
HAL Id: hal-02081549
https://hal.science/hal-02081549v1

Submitted on 27 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First-Half Index Base For Querying Data Cube
Viet Phan-Luong

To cite this version:
Viet Phan-Luong. First-Half Index Base For Querying Data Cube. Intelligent Systems Conference
2018, Sep 2018, London, United Kingdom. �10.1007/978-3-030-01054-6_78�. �hal-02081549�

https://hal.science/hal-02081549v1
https://hal.archives-ouvertes.fr


First-Half Index Base For Querying Data Cube
Viet Phan-Luong

Aix-Marseille Univ, Universit́e de Toulon, CNRS, LIS, Marseille, France
Equipe BDA

Email: viet.phanluong@lis-lab.fr

Abstract—Given a relational fact table R, we call a base of
data cubes on R a structure that allows to query the data
cubes with any aggregate function. This work presents a compact
base of data cubes, called the first-half index base, with its
implementation, and the method for querying the data cubes
using this base. Through experiments on real datasets, we show
how the first-half index base resolves efficiently the main data
cube issues, i.e., the storage space and the query response time.

Keywords-data warehouse; data cube; data mining;

I. I NTRODUCTION

The concept of data cube offers important interests to
business intelligence as it provides aggregate views of data
over multiple combinations of dimensions. Those aggregate
views can help managers to make appropriate decision in their
business. In fact, a data cube built on a relational fact table with
n dimensions and a measureM for an aggregate functiong
can be seen as the set of the Structured Query Language (SQL)
group-by queries over the power set of then dimensions,
whereg is applied to each group of measuresM . The result
of such a SQL group-by query is an aggregate view, called a
cuboid.

Though the concept is simple, there are many important
issues in computation time and storage space, because of the
exponential number of the cuboids and because of the big size
of large datasets. To make data cube query available in Online
Analytical Processing (OLAP), most solutions to reduce the
time computation are to precompute the data cube and store
it on disk. However, the storage space can be tremendous.

To tackle these issues, there exist many different approaches.
In [9], an I/O-efficient technique based upon a multiresolution
wavelet decomposition is used to build an approximate and
space-efficient representation of data cubes. Naturally, the
response to an OLAP query is also approximate. The iceberg
data cube approach [8][10][20] [22] does not compute all
aggregates, but only those above certain thresholds. This
approach does not allow all data cube queries because data
cubes are partially computed.

The other approaches search to represent the entire data
cube with efficient methods for computation and storage
[1][2][7][18]. The computing time and storage space are
optimized based on equivalence relations defined on aggregate
functions [11] [19] or on the concept of closed itemsets in
frequent itemset mining [17] or by reducing redundancies
between tuples in cuboids, using tuple references [2] [11][15]
[16][19][21][23]. In these approaches, the computation is
usually organized on the complete lattice of sub-schemes of

the fact table dimension scheme. The computation can traverse
the complete lattice in a top-down or bottom-up manner.
To create cuboids, the sort operation is used to reorganize
tuples: tuples are grouped and the aggregate functions are
applied to the measures. To optimize the storage space, only
aggregated tuples with aggregated measures are directly stored
on disk. Non-aggregated tuples are not stored but represented
by references to the stored tuples where the non aggregated
tuples are originated or to tuples in the fact table. The work
[23] implemented many of these approaches and reported
the experimental results on real and synthetic datasets. It
shown that The Totally-Redundant-Segment BottomUpCube
approach (TRS-BUC) nearly dominated its competitors in
all aspects of the data cube problem: fast computation of
a fully materialized cube in compressed form, incrementally
updateable, and quick query response time.

The work [12][13] presents a simple and reduced represen-
tation that allows to compute efficiently the entire data cubes
for any aggregate functions. The main idea in this work is
that among the cuboids of a data cube, there are ones that can
be easily and rapidly get from the others, with no important
computing time. These others are computed and stored on
disk using an integrated binary search prefix tree structure
for compact representation and efficient search. In contrast to
the approaches that compute all tuples of the data cube with
optimization in computing time and storage space, the work
[13] computes and represents only the cuboids of a half of data
cube, called the last-half data cube. It follows a special top-
down approach that does not traverse the complete lattice of
the dimension sub-schemes: from each cuboid in the last-half
data cube, over a dimension schemeX, we can compute, with
no important time cost, a non-stored cuboid over a dimension
sub-schemeY ⊂ X, using an operation called aggregate
projection. The set of those non-stored cuboids is called the
first-half data cube.

Moreover, the above proposed representation is not only for
a specific aggregate function, nor for a specific measure, but
it allows for computing all cuboids with any measure and any
aggregate function. In fact, each cuboid in the representation
is an index: a set of rowids that reference to tuples in the fact
table.

In the present work, we extend [13] in a somehow contrast
direction, by studying a more compact and efficient represen-
tation that allows to speed up the computation of data cube
queries. The contribution consists of:

– A compact representation based on the bottom-up com-



putation, and
– The methods for computing the data cube queries based

on this compact representation.
The efficiency of the representation in run time and storage

space is shown through experiments on four real datasets.
The paper is organized as follows. Section 2 recalls the main

concepts in [13], in particular, the concept of the first-half
and the last-half data cubes. Section 3 presents the concepts
of the new representation for querying data cubes. Section 4
presents the methods for computing the group-by query with
aggregate functions, based on this representation. Section 5
reports the experimental results and ends with discussions.
Finally, conclusion and further work are in Section 6.

II. PRELIMINARY

This section recalls the main concepts presented in [13]. A
data cube over a dimension schemeR is the set of cuboids
built over all subsets ofR, that is the power set ofR. As in
most of existing work, dimensions (attributes) are encodedin
integer, let us considerR = {1, 2, ..., n}, n ≥ 1. The power
set ofR can be recursively defined as follows.

1) The power set ofR0 = ∅ (the empty set) isP0 = {∅}.
2) For n ≥ 1, the power set ofRn = {1, 2, ..., n} can be

recursively defined as follows:

Pn = Pn−1 ∪ {X ∪ {n} | X ∈ Pn−1} (1)

Pn−1 is called thefirst-half power setof Rn and the
second operand ofPn, i.e.,{X ∪{n} | X ∈ Pn−1}, the
last-half power setof Rn.

Example 1: For n = 3, R3 = {1, 2, 3}, we have:
P0 = {∅}, P1 = {∅, {1}}, P2 = {∅, {1}, {2}, {1, 2}},
P3 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
The first-half power set ofS3 is P2 = {∅, {1}, {2},

{1, 2}} and the last-half power set of S3 is
{{3}, {1, 3}, {2, 3}, {1, 2, 3}}, got by adding 3 to each
element ofP2.

The set of all cuboids over the schemes in the first-half
power set ofR is called thefirst-half data cubeand the set of
all cuboids over the schemes in the last-half power set ofR
is called thelast-half data cube.

In [12][13], the last-half data cube is precomputed and
stored on disks and data cube queries are computed based
on the last-half data cube. However, it proposed a more
general framework: instead of computing for a data cube for a
particular aggregate function, it computes and stores the tuples
indexes over the schemes in the last-half power set ofR, and
data cube queries for any aggregate function are computed
based on these indexes.

From now on we consider a relational fact tableT with a
dimension schemeR = {1, 2, ..., n} and a set of measures
M = {n+ 1, n+ 2, ..., n+ k}.

III. T HE FIRST-HALF INDEX BASE FOR DATA CUBES

In the present work, we follow the view of data cube as
the composition of two parts: the last-half and the first-half.

To improve the computing time and the storage space of the
data cube representation, we shall follow an approach that is
somehow inverse to the approach proposed in [12][13]. Indeed,
in the new approach, the first-half data cube is computed and
stored on disk. It forms a base to compute all data cube queries.
For this, we define a data structure and some algorithms.

A. Data indexes on an attribute

Data on a dimension (an attribute) of the fact tableT is
indexed using the search binary tree structure. This structure
has following fields:

– data : to contain an attributed value,
– ltid : to contain the list of rowids associated with the

attributed value,
– lsib andrsib: the left and the right sub-trees.
The structure is organized for searching on the data field.

We call a tree with this structure anattribute index tree.
To insert attributed values into an attribute index tree, we

use the algorithmInsData2AttIndex.
Algorithm InsData2AttIndex:
Input: An attributed valueval, the rowid of a tuple that
containsval, and an attribute index treeP .
Output: The attribute index treeP updated.
Method:

if (P == NULL) {
Create P with P.data = val;
Create P.ltid with the 1st element rowid;
P.lsib = NULL and P.rsib = NULL;

}
else if P.data > val {

insert val and rowid into P.lsib;
}

else if P.data < val {
insert val and rowid into P.rsib);

}
else append rowid to P.ltid);
}

Such attribute index trees (and further index trees) are stored
on disk. As each index is a partition of the set of all rowids of
T, it is important to note that, to optimize the storage spaceof
these indexes, we save only the partitions of rowids and omit
the attributed values.

B. Tuples indexes on a dimension scheme

Given a sub-scheme{A1, ..., Ak} (for 1 ≤ i ≤ n, 1 ≤
Ai ≤ n) of the dimension schemeR of the fact tableT , we
assume that the index over{A1, ..., Ak−1} is already created
for all tuples ofT . As the base, the indexes over the schemes
{1}, ..., {n} are created using the InsData2AttIndex algorithm.
Let P be an element of the index over{A1, ..., Ak−1}. That
is, P is the list of all rowids of the tuples that have the same
value on{A1, ..., Ak−1}; these tuples may be different onAk.
To create the index of tuples on{A1, ..., Ak}, we use the
algorithmTupleIndex.
Algorithm TupleIndex:
Input: the fact tableT and a dimension scheme{A1, ..., Ak}.
Output: the index of tuples ofT over {A1, ..., Ak}.



Method:
1. Get the tuple index over {A1, ..., Ak−1}
2. For each P in the index on {A1, ..., Ak−1}

do
2.1 Initialize a tree TrP to empty;
2.2 For each rowid in P do
2.2.1 Let val be the attributed value

on Ak of the tuple at rowid in T;
2.2.2 Insert val and rowid to TrP using
2.2.2 the InsData2AttIndex algorithm;
2.2.3 done;
2.3 Write the tree TrP to disk;

3. done;

To access to the tuple at the row identified byrowid in the
fact tableT , we organize the data as follows. The fact table
T is loaded into a list of blocks in the main memory. Each
block is an array of fixed sizek. To determine the number of
the block that contains the tuple atrowid and the rang of the
tuple in the block:
blocknumber = rowid / k

rang = rowid % k,
where/ and% denote respectively the quotient and the rest

of the division on integers.

C. Creating the first-half index base

The indexes of tuples over the schemes in the first-half
power set of the dimension scheme of the fact tableT are
generated by the algorithmGenIndexFH.
Algorithm GenFHIndex:
Input: T and its dimension scheme{1, ..., n}.
Output: The tuple indexes for the first-half data cube over
{1, ..., n} and their dimension sub-schemes.
Method:
Let RS be a list of dimension sub-schemes,
initially empty;
1. Use InsData2AttIndex to generate n indexes

over schemes {1}, ..., {n} and append
successively these schemes to RS.

2. Set a pointer psch to the 1st scheme in RS
and let P be the pointed scheme
(at this point, P is {1});

3. len = 1;
4. while len < n and psch 6= NULL do
4.1. Let lastAtt be the last attribute of P

4.2. For each attribute i from 1 to n− 1
such that i > lastAtt do

4.2.2 Append i to P to create a new scheme
nsc and append nsc to RS;

4.2.4 Use TupleIndex to generate the tuple
index over nsc;

4.2.5 Save the tuple index to disk;
4.2.6 done;
4.3 Set psch to the next element in RS and

len = length(nsc);
4.4 done;

5. Return RS.

Each scheme inRS is associated with the information that
allows to identify the corresponding tuple index stored on disk.

D. First-half index base representation for data cube

Based on the tuple indexes over the schemes in the first-half
power set of the fact table dimension scheme, we propose
a representation, called thefirst-half index basefor query-
ing data cube onT . The first-half index base is the triple
(T,RS, FHIndex), where

– RS is the return ofGenFHIndex(T ) and
– FHIndex is the set of tuple indexes generated by

GenFHIndex(T ).
The above elements are stored on disks. For efficient com-

puting, the list of dimension schemesRS and the fact tableT
are retrieved in the main memory. The fact tableT is stored
in a list of blocks of fixed size as explained previously.

IV. DATA CUBE QUERY BASED ON THE FIRST-HALF INDEX

REPRESENTATION

This section explains how we can compute the queries with
the aggregate functions MAX, COUNT, SUM, AVERAGE,
and VARIANCE, based on the first-half index base.

A. Query on the first-half cube

To compute a cuboid on an aggregate functiong, over a
schemeF in the first-half data cube, we access to the tuple
index overF , and for each partitionP of rowids of this index:

– Let rowid1 be the firstrowid in P and lett be the tuple
at rowid1.

– Let t(F ) be the restriction oft on F ,
– Let M be the set of the measures that we can get from

T for all rowids in P ,
– Apply the aggregate functiong to M , let g(M) be the

result,
– Savet(F ) andg(M) to disk.
For computing the function VARIANCE, for each partition

P , we use a temporary list to store the measures in the tuples
at all rowids ∈ P .

B. Query on the last-half cube

The algorithm QueryLH computes a cuboid in the last-
half data cube, over a schemeL, based on the tuple index
over F = L − {n} where n is the last attribute of the
dimension scheme. This tuple index is in the first-half index
base(T,RS, FHIndex).
Algorithm QueryLH:
Input: A dimension sub-schemeL = {A1, ..., Ak, n}, an
aggregate functiong, and(T,RS, FHIndex).
Output: the cuboid onT andg, overL.
Method:
1. Get the tuple index over F = L − {n} from
FHIndex;
2. For each partition P in the index over F do
2.1 Initialize a tree TrP to empty;
2.2 For each rowid in P do
2.2.1 Let val be the value on attribute n

of the tuple at rowid in T;
2.2.2 Insert val and rowid to TrP

using InsData2AttIndex;
2.2.3 done;
2.3 Let t(L) be the restriction on L of the



tuple t at the rowid at the root of TrP,
and,
and g(TrP ) the result of the application
of g to the set of measures in all
tuples at the rowids in TrP;

2.4 Save t(F ) and g(TrP ) to disk;
2.5 done;

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The first-half index base for data cube query is implemented
in C and experimented on a laptop with 8 GB memory,
Intel Core i5-3320 CPU @ 2.60 GHz x 4, running Ubuntu
12.04 LTS. The experimentation is done on four real datasets
CovType [3], SEP85L [4], STCO-MR2010AL MO [5] and
OnlineRetail[6]

CovType is a dataset of forest cover-types. It has 581,012
tuples on ten dimensions with cardinality as follows:
Horizontal-Distance-To-Fire-Points (5,827), Horizontal-
Distance-To-Roadways (5,785), Elevation (1,978), Vertical-
Distance-To-Hydrology (700), Horizontal-Distance-To-
Hydrology (551), Aspect (361), Hillshade-3pm (255),
Hillshade-9am (207), Hillshade-Noon (185), and Slope (67).

SEP85L is a weather dataset. It has 1,015,367 tuples on
nine dimensions with cardinality as follows: Station-Id (7,037),
Longitude (352), Solar-Altitude (179), Latitude (152), Present-
Weather (101), Day (30), Weather-Change-Code (10), Hour
(8), and Brightness (2).

STCO-MR2010AL MO is a census dataset on population
of Alabama through Missouri in 2010, with 640,586 tuples
over ten integer and categorical attributes. After transforming
categorical attributes (STATENAME and CTYNAME), the
dataset is reorganized in decreasing order of cardinality of its
attributes as follows: RESPOP (9,953), CTYNAME (1,049),
COUNTY (189), IMPRACE (31), STATE (26), STATENAME
(26), AGEGRP (7), SEX (2), ORIGIN (2), SUMLEV (1).

OnlineRetail is a data set that contains the transactions
occurring between 01/12/2010 and 09/12/2011 for a UK-based
and registered non-store online retail. This dataset has incom-
plete data, integer and categorical attributes. After verifying,
transforming categorical attributes into integer attributes, for
the experiments, we retain 393,127 complete data tuples and
the following ten dimensions ordered in their cardinality as
follows: CustomerID (4,331), StockCode (3,610), UnitPrice
(368), Quantity (298), Minute (60), Country (37), Day (31),
Hour (15), Month(12), and Year (2).

A. On building the first-half index base of data cube

Table I reports the run time and the memory use for
computing the first-half index bases and their store space. In
this table,

– the term “Run time” means the time (in seconds) from the
start of the program until the first-half index base is completely
built, including the time to read/write input/output files.

– the term “Memory use” means the maximal space of the
main memory allocated to the program, from the start until
the first-half index base is completely built.

– the term “Storage space” means the volume in mega bytes
to store the first-half index base on disks.

TABLE I
RESULTS ON COMPUTING FIRST-HALF BASE

Datasets Run time Memory use Storage space
CoveType 138s 90 Mo 2 Go
SEP85L 127s 170 Mo 1.8 Go
STCO-... 141s 125 Mo 2.2 Go

OnlineRetail 96s 80 Mo 1.4 Go

B. On query with aggregate functions

The group-by SQL queries are computed based on the first-
half index base. The following aggregate functions MAX,
COUNT, SUM, AVG, and VARIANCE are experimented. The
queries are in the following simple form:

Select ListOfDimensions, f(m)
From Fact_Table
Group by ListOfDimensions;

For each dataset and each half of the corresponding data cube,
the query is computed for all cuboids in the half. For instance,
for CovType, we run the above query for 512 cuboids of the
last-half and 512 cuboids of the first-half.

Tables II and III show the total time in seconds for comput-
ing the aggregate query for the five aggregate functions, for
all cuboids in the first-half data cubes and in the last-half data
cubes, respectively. The total times include all computingand
i/o time, in particular, the time to write the results to disk. For
instance, for the aggregate function SUM, the total time for
computing 512 cuboids in the first-half data cube of dataset
CovType is 237 seconds (Table II). The last column (MEAN)
represents the average of the total time on the five aggregate
functions.

TABLE II
TOTAL TIME FOR COMPUTING AGGREGATE QUERY ON

FIRST-HALF CUBES

DATASETS MAX COUNT SUM AVG VAR MEAN
CoveType 235s 215s 237s 302s 288s 255.4 s
SEP85L 140s 118s 141s 169s 170s 147.6 s
STCO-... 144s 126s 144s 170s 176s 152 s

OnlineRetail 117s 106s 117s 145s 144s 125.8 s

TABLE III
TOTAL TIME FOR COMPUTING AGGREGATE QUERY ON

LAST-HALF CUBES

DATASETS MAX COUNT SUM AVG VAR MEAN
CoveType 309s 279s 364s 383s 373s 341.6 s
SEP85L 193s 169s 191s 224s 237s 202.8 s
STCO-... 184s 168s 184s 212s 228 195.2 s

OnlineRetail 150s 146s 158s 180s 183s 163.4 s

Table IV shows the average time in seconds to compute
the response to an aggregate query. The data in this table
is computed based on the data in Tables II and III. For
each half of a data cube, the average time is calculated by
dividing the total time by the number of cuboids in the half.



For instance, for the first-half data cube of CoveType, the
average query response time for SUM is237s/512 = 0.46
second, and for the five aggregate functions the average
query response time is255.4s/512 = 0.50 second. For
the entire data cube, the average query response time for
SUM is (237s + 364s)/1024 = 0.59 second, and for the
five aggregate functions the average query response time is
(255.4s+ 341.6s)/1024 = 0.58 second.

TABLE IV
AVG RESPONSE TIMES OF AGGREGATE QUERY

ON FIRST-HALF CUBES
DATASETS MAX COUNT SUM AVG VAR MEAN

CoveType 0.46 0.42 0.46 0.59 0.56 0.50
SEP85L 0.55 0.46 0.55 0.66 0.66 0.58
STCO-... 0.28 0.25 0.28 0.33 0.34 0.30

OnlineRetail 0.23 0.21 0.23 0.28 0.28 0.25
ON LAST-HALF CUBES

DATASETS MAX COUNT SUM AVG VAR MEAN
CoveType 0.60 0.54 0.71 0.75 0.73 0.63
SEP85L 0.75 0.66 0.75 0.88 0.93 0.79
STCO-... 0.36 0.33 0.36 0.41 0.45 0.38

OnlineRetail 0.29 0.29 0.31 0.35 0.36 0.32
ON ENTIRE CUBES

DATASETS MAX COUNT SUM AVG VAR MEAN
CoveType 0.53 0.48 0.59 0.67 0.65 0.58
SEP85L 0.65 0.56 0.65 0.77 0.80 0.68
STCO-... 0.32 0.29 0.32 0.37 0.39 0.34

OnlineRetail 0.26 0.25 0.27 0.32 0.32 0.28

C. Discussions

To get some ideas on the efficiency of the first-half index
base approach, we show in this section the experimental results
on CoveType and SEP85L of the present approach and those
of the last-half data cube representation [13][14] and of the
very competitive method TRS-BUC [23]. In the discussion, we
shall show (i) the implementation and the reported measuresin
the experimentation of the approaches, and (ii) their common
and different points.

The last-half data cube representation approach is imple-
mented in the same conditions as the first-half index base
approach. After [23], TRS-BUC is implemented on a PC Pen-
tium 4, 2.80 Ghz, running Windows XP. The results reported
for TRS-BUC are the storage space and the construction time
of the representation and the average query response time
(avg QRT) based on the representation. However, [23] did
not precise whether the construction time and the average
query response time include the time to write the result to
disk. In contrast, in [13][14] and the present work, all time
reported includes the i/o time, in particular, the time to write
the data result (cuboids) to disk. Moreover, in Table V, the
avg QRT of [13][14] and the present work is the average on
the five aggregate functions MAX, COUNT, SUM, AVG, and
VARIANCE.

Table V synthesizes the main experimental results of the
first-half index base with views on the results of the last-half
data cube representation and those of the TRS-BUC method.
The data in this table is graphically represented in Figures1,

2, and 3. In each graph, the three columns, from left to right,
represent respectively the results of the TRS-BUC method, the
last-half data cube representation, and the first-half index base
representation.

TABLE V
MAIN RESULTS WITH VIEWS ON PREVIOUS WORK

TRS-BUC
Datasets Construction time Storage space avg QRT

CoveType 300s 0.4 Gb 0.7s
SEP85L 1150s 1.2 Gb 0.5 s

LAST-HALF CUBE REPRESENTATION
Datasets Run time Storage space avg QRT

CoveType 1018s 7 Gb 0.93s
SEP85L 444s 2.8 Gb 0.74 s

FIRST-HALF INDEX BASE
Datasets Run time Storage space avg QRT

CoveType 138s 2 Gb 0.58s
SEP85L 127s 1.8 Gb 0.68 s

Fig. 1. Construction/Run times of three methods in seconds

Fig. 2. Storage space of the representations in giga bytes

The common point between the first-half index base ap-
proach and the last-half data cube representation approachis
that the both approaches use a half of the data cube index to
represent the entire data cube. The different points:

a) One uses the first-half and the other uses the last-half.
In general the volume of the last-half data cube is bigger than
the volume of first-half data cube.

b) The first-half index base approach follows the bottom-
up computation, whereas the last-half data cube representation
approach follows the top-down computation.



Fig. 3. Average query response times of three methods in seconds

c) In the first-half index base approach, as the representation
of data cube, only the partitions of rowids are stored on disk,
but no data tuples (tuples over dimension sub-schemes). In the
last-half data cube representation approach, both data tuples
and the partitions of rowids are stored on disk.

By above points b) and c), the reduction of the storage
space and the run time to build the first-half index base with
respect to the storage space and the run time to build the last-
half data cube representation is considerable: on storage space,
about71% for CoveType and35% for SEP85L, and on run
time, about86% for CoveType and about71% for SEP85L.
Though these important reductions, the average query response
time is clearly improved by the first-half index base.

The difference between the above approaches and TRS-
BUC consists in:

– TRS-BUC computes the entire data cube and optimizes
the storage space of tuples: if an aggregate group has only one
tuple, then the tuple itself is not stored, but only the rowidof its
original tuple in the fact table: the rowid is called a reference.
The approaches [13][14] optimize the storage by representing
the data cube by a half cube of indexes.

– TRS-BUC computes the representation of the data cube
built on a specific aggregate function applied to only one
measure: for each aggregated tuple, only one aggregated value
of the measure is stored. Whereas the representations by a
half of data cube compute the index bases for computing data
cube with any aggregated function: for each aggregated tuple,
a partition of rowids is stored. This explains why the storage
space of the representation by a half of data cube is much
more bigger than that of TRS-BUC.

VI. CONCLUSION AND FURTHER WORK

On the above discussions, we can see that
– The first-half index base representation is really more

efficient than the last-half data cube representation, in terms of
storage space, construction time, and average query response
time, and

– We can not really compare experimental results of the
last-half data cube representation or the first-half index base
with those of TRS-BUC, because they are not defined and
computed in the same conditions.

However, on the results in Table V, we can see that the first-
half index base can be a competitive approach to TRS-BUC,

as it builds the bases in very reduced time, with respect to
the construction time of TRS-BUC, and offers the avg QRT
that is almost comparable to that of TRS-BUC. Moreover,
based on the first-half index base, the data cube query can
be computed with any measure and any aggregate functions,
without recomputing the representation.

For further work, we plan to test the first-half index base on
much larger datasets and to study its incremental construction.

REFERENCES

[1] S. Agarwal et al., “On the computation of multidimensional aggregates”,
Proc. of VLDB’96, pp. 506-521.

[2] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing data cubes
efficiently”, Proc. of SIGMOD’96, pp. 205-216.

[3] J. A. Blackard, “The forest covertype dataset”, ftp://ftp. ics.uci.
edu/pub/machine-learning-databases/covtype.

[4] C. Hahn, S. Warren, and J. London, “Edited synoptic cloudre-
ports from ships and land stations over the globe”, http://cdiac.
esd.ornl.gov/cdiac/ndps/ndp026b.html.

[5] 2010 Census Modified Race Data Summary File for Counties Alabama
through Missouri http://www.census.gov/popest/research/modified/
STCO-MR2010AL MO.csv.

[6] Online Retail Data Set, UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets/Online+Retail,

[7] K. A. Ross and D. Srivastava, “Fast computation of sparse data cubes”,
Proc. of VLDB’97, pp. 116-125.

[8] Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and
iceberg cubes, Proc. of ACM Special Interest Group on Management of
Data (SIGMOD’99), 359-370.

[9] J. S. Vitter, M. Wang, and B. R. Iyer, “Data cube approximation
and histograms via wavelets”, Proc. of Int. Conf. on Information and
Knowledge Management (CIKM’98), pp. 96-104.

[10] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation of Iceberg
Cubes with Complex Measures”, Proc. of ACM SIGMOD’01, pp. 441-
448.

[11] L. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to summarize
the semantics of a data cube,” Proc. of VLDB’02, pp. 778-789.

[12] V. Phan-Luong, “A Simple and Efficient Method for Computing Data
Cubes”, Proc. of The 4th Int. Conf. on Communications, Computation,
Networks and Technologies INNOV 2015, pp. 50-55.

[13] V. Phan-Luong, “A Simple Data Cube Representation for
Efficient Computing and Updating”, Int. Journal on Advances
in Intelligent Systems, vol 9 no 3 & 4, 2016, pp. 255-264.
http://www.iariajournals.org/intelligentsystems.

[14] V. Phan-Luong, “Searching Data Cube for Submerging and Emerging
Cuboids”, Proc. of The 2017 IEEE Int. Conf. on Advanced Information
Networking and Applications Science AINA 2017, IEEE, pp. 586-593.

[15] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis, “Dwarf:
shrinking the petacube”, Proc. of ACM SIGMOD’02, pp. 464-475.

[16] W. Wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube: an efficient
approach to reducing data cube size”, Proc. of Int. Conf. on Data
Engineering 2002, pp. 155-165.

[17] A. Casali, R. Cicchetti, and L. Lakhal, “Extracting semantics from
data cubes using cube transversals and closures”, Proc. of Int. Conf. on
Knowledge Discovery and Data Mining (KDD’03), pp. 69-78.

[18] A. Casali, S. Nedjar, R. Cicchetti, L. Lakhal, and N. Novelli, “Loss-
less Reduction of Datacubes using Partitions”, In Int. Journal of Data
Warehousing and Mining (IJDWM), 2009, Vol 5, Issue 1, pp. 18-35.

[19] L. Lakshmanan, J. Pei, and Y. Zhao, “QC-Trees: An Efficient Summary
Structure for Semantic OLAP”, Proc. of ACM SIGMOD’03, pp. 64-75.

[20] D. Xin, J. Han, X. Li, and B. W. Wah, “Star-cubing: computing iceberg
cubes by top-down and bottom-up integration”, Proc. of VLDB’03, pp.
476-487.

[21] Y. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally, “Range cube:
efficient cube computation by exploiting data correlation”,Proc. of Int.
Conf. on Data Engineering 2004, pp. 658-670.

[22] Z. Shao, J. Han, and D. Xin, “Mm-cubing: computing icebergcubes
by factorizing the lattice space”, Proc. of Int. Conf. on Scientific and
Statistical Database Management (SSDBM 2004), pp. 213-222.

[23] K. Morfonios and Y. Ioannidis, “Supporting the Data Cube Lifecycle:
The Power of ROLAP”, The VLDB Journal, 2008, 17(4), pp. 729-764.


