has become routine in the field. To correct it we will have to make a detour 

through the polar/Cartesian analysis of Guiard (2009), to be summarized in the next section. The 

reward will be the realization that there is a great deal more structure in Fitts’s data, and in the 

data from Fitts' law experiments in general, than is apparent in the traditional representation of 

Figure 1. We will discover that, contrary to a common belief, not just tapping but all three 

experiments of Fitts (1954) have delivered remarkably coherent and quite conclusive results. And 

this new complete visit to an old monument will be an opportunity to realize that Fitts’ law is a 

more subtle matter conceptually than has been often thought.  

 

1.3. Double Checking the Explicandum: What is There to be Explained? 

Apparently confident in the received description of the published data, the literature on Fitts' law 

has been primarily concerned with the substantive-theoretical explanation issue. As he explained 

at length in an early writing (Fitts, 1953), Fitts’s mind was inhabited by Shannon’s (1948) then 

extraordinarily popular communication theory. Inspired by Hick’s law of choice reaction time 

(Hick, 1952), he interpreted his findings as a further illustration, in the case of overt movement, 

of the limited information-transmission capacity of the human motor system. 

 Mainstream psychology, however, has always been reluctant to Fitts’s attempt to apply 

Shannon’s framework. Leaving Shannon aside, psychologists have preferred to explore other 

directions to explain Fitts' law. Wiener’s (1948) cybernetics has been the main inspiration source 

for the iterative correction theory of Crossman and Goodeve (1963/1983; see also Keele, 1968) as 

well as the stochastic optimized sub-movement theory of Meyer, Abrams, Kornblum, Wright, 

and Smith (1988). Plamondon and Alimi (1997) have proposed a kinematic theory based on the 

central limit theorem. Chaos theory has been conjured up (Flach, Guisinger, & Robison, 1996), as 

well as nonlinear dynamical systems theory (Mottet & Bootsma, 1999). Interestingly, the 

information-theoretic kind of explanation advocated by Fitts (1954) has been enjoying a revival, 

after three decades of pronounced discredit (Luce, 2003), with the emergence of human-computer 

interaction in the nineteen eighties (Card, English, and Burr, 1978; Gori, Rioul, & Guiard, 2018; 

Hoffmann, 2013; MacKenzie, 1992; Soukoreff & MacKenzie, 2004).  
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The goodness of fit issue has also attracted considerable attention, especially in domains 

where Fitts' law serves application goals, such as ergonomics and human-computer interaction. 

Many minor amendments to the definition of the ID of Equation 1b have been put forth to 

improve the empirical fit of Fitts' law (see Plamondon & Alimi, 1997, for a review). In many 

cases the logarithmic function was retained (e.g., Gori et al., 2018; Hoffman, 2013; MacKenzie, 

1992, but other mathematical functions have been advocated for Fitts' law modeling, notably the 

power function (Kvalseth, 1980; Meyer et al., 1988).  

This literature is essentially left aside in the present paper because it has in general taken 

for granted what we want to critically examine here, namely the description of the data of the 

Fitts paradigm. This paper is all about experimental facts and the methodology of establishing 

them. Rather than the explicans of Fitts' law (i.e., the substantive explanation issue), we focus on 

the explicandum: What does the quantitative empirical rule we call Fitts' law consist of? In fact 

we will see that the traditional factual description of Fitts' law, which he have inherited from Fitts 

himself (1954; Fitts & Peterson, 1964), has a problem.  

 

2. How Many Independent Variables in the Fitts Paradigm? 

Behind Fitts' law, taken as an empirical fact, there is a hidden logical problem. The problem is 

somewhat troublesome but fortunately it has its solution. 

 

2.1. The Number of Degrees-of-Freedom Issue 

The time-minimization paradigm introduced by Fitts (1954) has acquired the status of a standard 

in Fitts' law research, both basic and applied.6 The idea is to take T as the dependent measure and 

to manipulate target distance and target width independently, by means of an orthogonal D x W 

design. Letting N denote the number of degrees of freedom (DoF) involved in this experimental 

manipulation, we have N = 2. 

                                                             
6 In principle the question tackled in the Fitts paradigm―the trade-off of speed and accuracy in the execution of 
aimed movement―is tractable using not just the popular time-minimization paradigm of Fitts (1954), but also the 
spread-minimization paradigm of Schmidt, Zelaznik, Hawkins, Frank, and Quinn (1979) and the dual-minimization 
paradigm of Guiard, Olafsdottir, and Perrault (2011).  
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Notice that Fitts’ law as formulated in Equation 1 involves just one independent variable, 

called ID. A 2D scatter plot is supposed to be sufficient to illustrate the law graphically, showing 

how T, represented on the vertical axis, is influenced by just one quantity represented on the 

horizontal axis. Letting N’ denote the number of independent variables involved in the 

mathematical description of the law, we have N’ = 1. 

Thus the model supposed to answer the question asked in the paradigm has one less DoF 

than the question, a mismatch to be found in most mathematical descriptions of Fitts' law (e.g., 

Kvalseth, 1980; MacKenzie, 1992; Meyer et al, 1988). Virtually all models of the literature 

describe the outcome of the Fitts paradigm, which has two manipulation DoF, using a 

mathematical statement of the form y = f (x), where f represents a variety of functions, but where 

x always stands for a single number, namely, the quotient of D/W. 

Regardless of whether one is willing to adopt Fitts’s own ID or any other mathematical 

transform of the quotient of D/W, arguably much of the beauty of Fitts' law lies in the fact that it 

is so simple. Yet, even though apparently Fitts law theorists have not been alarmed by the 

mismatch that N’ = 1 < N = 2, the disappearance of one manipulation DoF is an anomaly that 

requires an explanation. 

Guiard (2009) called attention to the fact that the division of D by W involved in the 

calculation of any ID is a binary operation, and that any binary operation involves a lossy 

compression of information. It is impossible to reconstruct the input elements, called the 

operands (two numbers), from the output, called the result (a single number). By definition, a 

binary operation compresses two DoF into one.  

There is ambiguity in the usual mathematical notation of ratios such as that shown in 

Equation 1b , where two symbols, D and W, serve to denote a single number―their quotient. The 

law can be written in two mathematically equivalent, yet conceptually different ways. The most 

popular of the two possible writings is that of Equation 1  

ܶ = ܽ +  ܦܫ ܾ

with ܦܫ = logଶ ቀ
ଶ஽
ௐ
ቁ. 
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which uses two successive mathematical clauses, a main clause and a subordinate clause. The 

main clause, of the form 

ܶ =  (3a)          ,(ܦܫ)݂

where f is a (usually linear) function, serves to define Fitts' law proper. The subordinate clause, of 

the form 

ܦܫ = ݃ ቀ஽
ௐ
ቁ,          (3b) 

where g is another function, specifies how ID, the independent variable of the main clause, 

should be calculated from two quantities. 

Now consider the other possible writing of Fitts' law, formed of a single mathematical 

statement in which the functions f and g are composed: 

ܶ =  (4)         .[(ܹ/ܦ)݃]݂

Equation 3a said quite explicitly that the law has just one independent variable―i.e., there is just 

one number on the right-hand side of the equation. As then explained in Equation 3b, that number 

is the result of some mathematical transform of the quotient of D/W. In contrast, Equation 4 is 

ambiguous, the fractional expression D/W on its right-hand side behaving pretty much like a 

Necker cube: that expression can be interpreted to denote either the quotient of the division of D 

by W (meaning N' = 1) or the two operands of that division (meaning N’ = 2). What is unclear 

with Equation 4 is whether the division has been done (in which case one faces one number) or is 

to be done (in which case one faces two numbers, along with instructions for their use). However 

common in mathematical notation, such indetermination as to whether a ‘ratio’ like D/W denotes 

the two inputs of the binary operation or its single output becomes problematic when it comes to 

the task of understanding how an experimental manipulation and the mathematical description of 

its results map onto each other. 

As remarked by Guiard (2009), experimenters of all fields tend to follow the good sense 

rule that if the design of an experiment has N manipulation factors, then the mathematical 

explication of the data from that experiment must have N’ = N independent variables, simply 

because a hidden variable may play low-down tricks with them. In Section 3 below we will 
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follow the N’ = N rule scrupulously and, as we will see, new territories will open up. Fitts (1954) 

having used the same two-factor orthogonal design in his three experiments,7 in each case we will 

look for complete mathematical descriptions of the form y = f (x, z), with two independent 

variables, rather than of the form y = f (x), with a single independent variable as in the traditional 

understanding of Fitts' law.8 

 

2.2. Which Pair of Independent Variables? The Polar vs. Cartesian Answer 

What independent variables will occupy our two DoF? At first sight the Fitts paradigm involves 

three conceptually important quantities. These are (1) target distance D, which allows 

experimenters to take control over the amplitude of movement, (2) target tolerance W, supposed 

to allow experimenters to take control over the spread of movement endpoints, and (3) the 

quotient of the division of D by W, to which Fitts (1954) was the first to call attention, and whose 

mathematical transformations have served to calculate a diversity of IDs. However, three 

independent variables is one too many because the paradigm has no more than two manipulation 

DoF. 

In fact one faces a forced choice between two alternative description systems, which 

consider different, mutually incompatible DoF pairs, and that forced choice is similar to that 

between the Cartesian and the polar localization of a point P in 2D space (Guiard, 2009). In 2D 

space, where the distinction is quite familiar, to use the Cartesian coordinates system means to 

specify the norms of the component vectors Oݔሬሬሬሬሬ⃗  and Oyሬሬሬሬሬ⃗ , and to use the polar coordinates system 

means to specify the direction and the norm of the resultant vector OPሬሬሬሬሬ⃗ .  

 

                                                             
7 For his tapping experiment Fitts used a three-factor design, crossing not just target distance D and target tolerance 
W, but also stylus weight (1 lb. vs. 1 oz.), an auxiliary factor that turned out to exert virtually no effect on 
performance and to be involved in no interaction. Below we will leave aside stylus weight, the data being given on 
average over the two stylus weights.  
8 Below the contrast will be between incomplete one-DoF and complete two-DoF descriptions of Fitts' law data, but 
that count refers to the number of factors involved in the experiment and/or the number of independent variables 
shown on the right-hand side of mathematical equations. However, recall that T, by definition the dependent measure 
of the Fitts paradigm, constitutes a further independent dimension. Thus, taking T into account, we will be 
contrasting incomplete two-dimensional descriptions of Fitts' law, of the form y = f (x), versus complete three-
dimensional descriptions of the law, of the form y = f (x, z). 
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Figure 2. The polar vs. Cartesian answers to the question of what it means to manipulate the two 

factors of the Fitts paradigm. The polar account (above) considers form F and scale S, the Cartesian account 

(below) considers target distance D and target width W. Each pair of horizontally-aligned thick line segments 

represents the two targets of Fitts’s reciprocal protocol. This figure uses the space-scale diagram of Furnas 

and Bederson (1995), with space extending horizontally and scale vertically.  

Of course the Fitts paradigm is one-dimensional, with D and W collinear, but the 

polar/Cartesian distinction still applies, as shown in Figure 2. The Cartesian description 

considers the two raw lengths D and W, which jointly specify any task condition uniquely. The 

alternative polar description also specifies any task condition uniquely, but using a different pair 

of quantities: one is the quotient of D/W, a dimensionless measure that characterizes the form (F) 

in 1D space of the movement task, and the other is some measure of scale (S). Form being by 

definition a scale-independent attribute, it needs to be complemented with some scale measure, 

otherwise the task condition would not be specified uniquely. 

Thus the polar vs. Cartesian distinction solves the paradox that while one DoF is missing 

in the usual plot of Fitts' law (Figure 1), one too many DoF seems to be conjured up in many 

Cartesian  

Polar  
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discussions of the law.9 The explanation for the missing DOF is that the usual plot of Fitts' law 

offers an incomplete polar description of the data, one that considers F but ignores S. The 

explanation for the DoF in excess in discussions of the law is the thoughtless hybridization of an 

incomplete polar description recognizing just F with a complete Cartesian description 

recognizing both D and W. 

Figure 2 explains the logical relations borne by the four independent variables F and S, 

and D and W. The right-hand part of the figure explains the difference between the polar 

manipulation of F (a global attribute of the target layout that can possibly be construed in terms 

of ‘task difficulty’) and the Cartesian manipulation of W (a local attribute of the target). What 

differs is the independent variable that must be sacrificed. In the polar manipulations of F (upper-

right panel) no independent definition of W is available because the two available DoF are 

already occupied by quantities F and S, and so the manipulated factor is really F, not W. In the 

Cartesian manipulation of W (lower-right panel) no independent definition of the quotient of D/W 

is available because the two DoF are already occupied by quantities D and W, and so the 

manipulated factor is really W, not F.  

Likewise, the left-hand side of Figure 2 explains the difference between the polar 

manipulation of S and the Cartesian manipulation of D. Length D, which determines the average 

amplitude of the movement, will serve in the next section as our measure of S, meaning that S 

and D will refer to the same basic measure, yet one faces two different independent variables. 

Scale is a global attribute of the task: to manipulate S (upper-left panel) is to manipulate all its 

measures, meaning that W must be varied proportionally with D. In contrast, D is a specific 

attribute of the target (specifying its distance from the start point), and to manipulate D (lower-

left panel) demands that W remain unchanged. 

It is easy to see that Fitts (1954), who used in his three experiments the same design logic, 

crossing factors D and W orthogonally, initially conceived his paradigm in Cartesian terms. That 

was a perfectly sensible option, but for lack of a third DoF there remained no free slot for the 

quotient of D/W, a quantity of very special theoretical interest to him―to reiterate, that quotient 

                                                             
9 Many Fitts' law students (e.g., Meyer et al., 1988; Sheridan, 1979) have expressed curiosity about the respective 
contributions of D and W to the effect of ID. In fact this is a logically intractable question because this triad of 
independent variables has only two DoF―once you know two of them, you known the third.  
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cannot be defined independently of D and W. There is no escape from the fact that the D *W 

Cartesian description offers no DoF for the calculation of an ID, whether construed as a measure 

of information in Shannon bits or as a pure number (as, e.g., in Meyer et al., 1988).  

There is one strength and one weakness in the methodology we have inherited from Fitts 

(1954) and which has become standard. The strength is an astute experimental paradigm based on 

the idea of time minimization, the weakness is the lack of control over the identity of the 

manipulated factors. In fact there are two problems. One problem is that while the Cartesian 

description serves to design the Fitts' law experiment, it is the alternative polar description that 

serves when it comes to the task of representing the data. This is quite problematic because a 

Cartesian experimental design cannot properly balance the effects of relevance to a polar 

analysis, meaning that Fitts’s data, when tackled from the polar viewpoint, suffer from factor 

confounds―there is no guarantee that the main (average) effect of form F will not be badly 

contaminated by an effect of scale S, and vice versa―for a detailed account of the possible 

artefacts, see Guiard (2019), and Gori, Rioul, Guiard, and Beaudouin-Lafon (2018).  

The other problem is that the polar description system that has been used by Fitts’ law 

students since Fitts (1954) is incomplete in the sense that it totally overlooks the DoF of scale.  

 

2.3. Scale: The Blind Spot of Fitts' law Research  

How is T influenced by scale S? There is no room for such a question in the Cartesian view 

entertained by most predecessors of Fitts, along the lines of Woodworth (1899; see Elliott, 

Hensen, & Shua, 2001). But the question arises immediately in the polar approach. 

Unfortunately, however, having adopted the polar understanding of his paradigm because the 

quotient of D/W presents itself as the key quantity for an information theoretic approach, Fitts 

(1954) apparently did not pay attention to the other DoF and neither did his successors, so that 

the literature is essentially silent about the T vs. S relation. 

 Specifically, how should the dependent variable T be affected by the manipulation shown 

in the upper-left panel of Figure 2, where D and W are varied proportionally so that task form, 

and by the same token task difficulty, remains constant? Not only is it likely that T will be 
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affected, the general shape of that dependency is easy to anticipate. Suppose that we rerun Fitts’s 

tapping experiment at a fixed level of the quotient of D/W, say F = 32 (meaning ID = 6, using 

Equation 1b) but we rescale the task up and down over a large range, say from S = 1cm, a 

drastically miniaturized version of the movement task, up to S = 100cm, a drastically dilated 

version. The anatomy of the human perceptual-motor equipment being what it is, poor pointing 

performance will be obtained at both extremes of this scaling range. Movement times will be 

very long in the extremely miniaturized task condition, where W = 1/32th of a cm is 

problematically small for the tip of a stylus, as well as in the extremely dilated condition, where 

1m is problematically large an amplitude for the arm of a seated human. Obviously the 

performance should be a great deal better in some intermediate region of the scale continuum. 

These considerations essentially boil down to truisms,10 but they lead to non-trivial and 

testable predictions. Scale being a continuous quantity, we should expect the T vs. scale function 

to be smooth. The big picture then must be a U-shaped relation―as indeed has been verified 

outside of the Fitts' law sphere in a diversity of aimed-movement experiments (e.g., Accot & 

Zhai, 2001; Gibbs, 1962; Hess, 1973).11 We may further predict that any arbitrarily sampled 

segment of the T vs. scale function must be decreasing or increasing if it happens to fall below or 

above the optimal region of the scale continuum, respectively. The function should be convex 

globally, but it can have linear portions. Therefore we must definitely predict a non-concave 

relation between T and S.  

Paying no attention to the scale dimension of their research problem, Fitts' law students 

have typically varied S in an uncontrolled, inadvertent way. Suppose that by chance12 the 

performance measures have been taken in the intermediate, optimal region of the scale continuum 

and that the range of variation of S is not too large. Because the T vs. S function may well be U-

                                                             
10 The bad reputation of truisms in science is undeserved. Indeed no merit is attached to their formulation because 
they consist of trivially true propositions. But truisms are true propositions and they have, in comparison with 
sophisticated or far-fetched propositions, the advantage of offering safe foundations for theory building, as 
recognized after all in axiomatic mathematics since Euclid.  
11 The general notion of a scale optimum is useful in a vast variety of contexts. In management, for example, 
Kuemmerle (1998) gathered evidence of an inverted U-shape relationship between the performance and the size of 
research and development laboratories.  
12 One simple reason why Fitts' law experimenters are in fact likely to go for about optimal ranges of S―even 
without conscious awareness of that variable―is that for any task a non-optimal scale level will induce an easily 
detectable effect of discomfort and fatigue.  
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shaped, rather than V-shaped, it is quite possible to obtain locally a flat relation, neither 

increasing nor decreasing. Below such a case will be called isochrony.  

 

2.4. A Word on the Complexity Issue 

One central concern of this paper is the comparative complexity of Fitts’s results, for each of his 

three experiments, with the data being described in (complete) polar vs. Cartesian terms. In 

general the complexity of an object may be thought of as the length of the shortest possible 

message that describes that object uniquely (e.g., Solomonoff, 1964 ). In the present context the 

descriptive messages we want to shorten are modeling equations and the unique objects whose 

complexity we want to evaluate are data sets―more specifically sets of N triplets {x, z, y}, where 

N denotes the number of different experimental conditions, where x and z specify a unique 

experimental condition, and where y denotes the dependent measure. 

Take the example of Fitts’s tapping experiment. This experiment having explored 16 

unique conditions, the data must consist of 16 triplets = 48 numbers, it being understood that Fitts 

averaged the measures from all his participants. These 48 numbers can be arranged in a 16-line x 

3-column array. 

Fitts’s Table 1 (p. 385) having six columns, obviously three of them are redundant, but 

which ones? The answer depends on the description system. From the Cartesian viewpoint the 

incompressible empirical information resides in columns C1-C3 of Fitts’s table, columns C4-C6 

being totally redundant. Indeed the ID given in C4 is calculable from D (C1) and W (C2), the 

“index of performance” IP = ID/T given in C5 is calculable jointly from T (C3) and ID (C4), and 

the performance rank given in C6 is calculable from T (C3). In the Cartesian view the data thus 

consist of 16 triplets of the form {W, D, T} reproduced in the right-hand part of Table 1. 
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Table 1. Two minimal tabulations of Fitts’s (1954) tapping data (*) 

 

(*) Note. F is the quotient of D/W, and the measure of S is given by D. 

 

The alternative polar viewpoint dictates a different selection of columns. In the polar view 

all the empirical information from Fitts’s tapping experiment is contained in columns C1, C3, and 

C4. The dependent measure T is again found in column C3, but now column C1 specifies task 

scale S and column C4 specifies task form F―the quotient of D/W. Thus, the data consist of 16 

triplets of the form {F, S, T}, reproduced in the left-hand part of Table 1. 

Thus each of Fitts’s Tables 1-3, which contain the numerical data of his Exps 1-3, can be 

reduced to its minimum presentation, with no loss of information, in two different ways, meaning 

that the object we want to compress into a short mathematical formula exists in two different 

versions. Both the Cartesian D * W description and to the polar F * S description of Table 1 are 

complete, but there is no reason to expect the patterns of data to be identically easy to understand.  

Let us turn from unique objects (the data) to their compressed descriptions (the modeling 

equations). Information compression is obviously an important goal of data modeling. When 
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modeling a pattern of data we want to find a mathematical statement that summarizes the pattern 

as compactly as possible and with as little loss of empirical information as possible. In general it 

seems intuitively true that, as assumed in complexity theory, the more compact the mathematical 

summary, the simpler the data.  

The smaller the number of free parameters in a good fit, the simpler the data (Akaike, 

1973). This seems quite true under the assumption that all other things are equal, but we face the 

problem that modeling equations are compound objects composed of qualitatively different 

components such as variables, functions, operations, and adjustable parameters. Not to mention 

the problem that for some mysterious reasons some functions look obviously simpler, or more 

beautiful than others. For lack of a formal definition of data complexity we will follow the 

intuitive rule of thumb that in general the more conservations in the data, the simpler. Two 

characteristics of data sets seem to be of special importance in this regard, linearity and 

additivity.  

A linear dependency―either the strict proportionality y = ax or the affine function y = a + 

bx―is simple in the sense that the effect of the independent variable x on the dependent variable 

y (i.e., the slope dy/dx) is the same at all levels of x. A nonlinear dependency is simpler if it can 

be linearized by means of a logarithmic transformation of x (exponential function), or y 

(logarithmic function), or both (power function) than if it cannot.  

Given one dependent measure y and two independent variables x and z, the simplest 

possible combination of effects is the additive combination y = f (x) + g (z), where f and g are 

functions. Additivity means that the effect exerted on the dependent variable y by each 

independent variable is the same regardless of the value taken by the other independent variable. 

 

2.5. Recapitulation 

To sum up, Fitts’s (1954) original work raises both a consistency concern and a completeness 

concern. The consistency concern is that having used the Cartesian concepts of target distance 

and target tolerance to design his experiment, Fitts switched to the alternative, polar system to 

formulate his mathematical answer, the mismatch entailing factor confounds (Guiard, 2009; Gori 
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et al., 2018). The completeness concern is that his polar answer ignored the scale factor and thus 

lacked one DoF. In fact ignorance of the obvious possibility of an effect of scale in Fitts' law 

experiments has survived through sixty years of research.  

In the next section we capitalize on the above framework to build side by side two 

complete mathematical descriptions, one in the polar F * S space and the other in the Cartesian D 

* W space, of the data of Fitts’s (1954) three experiments. Remaining essentially agnostic with 

regard to the substantive theory, we will look for data patterns and will try to capture them in 

parsimonious mathematical formulas.  

 

3. Revisiting Fitts’s (1954) Data 

This section revisits the movement time data of all three experiments tabulated by Fitts (1954) in 

his Tables 1-3. Each experiment is considered first in polar F * S space and then in Cartesian D * 

W space. Each time our task is to summarize the results as accurately and parsimoniously as 

possible with a mathematical equation, using both DOF at hand.13  

 

3.1. The Tapping Data (Experiment 1)  
3.1.1. Polar Description of the Tapping Data. 

Fitts (1954) reported the numerical data of his tapping experiment in his Table 1 (p.385), giving 

16 values of mean T, one for each cell of his 4 x 4 D * W design. 14 

The tapping data are represented in Figure 3. As first noticed by Kvalseth (1980), the 16 

data points are slightly better modeled by a power function than they are by the log function that 

                                                             
13 In the search for the best possible description our default technique here is nonlinear regression, a robust technique 
that obviously accommodates the special case of linearity. Most of the best fits to be reported below were obtained 
from the online site http://www.xuru.org/rt/NLR.asp, which evaluates more than 100 mathematically “interesting” 
functions and ranks them according to goodness of fit.  
14 Fitts duly reported the 16 corresponding values of error rate. That other dependent variable, although reasonably 
low on average (1.8%), correlates with T (r = .82), casting a doubt on the validity of T (Crossman, 1956; Soukoreff 
& MacKenzie, 2004). However, to take error rates into account―e.g., by trying to adjust the T―would take us too 
far off the focus of this paper and so we will leave them aside, as Fitts (1954) did himself. 

http://www.xuru.org/rt/NLR.asp,
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Fitts had information-theoretic reasons to prefer. With all 16 data points pooled―that is, with the 

factor S ignored―the best fit is 

ܶ =  ଴.ଷ଻ଵ,         (5)ܨ 0.171

with r² = .988. This equation can be rewritten as  

logܶ = −1.764 + 0.371 log(6)       .ܨ 

 

 

Figure 3. Complete polar F * S representation of the tapping data. The plot is in log-log coordinates.  

 

However, there is something that Kvalseth (1980) could not see in his one-DoF 

reexamination of Fitts’s data. It is not just the global scatter plot of T vs. F, with all 16 data points 

pooled, that the power function models well―the power function does also very well at separate 

levels of scale, accurately modeling each of the four sets of four data point (see Table 2). 
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Compared with the logarithmic model, the power model improves both the global fit (r² = .989 

vs. r² = .964) and the separate fits (on average r² = .993 vs. r² = .973). 

 

Table 2. Global and separate fits of the logarithmic and the power models to the 

tapping data described in polar F * S space. 

 

 

 

It also turns out that the estimated parameters of the T vs. F relation are better conserved 

across scale levels with the power than log model. That the power model improves that 

conservation is expressed quantitatively in Table 1 by a smaller coefficient of variation for 

parameter a (11.2% vs. 17.7%) and especially for parameter b (12.7% vs. 57.5%), which in both 

models captures the F * S interaction.  
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While the quasi-invariance of the exponent b of Equation 5 (the slope in log-log 

coordinates) reveals the quasi-absence of an F * S interaction, the quasi-invariance of the 

parameter a (the intercept in log-log coordinates) reveals the quasi-absence of any scale effect on 

T. The latter observation, given the rather wide range over which Fitts manipulated scale (5-

40cm), is a surprise: such quasi-invariance of a time measure across substantial variations of 

scale deserves a name, and that name is isochrony. If isochrony has been noticed for example in 

drawing and handwriting (Viviani and Terzuolo, 1982), it seems to have entirely escaped the 

attention of Fitts' law students. Isochrony is in no way a trivial outcome. It is impressively there 

in Fitts’s tapping data (and in many data sets of the literature), but it must be emphasized that this 

need not be the case―we will see below that there was no isochrony whatsoever in Fitts’s other 

two experiments. 

 

Figure 4. The other complete polar F * S picture of Fitts’s tapping data with S and F swapped to 

visualize the effect of scale. 
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Figure 4 swaps the two independent variables to help visualize the effect of scale. S is 

now plotted on the horizontal axis with F appearing as a parameter. Notice that the effect of 

scale, however small, remains remarkably well structured. At all three levels of F where three of 

more data points are available, thus allowing an evaluation of curvature, curve segments are 

convex, as expected. Indeed the slopes visible in the figure are rather shallow―were they steeper, 

the one-DoF model would not fit the data―but we do recognize fragments of U-shaped curves 

whose slopes all concur to suggest a minimum of T in the region of 10-20cm. The left-hand side 

region of the figure exhibits three slightly negative slopes, suggesting that 5cm, the lowest scale 

level, was below the scale optimum for Fitts’s tapping task. Symmetrically, on the right-hand side 

region of the figure we find three slightly positive slopes suggesting, no less consistently, that 40 

cm, the highest scale level for this experiment, fell above the scale optimum.  

To recapitulate, the complete 2-DoF polar reexamination of Fitts’s famous tapping data is 

teaching us three interesting lessons not available to the traditional 1-DoF approach. One is that 

Fitts was lucky in his tapping experiment because the effect of scale―an effect that had no room 

in his theoretical thinking―was so small in size as to be negligible. Second, he was lucky again 

because the level of interaction between F and S was negligible, the variations of scale perturbing 

to a surprisingly small extent the way the quotient of D/W, the determiner of his ID, influenced T. 

Hence the possibility for Fitts to model the T data satisfactorily as a function of just one 

independent variable, F, and just two free parameters, as in Equation 1 or 5. And the third lesson 

is an explanation of the first two: the scale values that Fitts chose for his tapping experiment 

happened to fall in the optimal region of a U-shaped T vs. S function that happened to be 

remarkably flat. 

Having noted that Equation 5 accounts for nearly 99% of the variance of T, it is not 

difficult to guess that the 1% loss of empirical information must have to do mainly with our 

decision to ignore the small, yet consistent scale effect described in Figure 4. This effect could 

certainly be modeled, but integrating this extra information in our formula so as to obtain a 

complete two-DoF polar model of tapping would offer a paltry accuracy gain.15 

                                                             
15 Taking into account the minute (roughly linear) effect of S on both the scaling coefficient a and the exponent b of 
the power function of Equation 5, a rather complicated two-DoF model obtains: log T = log (0.15 + 0.0014 S) + 
(0.4217 ‒0.0027 S) log F, and the improvement of the fit is quite negligible, the r² progressing only from .988 to 
.992. 
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3.1.2. Cartesian Description of the Tapping Data  

Figure 5 shows the structure of the tapping data depicted in the alternative Cartesian D * W 

space. The dependency of T upon W is essentially linear in log-log coordinates (with all four r² 

above .97), pointing to a power relation of the form 

 ܶ = ܽ ܹ௕ .           (7) 

 
Figure 5. Complete Cartesian D * W picture of Fitts’s tapping data (log-log coordinates). 

 

The four nearly parallel slopes can be summarized by simply averaging the four estimates 

of the exponent, obtaining b = -0.37. The next finding is that the scaling coefficient a of the 

power model varies as a power function of D: 

ܽ =  ଴.ଷସଽ,         (8)ܦ 0.182

with an impressive r² of .99999. Thus, substituting for a and b in Equation 7, we obtain 

ܶ = 0.182 ஽
బ.యరవ

ௐబ.యళ ,         (9) 

which can be rewritten as  
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logܶ = −1.7 + 0.35 logܦ − 0.37 logܹ.      (10) 

This two-DoF Cartesian model again accounts for 98.8% of the variance contained in the 16 

values of T tabulated in Fitts’s Table 1. 

 

3.1.3. Comparison of the Polar and Cartesian Accounts 

Equation 10 looks pretty much the same as Equation 6. Since obviously log (D/W) = log D – log 

W, one might be tempted to conclude that the polar and the Cartesian analyses have led to the 

same result. Not so. For one thing, the two equations are mutually irreducible, as they refer to 

mutually exclusive descriptions of the independent variables. Then, most importantly, Equation 

10 is a complete Cartesian D * W description whereas Equation 6, which involves F but not S, is 

an incomplete polar description. Notice finally that Equation 10, with three free parameters for 

two independent variables (i.e., an average of 1½  parameters per independent variable) has less 

flexibility than Equation 6 (two free parameters for one independent variable). 

The structure of Fitts’s (1954) tapping data being such that their modeling is about equally 

efficiently in both description systems, which system is preferable is a question we will leave for 

the substantive theory.  

 

3.2.  The Disc-Transfer Data ( Experiment 2) 

3.2.1.  Polar Description of the Disc-Transfer Data 

With Figure 6, built from the data of Fitts’s Table 2, the benefit of a complete two-DoF polar 

analysis is particularly obvious. Now that the different levels of scale are properly separated, it is 

easy to see that in the disc-transfer experiment, unlike the tapping experiment, S exerted a 

systematic effect on T. 
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Figure 6. Complete polar F * S picture of Fitts’s disc-transfer data, to be compared with Figure 1B. Notice 

that the horizontal axis is logarithmic. The dashed line represents Equation 11 computed indiscriminately on 

all 16 data points. The continuous lines represent separate fits. 

 

By the same token we understand the unpalatability of the disc-transfer data to Fitts and 

his successors, who have traditionally plotted the data as in Figure 1B. The effect of S being 

unidentified, it looked like the T vs. F relation (i.e., Fitts' law) was polluted by random noise. 

That impression, however, is false. In no way were the results of Fitts’s disc-transfer experiment 

more noisy than those of his tapping experiment, as is quite clear in the two-DoF representation 

of Figure 6. In the tapping data Fitts obtained a strong effect of F combined additively with a 

very weak effect of S; in the disc-transfer data he still have had an additive combination but now 

we can see that the effects were both very strong. 
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Table 2. Fit of the logarithmic model for the disc-transfer data represented in polar 

F * S space 

  

 

The best description of the T vs. F relation that emerges from the nonlinear regression 

search is the logarithmic model T = a + b log F. The fit is invariably excellent (on average r² = 

.992) if computed at separate scale levels (see Table 2). The pattern can be summarized with a 

simple model of the form 

ܶ = ܽ + ܾ log(11)         ,ܨ 

where b = 0.081 is the average slope of the linear function and where the intercept a depends on 

S. As visible in Figure 6, and as can be checked from the values given in Table 2, the intercept a 

is an approximately linear function of S: 

ܽ = 0.369 + 0.0018 ܵ,         (12) 

with r² = .944. Finally, by substituting for a in Equation 11, we obtain the very simple additive 

model 

ܶ = 0.369 + 0.081 log ܨ + 0.002 ܵ,      (13) 

which accounts overall for 98.3% of the variance of T. This model has three free parameters but 

two independent variables. With an average of 1½  parameters per independent variable, it is 

Scale (cm) N data points intercept a slope b r ²
pooled 16 0.2403 0.1304 .844

10.16 4 0.3844 0.0762 .985
20.32 4 0.4217 0.0730 .992
40.64 4 0.4259 0.0850 .993
81.28 4 0.5240 0.0916 .997
mean 0.4390 0.0814 .992

sd 0.0517 0.0073 .004
coef. var. = sd/mean 11.8% 9.0% 0.4%

Log model MT  = a  + b  ln(F )
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actually less flexible than most models of Fitts’ law, which have two free parameters for just one 

independent variable. 

It should be noticed incidentally that the slope of Fitts' law visible in Figure 6 is much less 

steep than the global slope obtained in the traditional one-DoF treatment of Figure 1B. For 

tapping, where the scale effect had a negligible size, failure to disentangle it (Figure 1A) was of 

little or no consequence. However, for the disc-transfer data, where the scale effect is quite 

substantial, the consequence of that failure is a 50% overestimation of the slope of Fitts' law, as 

noted by Guiard (2009). 

 

 
Figure 7. The effect of scale in the disc-transfer experiment, separately for each level of F. 

 

The effect of scale is visualized in Figure 7. The pattern, though different from that of 

tapping, is again remarkably consistent. Here the more upscaling of the movement task, the worse 
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the performance, meaning that the range of scale levels actually used in the disc-transfer task (10-

80cm) fell in its entirety on the right-hand side of the U-shaped (or V-shaped) function. Unlike 

Figure 4, Figure 7 exhibits no convexity trends at the left-hand end of the curves, thus offering no 

clue as to the location of the scale optimum for the dis-transfer task―we just see that the 

optimum happened to fall somewhere below 10cm, a little below the scale optimum for tapping. 

In that particular experiment, and for that particular range of S levels, the curve segments are 

neither convex nor concave, but roughly linear.  

Having replaced the traditional one-DoF description of Fitts' law with the two-DoF model 

of Equation 13, we now realize that the law held just as well in Exp. 2 as it did in Exp. 1. While 

the tapping experiment revealed just Fitts' law, the disc-transfer experiment revealed Fitts' law 

plus a substantial effect of scale. The results of Exp. 2 help realize that something very special 

happened in Exp. 1: in tapping not only was Fitts able to demonstrate the simple law of variation 

which we now call Fitts' law, he also obtained, without noticing it, isochrony, a nearly perfect 

conservation of T across pretty large variation of scale (Viviani & Terzuolo, 1982). Whether or 

not isochrony should be considered a defining characteristic of Fitts' law is a question we 

postpone to the final discussion. 

 

3.2.2.  Cartesian Description of the Disc-Transfer Data 

As shown in Figure 8A, T varies linearly with log W, and the effects of the two Cartesian 

variables are essentially additive, with D affecting the intercept but not the slope of the T vs. log 

W function. We can describe the pattern as 

  

 where the slope can be estimated as the average of the four slopes, b = -0.081, and where the 

intercept a varies as a function of D (see Table 3). 
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Figure 8. A: Complete Cartesian D * W representation of Fitts’s disc-transfer data. B: Effect of D on 

the intercept of the T vs. log W function. 

 

That intercept turns out to vary about linearly with D (Figure 8B), and so the data can 

again be modeled with an additive equation: 

ܶ = O. 527 + ܦ 0.005 − 0.081 logܹ,      (14) 

with at least as good a fit (r² = .991) as with the polar description (r² = .983). Thus, the two 

alternative two-DoF descriptions deliver similarly simple pictures of the data from Fitts’s disc-

transfer experiment. In both cases a simple additive model summarizes the data very accurately. 
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Table 3. Fit of the logarithmic model for the disc-transfer data represented in 

Cartesian D * W space 

 

 

3.3. The Pin-Transfer Data (Experiment 3) 

It is not in his tapping experiment, now very famous, but in fact in his much less popular Exp. 3 

on pin-transfer that Fitts actually invested the most effort. For this final experiment he recruited 

more participants (20, instead of 16 in Exps. 1 and 2), offered them “somewhat more practice” (p. 

387), investigated more conditions (20 instead of 16), and ran more daily sessions per participant 

(three instead of two). 

At first sight the pin-transfer task does not seem to differ much from the disc-transfer task. 

In both cases the task consists of inserting a protrusion into a hole, and the error rate is 0%. Yet, 

as we will see, the results are strikingly different. 

 

3.3.1. Polar Description of the Pin-Transfer Data 

The polar picture, shown in Figure 9, is entirely different from that of the first two experiments. 

To begin with, consider the T vs. F relation separately at any given level of scale. The relation is 
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still simpler than Fitts' law, being almost perfectly linear in double-linear coordinates (with r² ≥ 

.99): 

ܶ = ܽ +  (15)          .ܨ ܾ

 

 

Figure 9. Complete polar F * S representation of the pin-transfer T data. 

 

Such an accurate linear relation in Fitts’s own data is yet another surprise. It should be 

emphasized that the remarkable linearity of Figure 9 was undetectable in the traditional one-DoF 

polar approach. Ignoring the five different levels of scale, and thus being confronted with twenty 

indiscriminate data points, one had the overwhelming―but quite wrong―impression of a 

concave relation between T and F.  

This, however, is just half of the story. The other discovery is a considerable amount of 

interaction between the two independent variables of the polar description, with both the intercept 

and the slope of the linear T vs. F relation being strongly dependent on scale.    
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Figure 10. The F * S interaction in the pin-transfer T data. 

 

As shown in Figure 10, these dependencies are both remarkably orderly. The intercept of 

Equation 15 is very well modeled as a square root function of S (with r² = .999), and the slope as 

proportional to 1/S (again with r² = .999). Numerically, 

ܽ = 0.196 + 0.057√ܵ,        (16) 

ܾ = ଴.଴ଷ଴ଽ
ௌ

.          (17)

 Substituting for a and b in Equation 15, we obtain the complete two-DoF model 

ܶ = 0.196 + 0.031 ி
ௌ

+ 0.057√ܵ       (18) 

which offers an impressively accurate summary of the 20 data points of Figure 9 (r² = 995). 

Equation 18 shows an addition of three terms, but notice that the second term combines F 

and S: the two polar variables interact very strongly with each other. In this sense the polar 

structure of the data is a great deal more complicated in Fitts’s Exp. 3 than it was in the first two 

experiments.  
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Figure 11. Movement time vs. S at the eight different levels of F of Exp. 3. 

 

This is not to say that in this third data set the effect of scale is complicated. Again we 

have a perfectly coherent pattern, visible in Figure 11. We can see that the curve segments are 

coherently convex, with slopes generally pointing to an optimum located at about 20cm, similar 

to that found in tapping. Of the 12 pairs of data points that contribute slope information in Figure 

11 only one diverges, to a small extent, from the general trend. The set of slopes point most 

consistently to the presence of a scale optimum located at about 20cm, with particularly steep 

negative slopes below that optimum.  
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3.3.2  Cartesian Description of the Pin-Transfer Data 

Perhaps the most intriguing result of the present study is that obtained in the Cartesian D * W 

analysis of the pin-transfer data. Having just found that the results of this final experiment are 

complex when described in F * S space, now let us see how remarkably simple they become 

when described in the alternative D * W space.  

 

 

Figure 12. Complete Cartesian D * W representation of Fitts’s pin-transfer T data. 

 

At any given level of D, T decreases nonlinearly with W. As visible in Figure 12, T can be 

modeled as a linear function of the reciprocal of W: 

ܶ = ܽ + ܾ ଵ
ௐ

,          (19) 
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with r² ≥ .99 for each of the five conditions of distance. 

Figure 12 also shows that the two independent variables of the Cartesian description 

combine their effects on T in a neat additive manner. While the intercept a of Equation 19 is 

strongly dependent on D (Figure 13A), the slope b is remarkably constant across distance 

conditions (Figure 13B). The five estimates of b range from a minimum of 0.03 to a maximum of 

0.0325, yielding a coefficient of variation of less than 3%. Thus the mean value b = 0.031 allows 

us to estimate the slope parameter of Equation 19 with virtually no loss of empirical information. 

 

 

Figure 13. Effect of D on the intercept but not the slope of the linear relation linking T to 1/W. The 

dashed line represents Equation 20.  

 

On the other hand, the dependency upon D of the intercept of Equation 19 (Figure 13A) is 

very accurately modeled with the square root function 

ܽ = 0.196 +  (20)        ,ܦ√0.057

with r² = .999. 
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 It just remains to substitute for a in Equation 19 to obtain a complete Cartesian 

description of the pin-transfer data: 

ܶ = 0.196 + ܦ√0.057 + ଴.଴ଷଵ
ௐ

.       (21) 

With an average of just 1½ free parameters per independent variable, this simple additive 

model accounts for 99.5% of the variance contained in the 20 T values of Fitts’s Table 3 (p. 388).  

 

4. Discussion 

Of each of the three data sets tabulated by Fitts (1954) two complete alternative mathematical 

descriptions, one polar and the other Cartesian, have been elaborated in parallel. While the 

novelty of the above polar analysis is its completeness, T being analyzed as functions of two (no 

less than two) independent variables, the novelty of the Cartesian analysis is its coherence: the 

quotient being carefully put aside, T is analyzed as a function of two (no more than two) 

independent variables. New findings have emerged out of these old data, casting light on the 

essence of the empirical relation we call Fitts' law. We start by discussing the results of the polar 

analyses. 

One result that could not possibly have been suspected in the traditional one-DoF polar 

approach is the presence of remarkably coherent scale patterns in all three data sets of Fitts 

(1954) (see Figures 4, 7, and 11). We have found scale effects of various sizes but invariably of 

high consistency, with sets of slopes signaling either a U-shaped dependency between T and S, as 

in Exps. 1 and 3, or just one side of this dependency as in Exp. 2.  

Task scale deserves consideration in polar analysis for at least two reasons. One is that an 

undetected effect of this independent variable may interfere with Fitts' law and badly blur the 

picture (see Figure 1). Another reason is that the scale of movements constitutes in and of itself 

an important subject in the study of human performance. To illustrate, consider the field of 

human-computer interaction (HCI), in which considerable research efforts have been dedicated 

since Card, English, and Burr (1978), using the Fitts paradigm, to the experimental evaluation of 

the efficiency of pointing devices such as mice, digitizing tablets, trackballs, or touchpads. This 

research stream has never ceased to hold tight to the incomplete one-DoF polar approach 
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inaugurated by Fitts (1954) and researchers have been mostly concerned with the information-

transmission rate issue, remaining essentially unaware of the very existence, at the core of their 

problem, of an independent variable other than ID. 

The T vs. scale function tells us how performance gradually drops down as the task is 

being scaled up and down away from its optimum, and so it is important for designer to realize 

that the nearer to its optimum the scale of their interface, the better the expected performance. So 

far the scale issue seems to have been entirely overlooked in the evaluation of input devices in 

HCI,16 but apparently a promising avenue is wide open for research. And one may presume that 

Fitts' law research has something to learn from the considerable literature that has accumulated, 

since D’Arcy Thompson’s (1942) treatise On Growth and Form, on the relations borne by form 

and scale in biology (Pennycuick, 1992) and physics (McMahon & Bonner, 1983).  

Perhaps the most rewarding result of the polar chapter of the present study is the 

discovery that the outcomes of Fitts’s three experiments compose a clear-cut three-class 

taxonomy for classifying the possible outcomes of the Fitts paradigm. Fitts’s own data eloquently 

show that the Fitts time-minimization paradigm may possibly lead to three qualitatively distinct 

outcomes: 

(1) A demonstration of the strong, isochronous form of Fitts’ law, as in Fitts’s famous 

Exp. 1 on tapping. Here one obtains just Fitts' law, a lawful relation between T and F, 

with little or no effect of scale, and no F * S interaction.  

(2) A demonstration of the weak, non-isochronous form of Fitts’ law, as in Fitts’s less 

famous Exp. 2 on disc transfer. Here, the combination of the effects of F and S being 

additive, one obtains Fitts' law plus an effect of scale.  

                                                             
16 One of the most influential Fitts' law studies in the HCI domain is MacKenzie (1991). In his Exp. 1 the author ran 
a comparative experimental evaluation of three popular input devices (the mouse, the digitizing tablet, and the 
trackball) for two aimed-movement tasks (pointing vs. dragging). Fortunately, for one of his six conditions (mouse 
pointing), MacKenzie reported his data in detailed tabular form (Table 9, p. 87), making it possible to visualize the 
influence of scale on performance by plotting mean T as a function of S, with F (or the ID) as a parameter, as in 
Figures 4, 7, and 11 above. As could be expected, the pattern is nicely U-shaped with quite some converging 
evidence that the optimum was located at about 10cm―a fact of potential relevance in the context under 
consideration. The effect of scale was small in size and there was no F * S interaction, and so the outcome was 
essentially the same as that obtained by Fitts in his tapping experiment. Unfortunately, the author did not inquire into 
the possibility of comparing his three input devices in terms of the performance vs. scale function, and for lack of the 
appropriate numerical tables there is no way to check.  
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(3) A violation of Fitts’ law, as in Fitts’s Exp. 3 on pin transfer, to which the literature has 

paid so little attention. Here not just the intercept but also the shape of the T vs. F 

relation varies with the scale level, meaning that the effects of F and S on T combine 

interactively. One might perhaps attempt to describe the pattern with a two-factor 

model of the form T = f (F, S), as we did in Section 3.3.1, but the interaction leaves no 

room for a useful mathematical description of the form T = f (F), thus precluding any 

conceivable variant of Fitts' law.  

It comes as a good surprise that Fitts’s results happen to fall unambiguously in these three 

discrete categories. Interaction, one key criterion of this taxonomy, comes in degrees and so 

intermediate cases must exist. Nonetheless, with this simple three-class taxonomy in mind, one 

should be less disarmed in the face of the results of a Fitts' law experiment than Fitts and his 

successors have traditionally been, often confused by an incomplete understanding of their polar 

approach.17  

One puzzling fact about the traditionally polar approach to Fitts' law is what may be 

called the blind spot of scale. More than sixty years have elapsed since Fitts’s discovery of the 

all-important role played in his time-minimization paradigm by F, the quotient of D/W. How can 

it be that mainstream Fitts' law research continues to overlook the possibility of an additive or, 

worse, interactive effect of S? How can authors still be content with incomplete graphical 

representations of their data such as those of Figure 1? 

There is reason to speculate that the blind spot of scale extends well outside of the Fitts 

paradigm. A closely-related case is the spread-minimization paradigm introduced by Schmidt et 

al. (1979), which uses the same three basic measures of aimed movement as does the Fitts 

paradigm, but assigns them different statuses. In the Schmidt et al. paradigm experimenters 

manipulate orthogonally the mean amplitude (µA) and the mean duration (µT) of their 

participants’ movements, taking as their dependent measure the spread of movement endpoints 

(σA, the standard deviation of amplitude). There has been a consensus to admit that this paradigm 

                                                             
17 Taking the viewpoint of practitioners of Fitts' law in HCI and holding tight to the one-DoF polar understanding of 
the Fitts paradigm, Soukoreff and MacKenzie (2004, p. 768) have proposed a conventional criterion, justified by past 
experience, for deciding whether or not an experiment has corroborated Fitts' law. A normal fit, they suggested, is 
one with typically r ≥ .9, meaning r² = .81. Using this criterion all three experiments of Fitts (1954) are 
corroborations of Fitts' law (see Figure 1).  
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has allowed the demonstration of the Schmidt law, as it is often called, meaning σA  µV, where 

µV, the quotient of µA/µT, denotes the average speed of the movement. But notice that the 

Schmidt et al. paradigm, just like the Fitts paradigm, can be construed in Cartesian terms σA = f 

(µA, µT) or just as well in polar terms σA = f (µV, S), where scale S is the quantity needed to tell 

the difference, e.g., for µV = 1m/s, between a condition where 5cm must be covered in 50ms and 

one where 50cm must be covered in 500ms. To this writer’s knowledge, students of the Schmidt 

law have always held tight to an incomplete polar understanding of the Schmidt paradigm, 

invariably ignored the possible impact of S (Bongers, Fernandez, & Bootsma, 2009; Schmidt et 

al., 1979; Wright & Meyer, 1983; Zelaznik, Shapiro, & McKolsky, 1981; Zelaznik, Mone, 

McCabe, & Thaman, 1988). To realize that it is no less problematic to leave aside the scale 

dimension in the Schmidt et al. than the Fitts paradigm, consider the example just given: it is very 

easy for the human arm to satisfy µV = 1m/s by covering 50cm in 500ms but certainly not 5cm in 

50ms because of acceleration limitations. Here again, just as in the Fitts paradigm, one must 

hypothesize some optimal function, the next question being of course how F (i.e., µV) and S (e.g., 

µA) combine their effects on endpoint spread. 

Many illustrations could be given of how difficult it is to bear in mind that the calculation 

of a quotient automatically sacrifices one DoF. As already noted, human performance often needs 

to be evaluated in terms of both its speed and its accuracy and a variety of data compression 

techniques have been devised to combine these two dimensions of performance. One instance is 

the so-called throughput, possibly computed as the quotient of ID by T, often used by Fitts' law 

experimenters in HCI (ISO, 2000; Soukoreff & MacKenzie, 2004). The throughput being a 

measure of performance that combines speed and accuracy, it is tempting to forget that that one-

DoF measure cannot characterize the performance in full. However impressive a given 

throughput score, there is no warrantee that the performance is good, simply because a very high 

throughput may well be associated with, say, an unacceptably low level of accuracy. 

A telling illustration can be found in the aiming performance of our saccadic ocular 

system. There is considerable converging evidence that that system is both much more efficient 

and much more hasty than the hand system (Harris & Wolpert, 1998). No matter whether one 

calculates a throughput, or a resource as in the WHo model of Guiard and Rioul (2015), or 

whatever global performance index, the capability of the eye system to reach its targets in the 
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visual field is peerless, and this is easy to explain given its massive recourse to hard-wired neural 

circuitry. However, judging by the coefficient of variation (σA/µA) of saccade amplitude, which 

measures relative error, the aiming behavior of the ocular system is very inaccurate indeed, in 

comparison with that of the hand system.18 The point being made is that from the moment speed 

and accuracy are compressed into one polar DoF, another DoF must be considered to obtain a 

complete description of the performance.  

To finish with a mundane analogy, it is no better justified to ignore S in the usual polar 

understanding of the Fitts paradigm than it is to ignore the quality of a product whose 

quality/price ratio is known. Assuming the ratio is, say, exceptionally high, the customer still 

cannot take a decision before learning about the other half of the story, whether made up of price 

or quality information. 

 

Figure 14. The three planes of the Fitts paradigm, according to the complete polar representation, with the 

Fitts' law plane shown on the front, the scale effect plane on the left, and the experimental design plane on the 

ground.  

 

In fact two definite recommendation have arisen from this study. One is that if for 

whatever reason one is choosing the polar description of the Fitts paradigm, or of a similar 

paradigm, then one should make sure that description is complete, involving both F and S. To 

                                                             
18 Revisiting the data of Abrams, Meyer and Kornblum (1989), Guiard (in preparation) has found that the coefficient 
of variation of the saccade to visual targets ranges from about 10% up to about 25%. These values should be 
compared for example with the 0%-12% range found by Guiard, Olafsdottir and Perrault (2011) in a hand-movement 
experiment especially designed to encourage their participants to explore their full spectrum of speed/accuracy 
strategies.  
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avoid confusions about Fitts' law―e.g., between its strong and weak version―reasoning needs to 

take place in the 3D space of Figure 14. 

The other main lesson from this study is that there may be simple structure in the 

alternative, less familiar Cartesian description of the same data, as illustrated by the data of Fitts’s 

pin-transfer experiment. Having found a disappointingly complex (i.e., interactive) pattern in 

polar space, we discovered that the pattern was very simple indeed (i.e., neatly additive) in 

Cartesian space. 

That sort of result is somewhat disquieting for the realist, who takes it as an axiom that the 

world is what it is independently of our theories and beliefs about it. How can it be that the Fitts 

paradigm, which is so simple, suffers a sort of conceptual bi-stability reminiscent of the 

perceptual bi-stability of the Necker cube? One possibility worth considering is that the time-

minimization paradigm of Fitts is too simple. Recall J. J. Gibson’s (1979) critique of traditional 

studies of perception. Most illusions ―the Necker cube is one instance among many―are mere 

laboratory artefacts due to the fact that the information delivered to the senses is dramatically 

impoverished.  

Philosopher of science Susan Haack (2009) proposed that we progress in scientific 

research in pretty much the same way as we do in solving crossword puzzles (see Figure 15). The 

main motivation of the crossword model is that it “permits pervasive mutual support rather than, 

like the model of a mathematical proof, encouraging an essentially one-directional conception” 

(Haack, 2009, p. 126).  

In fact the task that students of simple aimed movement have assigned to themselves is 

not really like a crossword puzzle because they have not imposed on themselves the constraint of 

cross-checked coherence. Strictly the same three quantities being considered―movement 

amplitude, movement error, and movement time―there has been a stable consensus in the 

literature that the law is nonlinear (Fitts' law) if the dependent measure is movement time, but 

linear (Schmidt’s law) if the dependent measure is endpoint spread. Put differently, it has been 

generally accepted that the model y = f (x) being assumed to be true, the model x = f -1 (y) can be 

false. 
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Figure 15. Haack’s crossword puzzle metaphor. 

This is like treating the problem at hand as though it consisted of two separate, unrelated 

questions. One important property of crossword puzzles is that the more intricate their structure, 

the less ambiguity in the solution. As emphasized by Atkinson and Peijnenburg (2010), the 

puzzle needs to be sufficiently complex to have a unique solution. One characteristic of strong 

science is that it relies on not just solid measurement and observation, but also converging 

evidence.  
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