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A reduced basis method for parametrized variational
inequalities applied to contact mechanics∗

Amina Benaceur†‡, Alexandre Ern†, Virginie Ehrlacher†

Abstract

We investigate new developments of the Reduced-Basis (RB) method for parametrized opti-
mization problems with nonlinear constraints. We propose a reduced-basis scheme in a saddle-
point form combined with the Empirical Interpolation Method to deal with the nonlinear con-
straint. In this setting, a primal reduced-basis is needed for the primal solution and a dual
one is needed for the Lagrange multipliers. We suggest to construct the latter using a cone-
projected greedy algorithm that conserves the non-negativity of the dual basis vectors. The
reduction strategy is applied to elastic frictionless contact problems including the possibility of
using non-matching meshes. The numerical examples confirm the efficiency of the reduction
strategy.

1 Introduction

The Reduced-Basis (RB) method [14, 19] is a computationally effective approach to approximate the
solution of parametrized Partial Differential Equations (PDEs) in multi-query and real-time contexts,
where the problem has to be solved repeatedly for a large number of parameter values or needs to be
solved very quickly under limited computational resources. For standard PDEs in variational form,
RB methods provide efficient tools for complexity reduction. Instead of the High-Fidelity (HF)
problem, which is high-dimensional after a finite element discretization, a low-dimensional model is
generated. This low-dimensional problem can then be solved significantly faster for a wide range of
parameters.

The focus here is on parametrized optimization problems with nonlinear constraints. These
problems are of great importance in numerous engineering applications. Owing to the nonlinearity of
the constraints, the algorithms designed for solving these problems often suffer from slow convergence,
thereby entailing subsequent computational costs. Therefore, there is a strong motivation for devising
RB methods for nonlinear constrained optimization problems. In the literature, three recent papers
address this objective. The first paper [11] extends the standard RB method to linear variational
inequalities solved through a mixed formulation. Regarding the construction of the bases, the primal
basis (for the primal solution) and the dual one (for the Lagrange multipliers) are composed of
well-chosen snapshots. No additional compression phase is considered. In the so-called Projection-
Based method of [2], which has been specifically introduced to address time-dependent contact
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problems with linear constraints, the primal and the dual spaces are built differently: the primal
RB space is obtained using Proper Orthogonal Decomposition (POD), whereas the dual one is built
by applying the Non-negative Matrix Factorization (NMF) algorithm [17] to the set of Lagrange
multiplier snapshots. The NMF guarantees non-negative basis vectors and a user-prescribed RB
dimension, but the resulting dual RB space can be (far) less accurate than the primal one. As
a matter of fact, the user does not specify a required error tolerance as an input but a number of
dominant basis vectors to retain. Finally, the work in [7] extends hyper-reduction methods to contact
problems with linear constraints. The proposed extension consists in conserving a few vectors of the
High-Fidelity (HF) dual basis because the number of contact nodes is limited to a reduced integration
domain. Hence, only the contact nodes in this domain are treated but with a local high fidelity. So
far, all the existing results using the RB method deal with linear constraints. Yet, we mention
that another class of model order reduction methods, namely the Proper Generalized Decomposition
(PGD), is used in [9] to address nonlinear contact problems.

In this paper, we propose to extend model reduction to the framework of variational inequal-
ities with nonlinear constraints. We express the problem of interest in a saddle-point form using
Lagrange multipliers, and we apply the Empirical Interpolation Method (EIM) [3, 18] to allow for
an offline/online decomposition of the nonlinear constraints. The primal RB space is constructed
using a standard POD, whereas we introduce a Cone-Projected Greedy (CPG) algorithm that builds
nested dual RB spaces while preserving the non-negativity of the Lagrange multipliers. An important
application we have in mind is elastic frictionless contact in a generic framework. Here, we want
to circumvent two simplifying assumptions often made in the literature: the small displacement as-
sumption (that allows one to consider the same normal vector on both contact boundaries) and the
use of non-matching meshes (which is not realistic in many engineering scenarios).

This paper is organized as follows. In Section 2, we introduce the abstract model problem. In
Section 3, we consider more specifically elastic frictionless contact problems. Since we do not make
the simplifying hypotheses discussed above, we briefly describe the formulation of the nonlinear
non-interpenetration condition. In Section 4, we return to the abstract setting and we apply the RB
method to derive the reduced-order problem. In Section 5, we discuss the offline stage in some detail,
we present the EIM procedure for the nonlinear constraint, and we describe the construction of the
primal and dual RB spaces. In Section 6, we present numerical results illustrating the performance
of the method in the framework of elastic frictionless contact. We consider two test cases. First,
the contact problem between two disks introduced by Hertz [13] with a parametrization either on
the prescribed displacement of the disks or on the radius of the lower disk. Then, the case of a ring
with a parameter-dependent radius in contact with a rectangular block [20]. Finally, Section 7 draws
some conclusions.

2 Model problem

Let V be a separable Hilbert space composed of functions defined on a spatial domain (open, bounded,
connected subset) Ω � Rd, d ¥ 1, with a Lipschitz boundary BΩ. Let Ω denote the closure of Ω
and let P denote a parameter set. We define a continuous, symmetric and coercive bilinear form
a : P � V � V Ñ R (the attributes of a are with respect to its second and third arguments), and a
continuous linear form f : P � V Ñ R (the attributes of f are with respect to its second argument).
We also define the nonlinear continuous mappings k : P � V � V Ñ L2pΓcq and g : P � V Ñ L2pΓcq,
for a subset Γc � BΩ. For simplicity, we consider at this stage that the domain Ω and the subset Γc

are parameter-independent. A more general setting with parameter-dependent Ωpµq and Γcpµq will
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be considered from Section 3.2 onwards.
For all µ P P , we want to solve the following nonlinear minimization problem: Find upµq P V

such that $&%upµq � argmin
vPV

1

2
apµ; v, vq � fpµ; vq

kpµ, upµq;upµqq ¤ gpµ, upµqq a.e. on Γc.

(1)

In (1), the dependency is nonlinear with respect to the arguments before the semicolon and linear
with respect to the arguments after it.

Remark 1 (Nonlinear constraint). The nonlinear constraint in (1) can be formulated more compactly
as ζpµ, upµqq ¤ 0 for the nonlinear continuous mapping ζpµ, vq : P � V Ñ L2pΓcq defined as

ζpµ, vq :� kpµ, v; vq � gpµ, vq. (2)

The adopted decomposition of ζpµ, vq in (2) is natural in the context of elastic frictionless contact
problems. Note that this decomposition is not unique since one can write ζpµ, vq � k̃pµ, v; vq� g̃pµ, vq
with k̃pµ, v; vq :� kpµ, v; vq � δpµ, v; vq, g̃pµ, vq :� gpµ, vq � δpµ, v; vq, and an arbitrary mapping
δpµ, v; vq : P � V � V Ñ L2pΓcq.

In the present setting, we make three assumptions. First, we assume that the inequality constraint
in (1) is quasi-linear, i.e., that k is linear with respect to its third argument. This assumption, which
is not fundamental, will be exploited below in setting up an iterative solver for the discrete version
of (1). Second, we assume that g satisfies gpµ, 0q ¥ 0. Hence, the set of admissible states

K � tv P V | kpµ, v; vq ¤ gpµ, vqu (3)

is non-empty since 0 P K. Third, we assume that the problem (1) is well-posed. Note that the
functional minimized in (1) is strongly convex and continuous, and the set K is closed owing to the
continuity of k and g. Therefore, the existence of a minimizer is guaranteed. Our third assumption
then means that we assume the uniqueness of the searched minimizer in K. In fact, the above setting
is motivated by elastic frictionless contact problems that will be described in more detail in Section 3.

We consider the non-empty closed convex cone W� :� L2pΓc;R�q, with R� :� r0,�8q. Using
the test space W�, the weak form of the inequality constraint in (1) reads as follows:»

Γc

kpµ, upµq;upµqqη ¤

»
Γc

gpµ, upµqqη, @η PW�. (4)

Using a Lagrangian formulation, the constrained minimization problem (1) is rewritten as a saddle-
point problem: Find pupµq, λpµqq P V �W� such that

pupµq, λpµqq � arg minmax
vPV,ηPW�

Lpµqpv, ηq, (5)

where the Lagrangian Lpµq : V �W� Ñ R is defined as

Lpµqpv, ηq :�
1

2
apµ; v, vq � fpµ; vq �

�»
Γc

kpµ, v; vqη �

»
Γc

gpµ, vqη



, (6)

and upµq and λpµq are respectively called the primal and the dual solutions of the saddle-point
problem (5).
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In practice, one uses a conforming Finite Element Method (FEM) [6] to discretize (5) in space.
The FEM is based on a finite element subspace VN :� spantφ1, . . . , φN u � V defined using a dis-
crete nodal subset Ωtr � Ω, where CardpΩtrq � N . Besides, one introduces the subcone W�

R :�
span�tψ1, . . . , ψRu � W� defined using a discrete nodal subset Γc,tr � Γc, where CardpΓc,trq � R.
The notation span� means that linear combinations are restricted to non-negative coefficients. The
discrete saddle-point problem reads: Find puN pµq, λRpµqq P VN �W�

R such that

puN pµq, λRpµqq � arg minmax
vPVN ,ηPW

�

R

Lpµqpv, ηq, (7)

with the Lagrangian defined in (6). Note that the discrete inequality constraint amounts to»
Γc

kpµ, uN pµq;uN pµqqψr ¤

»
Γc

gpµ, uN pµqqψr, @r P t1, . . . ,Ru. (8)

As is customary with the RB method, we assume henceforth that the mesh-size is small enough
so that the above space discretization method delivers HF primal and dual solutions within the
desired level of accuracy. Introducing the component vectors upµq :� punpµqq1¤n¤N P RN and
λpµq :� pλrpµqq1¤r¤R P RR

� of uN pµq and λN pµq respectively, the algebraic formulation of (7) reads:
Find pupµq,λpµqq P RN � RR

� satisfying

pupµq,λpµqq � arg minmax
vPRN ,ηPRR

�

1

2
vTApµqv � vT fpµq � ηT

�
Kpµ,vqv � gpµ,vq

�
, (9)

with the matrices Apµq P RN�N and Kpµ,wq P RR�N such that$&%
Apµqij :� apµ;φj, φiq,

Kpµ,wqrj :�

»
Γc

kpµ,w;φjqψr,
(10)

and the vectors fpµq P RN and gpµ,wq P RR such that$&%
fpµqj :� fpµ;φjq,

gpµ,wqr :�

»
Γc

gpµ,wqψr.
(11)

In the sequel, we will solve (9) using an iterative algorithm, where the terms Kpµ,vq and gpµ,vq
are treated explicitly. This amounts to a so-called secant method or Kačanov iterative method [8].
The Kačanov method consists in solving the following problems : For all k ¥ 1,

pukpµq,λkpµqq � arg minmax
vPRN ,ηPRR

�

1

2
vTApµqv � vT fpµq

� ηT
�
Kpµ,uk�1pµqqv � gpµ,uk�1pµqq

�
.

(12)

For a user-defined tolerance εka ¡ 0, the stopping criterion of the Kačanov method reads

}ukpµq � uk�1pµq}RN

}uk�1pµq}RN
¤ εka. (13)

Depending on the problem and output of interest, an additional check on the dual increment }λkpµq�
λk�1pµq}RR{}λk�1pµq}RR can be performed. The advantage of the Kačanov method is its simplicity.
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Indeed, unlike the standard Newton method, the Kačanov method does not require any computation
of Jacobian preconditioners, thereby achieving significant computational savings when solving (9).
However, if the Newton method converges, it is (much) faster than the Kačanov method. In Section 4,
the reduced problem will be solved using the Kačanov method as well. Therein, we will shortly discuss
the influence of the solver on the reduction scheme (cf. Remark 5).

3 Prototypical example: elastic frictionless contact

The model reduction of mechanical problems involving contact remains an important issue in com-
putational solid mechanics. In this section, we consider the case of elastic frictionless contact, and
we detail how this problem can be recast in the form (1). Let us mention that the domains occupied
by the solids are allowed to be parameter-dependent.

3.1 Linear elasticity

For all µ P P , the domain Ωpµq � Rd, d P t2, 3u, represents the initial configuration of a deformable
medium initially at equilibrium and to which an external load `pµq : Ωpµq Ñ Rd is applied. We use
tildes to denote fields defined on this configuration. We define the functional space Vpµq such that

Vpµq :� H1pΩpµq;Rdq. (14)

For all rv P Vpµq, let εprvq P Rd�d be the linearized strain tensor defined as

εprvq :�
1

2
p∇rv �∇rvT q. (15)

In the framework of linear isotropic elasticity, the stress tensor σprvq P Rd�d is related to the linearized
strain tensor by the formula

σprvq � Eν

p1� νqp1� 2νq
trpεprvqqI � E

p1� νq
εprvq, (16)

where E is the Young modulus, ν is the Poisson coefficient and I is the identity tensor in Rd�d. For
simplicity, we have supposed that E and ν are parameter-independent. The standard linear elasticity
problem consists in finding the displacement field rupµq : Ωpµq Ñ Rd induced by the externally applied
force field `pµq : Ωpµq Ñ Rd once the system has reached equilibrium:

∇ � σprupµqq � `pµq in Ωpµq. (17)

This leads to the parameter-dependent bilinear form ra : P � Vpµq � Vpµq Ñ R such that

rapµ; rv, rwq :�

»
Ωpµq

σprvq : εp rwq, (18)

and the parameter-dependent linear form rf : P � Vpµq Ñ R such that

rfpµ; rwq :�

»
Ωpµq

`pµq � rw. (19)
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3.2 Non-interpenetration condition

We formulate the non-interpenetration condition in a general framework without restricting ourselves
to the small displacement assumption. For simplicity, we consider two elastic bodies. Thus, the
domain Ωpµq can be partitioned as

Ωpµq � Ω1pµq Y Ω2pµq with Ω1pµq X Ω2pµq � H,

where Ω1pµq and Ω2pµq represent the initial configuration of the two disjoint deformable solids. For
all µ P P , let Γc1pµq and Γc2pµq be the potential contact boundaries of Ω1pµq and Ω2pµq respectively.
For all rv P Vpµq and all i P t1, 2u, we introduce the functions rvi : Ωipµq Ñ Rd such that

rvi :� rv|Ωipµq P H
1pΩipµq;Rdq. (20)

In order to formulate the non-interpenetration condition, we introduce some auxiliary geometric
mappings. An illustration is given in Figure 1. For all µ P P , all rv P Vpµq and all i P t1, 2u, we define

Figure 1: Generic two-body contact problem. For simplicity, the entire boundary
is taken to be the potential contact boundary.

the geometric mappings

ψipµ, rviq : Γcipµq Ñ Υc
ipµ, rviq

z ÞÑ z � rvipzq, (21)

where Υc
ipµ, rviq :� ψipµ, rviq�Γcipµq�. We assume implicitly that rvi is injective so that ψipµ, rviq is

injective as well. Therefore, pψipµ, rviqq�1 : Υc
ipµ, rviq Ñ Γcipµq is well defined. This assumption is

natural in the context of solid mechanics. Under a local convexity assumption on Υc
2pµ, rv2q, the

contact mapping

ϑpµ, rvq : Υc
1pµ, rv1q Ñ Υc

2pµ, rv2q

z1 ÞÑ argmin
z2PΥc

2pµ,rv2q

}z1 � z2}, (22)

is well defined. For all z P Υc
1pµ, rv1q, ϑpµ, rvqpzq is the orthogonal projection of z onto Υc

2pµ, rv2q.
The contact mapping ϑpµ, rvq can be physically interpreted as the function relating every point on
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Υc
1pµ, rv1q to its potential contact point on Υc

2pµ, rv2q. The contact mapping ϑpµ, rvq depends on the
displacement field rv and is therefore unknown a priori for the solution rv � rupµq. For all µ P P and
all rv P Vpµq, we define the mapping#

ρpµ, rvq : Γc1pµq Ñ Γc2pµq

ρpµ, rvq :� pψ2pµ, rv2qq
�1 � ϑpµ, rvq � ψ1pµ, rv1q,

(23)

and the vector field of outward normals on Υc
2pµ, rv2q such that

n̄2pµ, rv2q : Υc
2pµ, rv2q Ñ Rd. (24)

It is also convenient to introduce the vector field

n2pµ, rvq : Γc1pµq Ñ Rd

n2pµ, rvq :� n̄2pµ, rv2q � ϑpµ, rvq � ψ1pµ, rv1q,
(25)

which corresponds to the outward normal on Υc
2pµ, rv2q but defined at the corresponding point in

Γc1pµq through the mapping ϑpµ, rvq � ψ1pµ, rv1q.
For an admissible solution rupµq � pru1pµq, ru2pµqq P Vpµq, the non-interpenetration condition reads:

For all z P Γc1pµq,

pru1pµqpzq � pru2pµq � ρpµ, rupµqqq pzqq �n2pµ, rupµqqpzq
¥
�
ρpµ, rupµqqpzq � z

�
� n2pµ, rupµqqpzq. (26)

At this stage, we can define the displacement mapping rk : P�Vpµq�Vpµq Ñ R and the gap mappingrg : P � Vpµq Ñ R as

rkpµ, rw; rvqpzq :� pprv2 � ρpµ, rwqq pzq � rv1pzqq � n2pµ, rwqpzq, (27)

and rgpµ, rwqpzq :� pz � ρpµ, rwqpzqq � n2pµ, rwqpzq, (28)

for all z P Γc1pµq. The distinction between the arguments rv and rw in (27) is introduced so that rk is

linear with respect to rv. Hence, (26) can be recast as rkpµ, rupµq; rupµqq ¤ rgpµ, rupµqq, leading to the
inequality constraint considered in (1). For all µ P P , the admissible displacement rupµq P Vpµq is
then solution to $'&'%

rupµq � argmin
rvPVpµq

1

2
rapµ; rv, rvq � rfpµ; rvq

rkpµ, rupµq; rupµqq ¤ rgpµ, rupµqq a.e. on Γc1pµq.

(29)

Remark 2 (Geometric interpretation). As proven in [4], Section 3.7.3, the constraint (26) is equiv-
alent to

Ω1pµ, ru1pµqq X Ω2pµ, ru2pµqq � Υc
1pµ, ru1pµqq XΥc

2pµ, ru2pµqq, (30)

where
Ωipµ, ruipµqq :� pId� ruipµqqpΩipµqq, @i P t1, 2u, (31)

i.e. the intersection of the two deformed solids Ω1pµ, ru1pµqq and Ω2pµ, ru2pµqq is necessarily a subset
of their contact boundaries. Note that the indices 1 and 2 play symmetric roles in (30).
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3.3 Reference domain

Let us now detail how the frictionless contact problem introduced in Sections 3.1-3.2 can be recast into
the form (1). We assume that there exists a bi-Lipschitz diffeomorphism called geometric mapping
hpµq defined on a parameter-independent reference domain Ω such that

hpµq : Ω Ñ Ωpµq

x ÞÑ
I̧

i�1

hipµqpxq1Ωi
pxq,

(32)

where tΩiu
I
i�1 is a partition of Ω. Using this geometric mapping, we introduce the reference Hilbert

space
V :� H1pΩ;Rdq, (33)

composed of functions defined on Ω such that Vpµq :� V � hpµq�1 :� tv � hpµq�1 | v P Vu. For all
i P t1, . . . , Iu, we set

Ωipµq :� hipµqpΩiq. (34)

In what follows, we assume for simplicity that I � 2, which corresponds to the situation from
Section 3 where there are two disjoint solids Ω1pµq and Ω2pµq that can come into contact. We fix
the contact boundaries Γci , i P t1, 2u, on the parameter-independent configuration Ω, and we define
the parametric contact boundaries Γcipµq, i P t1, 2u, as

Γcipµq :� hipµqpΓ
c
iq, @i P t1, 2u. (35)

Note that hipµq|Γc
i

defines a diffeomorphism from Γci to Γcipµq for all i P t1, 2u.
Let us now define the forms a : P�V�V Ñ R, f : P�V Ñ R, and the mappings k : P�V�V Ñ R

and g : P � V Ñ R such that, for all µ P P and v, w P V ,

apµ; v, wq :� ra �µ; v � hpµq�1, w � hpµq�1
�
, (36)

fpµ;wq :� rf �µ;w � hpµq�1
�
, (37)

kpµ,w; vq :� rk �µ,w � hpµq�1; v � hpµq�1
� ��det

�
Jacph1pµq|Γc

1
q
��� , (38)

gpµ,wq :� rg �µ,w � hpµq�1
� ��det

�
Jacph1pµq|Γc

1
q
��� , (39)

where det
�
Jacph1pµq|Γc

1pµq
q
�

refers to the determinant of the Jacobian matrix of h1pµq|Γc
1pµq

. It is clear
that for all µ P P , finding rupµq P Vpµq solution to (29) is equivalent to finding upµq P V solution to$&%upµq � argmin

vPV

1

2
apµ; v, vq � fpµ; vq

kpµ, upµq;upµqq ¤ gpµ, upµqq a.e. on Γc1,

(40)

via the identity rupµq � upµq�hpµq�1. Problem (40) is of the same form as Problem (1) with Γc :� Γc1;
moreover, the forms a, f and the mappings k, g satisfy the assumptions described in Section 2. The
dual formulation of (40) is (5) with the Lagrangian defined in (6) on V�W� withW� :� L2pΓc;R�q.

Remark 3 (Use of Jacobian). The factor involving the Jacobian is not needed in (38)-(39) since the
constraint is enforced pointwise in (40). One also sees that the operation of mapping from Ω to Ωpµq
commutes with the devising of the dual formulation. Indeed, letting W�pµq :� L2pΓc1pµq;R�q, the
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dual formulation on the parameter-dependent domain Ωpµq is to find prupµq, rλpµqq P Vpµq �W�pµq
such that

prupµq, rλpµqq � arg minmax
rvPVpµq,rηPW�pµq

rLpµqprv, rηq,
where the Lagrangian rLpµq : Vpµq �W�pµq Ñ R is defined as

rLpµqprv, rηq :�
1

2
rapµ; rv, rvq � rfpµ; rvq ��»

Γc
1pµq

rkpµ, rv; rvqrη � »
Γc
1pµq

rgpµ, rvqrη� .
Then the solutions to the dual formulations posed on Ω and on Ωpµq are linked by the relationsrupµq � upµq � hpµq�1 and rλpµq � λpµq � h1pµq

�1
|Γc

1pµq
.

4 The reduced-basis model

In this section, we return to the abstract setting of Section 2 and we derive a general RB formulation
for the nonlinear minimization problem (1), and more precisely its algebraic saddle-point formula-
tion (9).

4.1 Reduced basis spaces

Recall that VN and W�
R are the FEM discretizations of the Hilbert space V and the cone W�,

respectively. In view of an accurate approximation of the solution manifold, we introduce the primal
RB subspace pVN and the dual RB subcone xW�

R that satisfypVN � VN � V and xW�
R � W�

R �W�, (41)

where the subscripts refer to the dimensions and are such that N ! N and R ! R.
Let pθnq1¤n¤N be a (orthonormal) basis of pVN and let pξrq1¤r¤R be generating vectors of the conexW�

R , i.e., xW�
R � span�tξ1, . . . , ξRu. For all µ P P , the primal RB solution pupµq P pVN and the dual

RB solution (Lagrange multipliers) pλpµq P xW�
R that approximate the HF solution puN pµq, λRpµqq P

VN �W�
R are decomposed as

pupµq � Ņ

n�1

punpµqθn and pλpµq � Ŗ

r�1

pλrpµqξr, (42)

with real numbers punpµq for all n P t1, . . . , Nu and non-negative real numbers pλrpµq for all r P

t1, . . . , Ru. Introducing the component vectors pupµq :� ppunpµqq1¤n¤N and pλpµq :� ppλrpµqq1¤r¤R, for

all µ P P , the RB formulation of (9) reads: Find ppupµq, pλpµqq P RN � RR
� such that

ppupµq, pλpµqq P arg minmax
pvPRN ,pηPRR

�

1

2
pvT pApµqpv � pvTpfpµq � pηT � pKpµ, pvqpv � pgpµ, pvq�, (43)

with the matrices pApµq P RN�N and pKpµ, pvq P RR�N such thatpApµqpn � apµ; θn, θpq, (44a)

pKpµ, pvqrn � »
Γc

k

�
µ,

Ņ

i�1

pviθi; θn
ξr, (44b)
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and the vectors pfpµq P RN and pgpµ, pvq P RR such that

pfpµqp � fpµ; θpq, (45a)

pgpµ, pvqr � »
Γc

g

�
µ,

Ņ

i�1

pviθi� ξr. (45b)

4.2 Separation of the elastic energy

We assume the existence of two integers Ja and Jf and of continuous bilinear forms aj : V �V Ñ R,
with 1 ¤ j ¤ Ja, and continuous linear forms fj : V Ñ R, with 1 ¤ j ¤ Jf , such that the bilinear
form apµ; �, �q and the linear form fpµ; �q can be affinely decomposed as follows: For all v, w P V ,

apµ; v, wq �
Ja¸
j�1

αaj pµqajpv, wq, and fpµ;wq �
Jf¸
j�1

αfj pµqfjpwq, (46)

for some functions αaj : P Ñ R, for all 1 ¤ j ¤ Ja, and αfj : P Ñ R, for all 1 ¤ j ¤ Jf .
The separated representations in (46) hold true in the setting of contact mechanics considered in

Section 3 under some reasonable assumptions. Let us exemplify the case of the load fpµ;wq. For all
w P V , using the definition of the geometric mapping hpµq in (32), we have

fpµ;wq �

»
Ωpµq

`pµq � w � hpµq�1 �
2̧

i�1

»
Ωipµq

`pµq � w � hipµq
�1

�
2̧

i�1

»
Ωi

`pµqphipµqpxqq � wpxq |det pJacphipµqqpxqq| dx,

(47)

where the notation det pJacphipµqqq refers to the determinant of the Jacobian matrix of the geometric
mapping hipµq. Let us assume that the load function `pµq is space-independent and that the geometric
mappings hipµq, i P t1, 2u, are affine, i.e. that there exists Mipµq P Rd�d and bipµq P Rd such that for
all x P Ωi, hipµqpxq �Mipµqx� bipµq, for all µ P P . These assumptions are satisfied in the numerical
cases presented in Section 6. Then, we obtain, for all v P V ,

fpµ;wq �
2̧

i�1

»
Ωi

`pµq � wpxq |detMipµq| dx �
2̧

i�1

|detMipµq| `pµq �

»
Ωi

wpxq dx. (48)

Let pekq1¤k¤d be the canonical basis of Rd, and let `kpµq :� ek � `pµq for all 1 ¤ k ¤ d. Consequently,
in (46), we have Jf � 2d, and for all 1 ¤ j ¤ 2d, αfj pµq :� hipµq`kpµq and fjpwq :�

³
Ωi
ek � wpxq dx,

where k :� tpj � 1q{2u � 1 and i :� j � 2pk � 1q (the notation t�u standing for the integer part).
Similarly, under the same assumption on hpµq, a separated representation of apµ; �, �q is available.

In the general case where the dependencies on µ are non-affine, one typically resorts to the
EIM [3, 18] in order to build approximate separated representations of apµ; �, �q and fpµ; �q

The separated expressions (46) imply that the matrix pApµq defined in (44a) and the vector pfpµq
defined in (45a) can be affinely decomposed under the form

�pApµq	
np
�

Ja¸
j�1

αaj pµq
pAj,np and

�pfpµq	
p
�

Jf¸
j�1

αfj pµq
pfj,p, @1 ¤ n, p ¤ N, (49)
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where pAj,np :� ajpθn, θpq and pfj,p :� fjpθpq. The key point is that the dependencies on µ and n, p are

separated in (49). Therefore, the matrix pAj,np and the vector pfj,p are offline-computable, and all that

remains to be performed during the online stage is the assembly of the matrix pApµq and the vectorpfpµq using (49) for each new parameter value µ P P .

4.3 Separation of the constraint

The remaining bottleneck is the computation of the matrix pKpµ, pvq and the vector pgpµ, pvq in (44b)
and (45b) respectively. Indeed, these computations require parameter-dependent reconstructions
using the FEM basis functions pθnq1¤n¤N in order to compute the integrals over Γc. The key idea is
to search for approximations κMk and γMg of the nonlinear mappings κ : P � t1, . . . ,N u � Γc Ñ R
and γ : P � Γc Ñ R defined such that

κpµ, n, xq :� kpµ, upµq;φnqpxq and γpµ, xq :� gpµ, upµqqpxq. (50)

Our goal in building these approximations is to separate the dependence on µ from the dependence
on the other variables. More precisely, for some integers Mk,M g ¥ 1, we look for (accurate) ap-
proximations κMk : P � t1, . . . ,N u � Γc Ñ R of κ and γMg : P � Γc Ñ R of γ in the separated
form

κMkpµ, n, xq :�
Mk¸
j�1

ϕκj pµqq
κ
j pn, xq, γMgpµ, xq :�

Mg¸
j�1

ϕγj pµqq
γ
j pxq, (51)

where Mk (resp. M g) is called the rank of the approximation and ϕκj (resp. ϕγj ) are real-valued
functions of the parameter µ that are found by interpolation. For κMk , we interpolate over a set
of Mk pairs tpnκ1 , x

κ
1q, . . . , pn

κ
Mk , x

κ
Mkqu in t1, . . . ,N u � Γc, whereas for γMg , we interpolate over a

set of M g points txγ1 , . . . , x
γ
Mgu in Γc. The interpolation is performed using the EIM [3] and leads

to the vector pκpµ, pvq P RMk
, the matrix Bκ P RMk�Mk

, the vector pγpµ, pvq P RMg
and the matrix

Bγ P RMg�Mg
defined as follows: $'''&'''%

pκpµ, pvqi :� kpµ, pv;φκni
qpxκi q,

Bκ
ij � qκj pn

κ
i , x

κ
i q,pγpµ, pvqi :� gpµ, pvqpxγi q,

Bγ
ij � qγj px

γ
i q.

(52)

Note that the EIM guarantees the invertibility of the matrices Bκ and Bγ. After the approximation
resulting from the separation of the constraint, the problem (43) becomes (we keep the same notation
for its solution)

ppupµq, pλpµqq P arg minmax
pvPRN ,pηPRR

�

!1

2
pvT pApµqpv � pvTpfpµq
� pηT �Dκpµ, pvqpv �Dγppvqpγpµ, pvq�), (53)

with the matrices

Dκpµ, pvq :�
Mk¸
j�1

Cκ
j ppB

κq�1pκpµ; pvqqj and Dγ :� CγpBγq�1, (54)
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where Cκ
j P RR�N and Cγ P RR�Mg

are given by

Cκ
j :�

� Ņ

i�1

»
Γc

θn,iq
κ
j pi, �qξr



rn

and Cγ :�

�»
Γc

qγj ξr



pj

, (55)

for all j P t1, . . . ,Mκu, all r P t1, . . . , Ru, all n P t1, . . . , Nu, and all j P t1, . . . ,Mγu.
The overall computational procedure can now be split into two stages:

(i) An offline stage where one precomputes on the one hand the RB subspace pVN and the RB

subcone xW�
R leading to the vectors tpfru1¤r¤Jf in RN and the matrices tpAru1¤r¤Ja in RN�N ,

and on the other hand the EIM pairs tpnκi , x
κ
i qu1¤i¤Mk , the EIM points txγi u1¤i¤Mg , the EIM

functions tqκj u1¤j¤Mk , and the EIM functions tqγj u1¤j¤Mg , leading to the matrices Bκ P RMk�Mk
,

Bγ P RMg�Mg
, tCκ

j u1¤j¤Mk � RR�N , and Cγ P RR�Mg
. The offline stage is discussed in more

detail in Section 5.

(ii) An online stage to be performed each time one wishes to compute a new solution for a parameter

µ P P . All that remains to be performed is to assemble the vector pfpµq P RN and the matrixpApµq P RN�N using (49), to compute the vectors pκpµ, pvq P RMk
and pγpµ, pvq P RMg

defined
in (52), to assemble the matrix Dκpµ, pvq defined in (54), and to solve the reduced saddle-point
problem (53). The online stage is summarized in Algorithm 1.

Algorithm 1 Online stage

Input : µ, tpfju1¤j¤Jf , tpAju1¤j¤Ja , tpnκi , x
κ
i qu1¤i¤Mk , txγi u1¤i¤Mg , tqκj u1¤j¤Mk , tqγj u1¤j¤Mg , Bκ,

tCκ
j u1¤j¤Mk and Dγ.

1: Assemble the vector pfpµq and the matrix pApµq using (49)
2: Compute pκpµ, pvq and pγpµ, pvq using (52)
3: Compute Dκpµq using pκpµ, pvq and (54)

4: Solve the reduced saddle-point problem (53) to obtain pupµq and pλpµq
Output : pupµq and pλpµq

Remark 4 (EIM matrices). The computations in Algorithm 1 only require the knowledge of the
matrix pBκq�1. In order to optimize the computational costs, Bκ is inverted during the offline stage.
The matrix Bγ is also inverted when computing the matrix Dγ during the offline stage (see (54)).

Remark 5 (EIMs on k and g). Owing to the quasi-linear structure of the inequality constraint,
the reduced problem (53) can be solved using the Kačanov method. At first glance, the influence
of this resolution choice is that we have to perform the EIM twice since the mappings k and g are
separated one at a time. Were we to use a Newton method by considering the one-term constraint
ζpµ, upµqq ¤ 0 (see (2)), we would only perform a single EIM. However, an additional EIM would be
needed in the Newton method in order to compute the Jacobian preconditioning matrix. Thus, both
methods (Kačanov or Newton) lead to two distinct EIMs and the storage cost is essentially the same.

5 The offline stage

There are two main tasks to be performed during the offline stage:

12



(T1) Build the rank-Mk and the rank-M g EIM approximations in (51);

(T2) Explore the solution manifold in order to construct the linear subspace pVN � VN of dimension

N and the subcone xW�
R � W�

R of dimension R.

Tasks (T1) and (T2) can be performed independently and in whatever order. Since Task (T1) can
be considered to be standard, we only discuss Task (T2), i.e., the construction of the sets of primal
and dual RB functions with cardinalities N and R respectively. First, as usual in RB methods, the
solution manifold is explored by considering a training set for the parameter values. For simplicity,
one can consider the same training set Ptr as for the EIM approximations. This way, one only
explores the collection of snapshots Spri � tupµquµPPtr and Sdu � tλpµquµPPtr in the primal and
dual solution manifolds respectively. For this exploration to be informative, the training set Ptr has
to be chosen large enough. In the present setting where HF solutions are to be computed for all
the parameters in Ptr when constructing the EIM approximations, it is natural to compress these
computations by means of a Proper Orthogonal Decomposition (POD) [15, 16] to define the primal

RB subspace pVN . This technique is often considered in the RB literature, see, e.g., [10, 14, 19].

Bearing in mind that the dual RB cone xW�
R is meant to represent the set of Lagrange multipliers,

its spanning vectors should all have non-negative components. Consequently, the POD is not appro-
priate to build xW�

R . If the training set has a moderate size, one could keep all the Lagrange multiplier
snapshots, especially if they have been computed via a posteriori error estimation. In [2], it is sug-
gested to use the Non-negative Matrix Factorization (NMF) algorithm [17] whenever the number of
training snapshots is relatively large, for instance in the case of a time-dependent problem. For a set
of snapshots Sdu and an integer R, the procedure NMFpSdu, Rq returns R vectors pw1, . . . , wRq with
non-negative components (the procedure is briefly recalled in Section 6.4). Nonetheless, the resulting
dual RB cone can be less accurate than the primal RB space. Moreover, the user does not specify
an error tolerance but only the cardinality of the family of vectors generating the dual RB cone. In
practice, it is often difficult to anticipate the approximation capacity of the dual RB cone from its
cardinality (see the numerical results in Section 6 for illustrations).

Here, we suggest to build a dual hierarchical RB cone from the Lagrange multiplier snapshots
computed offline. In the spirit of weak greedy algorithms, the idea is to order the snapshots depending
on their relevance to represent the entire set of snapshots. The algorithm reads as follows: First, we
choose µ1 P Ptr such that

µ1 P argmax
µPPtr

}λpµq}Λ. (56)

The most natural choice for the norm on the Lagrange multipliers is } � }Λ � } � }L2pΓcq. However, at
the discrete level, one can also consider the choice } � }Λ � } � }`8pΓc,trq, where Γc,tr � Γc is a discrete
subset of Γc.

Afterwards, at each iteration n ¥ 2, we define the convex cone pK�
n�1 � span�tλpµ1q, . . . , λpµn�1qu

and select a new parameter value µn P Ptr using the criterion

µn P argmax
µPPtr

}λpµq � Π
pK�n�1

pλpµqq}Λ, (57)

where Π
pK�n�1

is the L2-orthogonal projector onto the convex cone pK�
n�1. At each iteration, we check

whether or not the stopping criterion

max
µPPtr

}λpµq � Π
pK�n�1

pλpµqq}Λ ¤ εdu, (58)
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is fulfilled. One can also consider a relative error criterion instead of an absolute one by dividing
the left-hand side of (58) by }λpµq}Λ. The steps of the Cone-Projected Greedy (CPG) algorithm are
summarized in Algorithm 2.

Algorithm 2 Cone-Projected Greedy (CPG) algorithm

Input : Ptr and εdu ¡ 0
1: Compute Sdu :� tλpµquµPPtr # HF solutions

2: Set pK�
0 :� t0u

3: Set n :� 1 and r1 :� 2εdu
4: while (rn ¡ εdu) do
5: Search µn P argmax

µPPtr

}λpµq � Π
pK�n�1

pλpµqq}Λ

6: Set pK�
n :� span�tλpµ1q, . . . , λpµnqu

7: Set n :� n� 1
8: Set rn :� max

µPPtr
}λpµq � Π

pK�n�1
pλpµqq}Λ

9: end while
10: Set R :� n� 1

Output : xW�
R :� pK�

R .

Remark 6 (Cone projections). The projection onto the cone pKn�1 in line 5 of Algorithm 2 is not
trivial. We use the off-the-shelf solver from [1].

Remark 7 (Elementary compression). Additional computational savings can be achieved by sup-
pressing the constraints that are never saturated for any of the parameters in the training set Ptr

but were initially introduced in the HF model. In practice, one can reduce the dimensions of the
matrix Kpµ,upµqq and the vector gpµ,upµqq appearing in (9) by removing the lines and columns of
Kpµ,upµqq and the components of gpµ,upµqq that always vanish no matter the value of the parameter
µ P Ptr.

6 Numerical results

In this section, we illustrate the above developments by two numerical examples related to elastic
frictionless contact in a two-dimensional framework. The goal is to illustrate the computational
performance of the proposed method. The first example is the contact problem between two half-
disks introduced by Hertz in [13], whereas the second investigates a contact problem between a ring
and a block as described in [20]. The HF computations use a combination of Freefem++ [12] and
Python, whereas the reduced-order modeling algorithms have been developed in Python using the
convex optimization package cvxopt [1].

6.1 Discretization of the HF problem

Continuous piecewise affine finite elements are used to discretize the displacement field on trian-
gular meshes of Ω1 and Ω2. We consider two different strategies for discretizing the constraint in
the HF saddle-point problem (9); namely, a collocation method and the so-called Local Average
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Contact method (LAC) introduced in [5]. The collocation method amounts to node-to-segment non-
interpenetration constraints in 2D (or to the equivalent node-to-face constraints in 3D). However, in
many contexts, this method can produce dual solutions with oscillations thereby degrading the accu-
racy of the computations. The LAC method was designed to overcome the oscillation phenomenon.
The price to pay is that the constraint is expressed in a somewhat less local form.

6.1.1 The collocation method

The collocation method expresses the non-interpenetration constraints at given collocation nodes.
We choose these nodes, say tzru1¤r¤R, to be the boundary vertices of the mesh from Ω1 located on
Γc � Γc1 (other choices are possible). Thus, the non-interpenetration constraints read

kpµ, uN pµq;uN pµqqpzrq ¤ gpµ, uN pµqqpzrq, @r P t1, . . . ,Ru. (59)

The conditions in (59) can be interpreted as»
Γc

kpµ, uN pµq;uN pµqqψr ¤

»
Γc

gpµ, uN pµqqψr, @r P t1, . . . ,Ru, (60)

where tψru1¤r¤R are P0 basis functions with support centered on the collocation nodes, provided a
one-node quadrature at the collocation nodes is used to approximate the integrals in (60).

6.1.2 The LAC method

In the LAC method, the admissible displacements satisfy the average non-interpenetration conditions»
Γc

kpµ, uN pµq;uN pµqqψr ¤

»
Γc

gpµ, uN pµqqψr, @r P t1, . . . ,Ru, (61)

where tψru1¤r¤R are P0 basis functions defined on Γc and supported on non-overlapping macro-
segments Ir � Γc. The sole requirement on the macro-segments Ir is that each one contains at least
one internal degree of freedom for the displacement. For instance, for a polynomial degree k � 1 of
the primal HF space, the macro-segments comprise two adjacent segments that are boundary sides
on Γc of the mesh from Ω1. The integrals in (61) are approximated using Simpson’s rule on Ir. Since
the midpoint of a macro-segment Ir is also a boundary vertex of the mesh from Ω1, this means that
the integrals in (61) are evaluated only at these boundary vertices.

6.2 Half-disks of Hertz

Consider a two-dimensional setting based on two half-disks, where the upper one is denoted Ω1 and
the lower one Ω2, see Figure 2. The radii of the disks are denoted R1 and R2, respectively, and
the initial gap between the disks is γ0 � 0.1m. We always set R1 � 1m, whereas the value of R2

depends on the test case. The materials of both half-disks are identical and correspond to a Young
modulus E � 15Pa and a Poisson coefficient ν � 0.35. HF solutions are computed using a finite
element subspace defined on a mesh of Ω and consisting of continuous, piecewise affine functions.
The potential contact zone is the circular boundary of both disks. For a mesh with 675 nodes,
Γc contains 51 nodes. Consequently, the problem has N � 1350 degrees of freedom and R � 51
Lagrange multipliers when using the collocation method and R � 25 Lagrange multipliers when
using the LAC method.
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Figure 2: Half-disks of Hertz. Reference domain Ω with R1 � R2 � 1m and
mesh with N � 1350 nodes.

6.2.1 Presentation of the test cases

We consider two test cases to assess the model reduction strategy.

• Test case (a): Parametric imposed displacement (linear case)

Let P � r0.15, 0.45s be the parameter set and consider the discrete training set Ptr � t0.15 �
0.01i| 0 ¤ i ¤ 31u. Regarding boundary conditions, we consider the parametric Dirichlet
condition ux � 0 and uy � µ{2 on the lower horizontal edge, and the parametric Dirichlet
condition ux � 0 and uy � �µ{2 on the upper horizontal edge. The radii in this test case

Figure 3: Test case (a) - Deformed configuration resulting from the HF displace-
ment field uN pµq. Left: µ � 0.15m. Right: µ � 0.3m.

are R1 � R2 � 1m. We highlight that the symmetry of the setting and the use of matching
meshes for Ω1 and Ω2 ensure the matching of the meshes also in the deformed configurations
at equilibrium. Therefore, the gap can be computed on the reference configuration along the
vertical direction. A crucial consequence is the affine character of the constraint in this test
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case. The left and the right panels of Figure 3 display the deformed configuration resulting
from the HF displacement field for the parameter values µ � 0.15m and µ � 0.3m respectively,
whereas Figure 4 displays the Lagrange multipliers (obtained with the collocation method) as
a function of the abscissas in the initial configuration for some parameter values µ P Ptr. The
Lagrange multipliers vanish for the nodes where the contact between the two half-disks is not
established at equilibrium. As physically expected, the greater the imposed displacement, the
larger the contact zone.
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Figure 4: Test case (a) - Lagrange multipliers obtained with the collocation
method as a function of the abscissas in the reference configuration for the pa-
rameter values µ P t0.15, 0.2, 0.25, 0.3u. Vanishing values correspond to nodes
where the contact between the two disks is not established at equilibrium.

• Test case (b): Parametric geometry (nonlinear case)

Consider the parameter set P � r0.9, 1.12s and the discrete training set Ptr � t0.905�0.01i| 0 ¤
i ¤ 22u. The radius of the lower disk is R2 � µ (in m). For the boundary conditions, we
consider the Dirichlet condition ux � 0 and uy � 0.2m on the lower horizontal edge, and the
Dirichlet condition ux � 0 and uy � �0.2m on the upper horizontal edge. The right panel
of Figure 5 displays the deformed configuration resulting from the HF displacement field for
the parameter value µ � 1.12m, whereas Figure 6 displays the Lagrange multipliers (obtained
with the collocation method) as a function of the abscissas in the initial configuration for some
parameter values µ P Ptr. The Lagrange multipliers vanish on the nodes where the contact
between the two half-disks is not established at equilibrium. Note that since the geometry is
parameter-dependent, the meshes do not match at the contact interface.

6.2.2 Choice of the HF discretization

In order to compare the collocation method with the LAC method, we consider their outputs when
solving the HF problem of Hertz on the same mesh. For the Kačanov method, we use the stopping
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Figure 5: Test case (b) - Deformed configuration resulting from the HF displace-
ment field uN pµq for µ � 1.12m.

Figure 6: Test case (b) - HF Lagrange multipliers obtained with the collocation
method for the parameter values µ P t0.9, 1.12u. Vanishing values correspond
to nodes where the contact between the two half-disks is not established at
equilibrium.

criterion

max

�
}ukpµq � uk�1pµq}RN

}uk�1pµq}RN
,
}λkpµq � λk�1pµq}RR

}λk�1pµq}RR



¤ εka, (62)

with εka � 10�3. We also use a relaxation factor α � 0.3 to improve the convergence. More
specifically, at each Kačanov iteration, the primal solution uk is a convex linear combination of the
current and previous solutions, i.e. uk � αuk � p1 � αquk�1. The dual solution is defined similarly.
For a mesh consisting of 802 nodes, i.e. with N � 1604 degrees of freedom, Figure 7 displays
the HF normal contact stress (which is proportional to the Lagrange multipliers) for test case (b)
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(half-disks of Hertz with a parametric geometry) using both the LAC method and the collocation
method. One can notice that the curve of the Lagrange multipliers is smoother for the collocation
method, whereas that of the LAC method exhibits some irregularities. Moreover, the contact zone
slightly differs between the two methods. Since the LAC method agglomerates two contact cells at a
time, it involves less constraints than the collocation method. This difference results in the one-node
premature ‘take-off’ for the LAC method. It can be observed at the first contact nodes starting
from the left-hand side abscissas in the four panels of Figure 7. Table 1 provides the total number
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Figure 7: Test case (b) - HF normal contact stress for the LAC method (in blue)
and for the collocation method ‘Col’ (in green) as a function of the abscissas in
the reference configuration for 61 potential contact nodes. In reading order, the
panels respectively correspond to the parameter values µ P t0.9, 0.95, 1.05, 1.12u.

of Kačanov iterations for some parameter values µ P Ptr. Overall, the LAC method converges at
a number of iterations which is somewhat smaller than for the collocation method. However, the
collocation method enforces twice as many constraints as the LAC method.

We run the same simulations on a finer mesh consisting of 1682 nodes, i.e., N � 3364 degrees
of freedom. We display the HF normal stress in Figure 8. As can be noticed, the curves almost
overlap. Once more, we observe a slight difference at both borders of the contact zone which is
two cells wider for the LAC method. The difference is less pronounced now that the mesh is finer.
Another difference is that the collocation method starts to suffer from the above-mentioned oscillation
phenomenon as can be seen at the reference zero abscissa on the first and fourth panels of Figure 8.
We also provide the number of Kačanov iterations in Table 2. The results corroborate the previously
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µ 0.90 0.95 1.05 1.12
LAC iterations 20 20 19 18

Collocation iterations 24 24 25 24

Table 1: Test case (b) - Number of Kačanov iterations for a mesh with N � 1604
degrees of freedom.
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Figure 8: Test case (b) - HF normal contact stress for the LAC method (in blue)
and for the collocation method ‘Col’ (in green) as a function of the abscissas in
the reference configuration for 121 potential contact nodes. In reading order, the
panels respectively correspond to the parameter values µ P t0.9, 0.95, 1.05, 1.12u.

drawn conclusions.
In the remainder of Section 6.2, we will use the collocation method to deal with the test cases

of Hertz, since we employ a rather coarse mesh on the contact zone. Instead, in Section 6.3 dealing
with the ring-on-block test case, we will use the LAC method. We emphasize that these treatments
only affect the HF solutions, so that the model reduction strategy remains unchanged in all cases.
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µ 0.90 0.95 1.05 1.12
LAC iterations 27 19 19 20

Collocation iterations 28 12 25 25

Table 2: Test case (b) - Number of Kačanov iterations for a mesh with N � 3364
degrees of freedom.

6.2.3 Assessment of the RB procedure: Test case (a) - Parametric imposed displace-
ment

During the offline stage, we perform P � 32 HF computations leading to the set Spri of primal
snapshots. Applying the POD to Spri based on the energy norm and an absolute truncation threshold
εpod � 10�2, the primal space pVN is composed of N � 9 RB functions. In order to build the dual RB
cone, we test the convergence of the NMF considered in [2] and the CPG algorithm proposed herein
(see Algorithm 2) using the norm Λ � } � }L2pΓcq. The approximation errors are shown in Figure 9.
Owing to the linearity of the constraint, the error decrease for the CPG algorithm is much faster
than that of the NMF which suffers from stagnation twice. For a truncation threshold εdu � 10�1,
the CPG algorithm conserves seven modes, whereas the NMF achieves the same accuracy with 27
modes. Table 3 reports the dimension R of the dual RB cone xW�

R and accuracy level εdu achieved by
both algorithms. Note that for the CPG algorithm, εdu is prescribed and the number of vectors R is

εdu 10�1 10�2 5 � 10�3

NMF R 27 29 31
CCPG R 7 12 16

Table 3: Test case (a) - Dual basis dimension R and accuracy level εdu for the
NMF and the CPG algorithm with corresponding εdu.

a result of the algorithm, whereas for the NMF, the integer R is prescribed and the accuracy can be
checked a posteriori. The CPG algorithm outperforms the NMF with a compression capacity twice
as good in the worst-case scenario. We define the error on the minimum energy

eenerpµq :�
1

2
|apµ, pupµq, pupµqq � fpµ, pupµqq � apµ, uN pµq, uN pµqq � fpµ, uN pµqq| , (63)

and the relative H1-error error on the displacement field

edisplpµq :�
}pupµq � uN pµq}H1pΩq

}uN pµq}H1pΩq

. (64)

Figure 10 compares the two errors for the CPG algorithm with εdu � 10�1 (yielding R � 7) and
for the NMF with R � 7 and R � 27 (the latter yielding εdu � 10�1 a posteriori). As can be seen,
the errors are comparable for CPG(10�1) and NMF(27), although the latter uses a number of modes
which is approximately four times larger than the former. However, the errors for the NMF with
R � 7 show that, with the same number of modes as the CPG algorithm, the NMF lacks accuracy
(at least half an order of magnitude).
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Figure 9: Test case (a) - Approximation capacity of the dual space xW�
R as a

function of its size R.
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Figure 10: Test case (a) - Left: Error on the minimum energy eenerpµq. Right:
Error on the displacement field edisplpµq. The NMF uses 27 modes whereas the
CPG algorithm and the truncated NMF use 7 modes.

6.2.4 Assessment of the RB procedure: Test case (b) - Parametric geometry

During the offline stage, we perform P � 22 HF computations. Applying the POD to Spri based on
the energy norm and an absolute truncation threshold εpod � 10�3, the primal space pVN is composed
of N � 11 RB functions. Table 4 reports the size of the reduced basis as a function of the tolerance
εpod. As can be seen, the number of offline computations is equal to the dimension of the primal
space for εpod � 4.10�6. The left panel of Figure 11 illustrates the decrease of the singular values
associated with the POD modes. The decrease is not as sharp as is often the case for variational
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εpod 10�2 10�3 10�4 10�5 4.10�6

N 5 11 16 20 22

Table 4: Test case (b) - Primal basis dimension N as a function of the truncation
threshold εpod.

equalities. Moreover, the higher the rank of the singular value, the milder the decrease of the error.
In order to build the dual RB cone, we test both the NMF and the CPG algorithm. Table 5 reports
the dimension R of the dual RB cone xW�

R and the accuracy level εdu for both algorithms. The

εdu 5 � 10�2 10�2 5 � 10�3 10�3

NMF R 4 10 19 20
CPG R 2 5 6 13

Table 5: Test case (b) - Dual basis dimension R and accuracy level εdu for the
NMF and the CPG algorithm.

CPG algorithm achieves the same accuracies with less basis functions than the NMF. Notice that,
at the first iterations of the procedure, the NMF uses at least twice as many functions as the CPG
algorithm. The right panel of Figure 11 displays the approximation capacity of the dual RB conexW�
R as its dimension R increases using the error norm Λ � } � }L2pΓcq. This figure clearly shows that

the CPG algorithm outperforms the NMF. Note that it is actually pointless to perform an NMF with
an input number of modes equal to the total number of available snapshots. The same reasoning
applies to the CPG algorithm as well. However, as the CPG algorithm is (in principle) steered by
an accuracy threshold rather than a number of modes, the case in which all the modes are retained
can still be justified.

Figure 11: Test case (b) - Offline basis construction. Left: Singular values

resulting from the POD for the primal space pVN as a function of its size N .
Right: Approximation capacity of the dual space xW�

R as a function of its size R.

We now perform the EIM twice so as to allow for an offline/online decomposition of both terms
in the inequality constraint. The convergence of the EIM in the `8-norm is reported in Figure 12.
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Figure 12: Test case (b) - EIM `8-error as a function of the rank M of the
EIM approximation. Left: nonlinear gap mapping γ. Right: nonlinear contact
mapping κ.

The approximation error for the EIM decreases clearly faster for the nonlinear gap mapping γ than
for the nonlinear contact mapping κ. This observation is expected since the contact mapping is a
trivariate function, whereas the gap mapping is a bivariate function. Moreover, Table 6 reports the
first EIM interpolation points xκi and xγi . Since the effective contact zone is centered around the
zero abscissa, one can notice that the selected points are chosen on the areas that do not come into
contact at equilibrium. Let us physically motivate this selection for instance for the gap mapping g.
In fact, g vanishes on the effective contact zone at equilibrium. Hence, an EIM function vanishing
on this zone suffices to represent the effective contact nodes. However, the nodes that are less likely
to come into contact have varying gap values, whence the need to interpolate over these particular
points. A similar reasoning applies to the contact mapping k.

xκi �1 �0.9818 �0.7364 0.9818 �0.8136 0.9916 0.9511 �0.8477 0.7765 �0.9304
xγi 1 0.9916 �1 �0.9818 �0.9976 0.9818 �0.9818 �0.9683 �0.9916 0.9062

Table 6: Test case (b) - Reference abscissas of the selected EIM interpolation
points xγi and xκi .

Let us now investigate the online stage for the prescribed accuracy levels εpod � 10�5, εdu � 10�4,
εkeim � 10�2, and εgeim � 10�3. The left panel of Figure 13 displays the error on the minimum energy
eenerpµq. One can notice that the error for the CPG algorithm is always below that of the NMF.
Moreover, the right panel of Figure 13 shows the relative H1-error error on the displacement field
edisplpµq, leading to the same observations as before. Finally, Figure 14 displays a quantification of
the interpenetration, i.e., the violation of the inequality constraint, by means of the error indicator

einterpµq :�

d ¸
xPΓc,tr

1

min
�
0, kpµ, pupµq; pupµqqpxq � gpµ, pupµqqpxq�2

. (65)

For low parameter values, there is no interpenetration, but the conclusion is different for the pa-
rameter values that are larger than one, although the amplitude of the interpenetration remains very
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Figure 13: Test case (b) - Error quantification with accuracy levels εdu � 10�4,
εkeim � 10�2, εgeim � 10�3 and εpod � 10�5. R � 22 for both methods. Left: Error
on the minimum energy eenerpµq. Right: Relative H1-error on the displacement
field edisplpµq.

Figure 14: Test case (b) - Estimation of the interpenetration einterpµq.

moderate. The reason for this is that the spatial discretization becomes coarser with the increase
of the parameter value. Notice that the interpenetration curves for the NMF and the CPG almost
overlap. Running both methods with the looser tolerances εdu � 1 � 10�2, εkeim � 2 � 10�1, εgeim � 10�2

and εpod � 10�2 produces similar results.
In order to get a clearer insight on the impact of the dual space xW�

R , we display the same plots as
in the first simulation, but with the larger truncation threshold εdu � 5�10�3. The other tolerances are
as before. In this configuration, the NMF conserves R � 18 dual modes, whereas the CPG algorithm
only conserves R � 5 dual modes. The minimum energy error eenerpµq and the relative H1-error on
the displacement field edisplpµq are plotted in Figure 15. In spite of the substantial difference between
the sizes of the NMF space and the CPG space, Figure 15 shows that the CPG algorithm still
delivers accurate approximations and, in average, produces smaller errors than NMF(18). For the
comparison between the two algorithms to be fairer, we keep R � 5 basis vectors for the NMF and
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Figure 15: Test case (b) - Error quantification with accuracy levels εpod � 10�4,
εdu � 5 � 10�3, εkeim � 10�2, and εgeim � 10�4. The NMF uses R � 18 modes
whereas the CPG and the truncated NMF use R � 5 modes. Left: Error on the
minimum energy eenerpµq. Right: Relative H1-error on the displacement field
edisplpµq.

we display the additional curves of the error indicators eenerpµq and edisplpµq in Figure 15 as well. In
this situation, the error for the CPG algorithm is always below that of NMF(5). The quantification
of the interpenetration displayed in Figure 16 corroborates the previous comments.

Figure 16: Test case (b) - Estimation of the interpenetration einterpµq. Left:
R � 18 for the NMF and R � 5 for the CPG. Right: R � 5 for both algorithms.

6.3 Test case (c): Ring on block

We investigate the case considered in [20] of an elastic ring with a parametric radius R1 � µ that
comes into contact with a rectangular block. The elastic ring has a thickness t � 10m and is 15 times
stiffer than the block. A vertical displacement uy � 50m and the homogeneous horizontal Dirichlet
boundary condition uy � 0 are applied to the ring at its top ends. For the lower horizontal edge
of the block, we consider homogeneous Dirichlet conditions ux � 0 and uy � 0. The configuration
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Ω corresponds to the parameter value µ � 1. The non-symmetry of the structure in this test case
is challenging. A straightforward consequence is the non-symmetry of the solution leading to non-
matching meshes at the contact interface, even in the reference configuration illustrated in the left
panel of Figure 17.

Figure 17: Test case (c) - Left: Reference domain Ω with R1 � 1m and mesh
with N � 1590 nodes. Right: Deformed configuration resulting from the HF
displacement field uN pµq for R1 � 1m.
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Figure 18: Test case (c) - Lagrange multipliers as a function of the abscissas in
the reference configuration for the parameters µ P t1.0, 1.13u. Vanishing values
correspond to nodes where the contact between the ring and the rectangular
surface is not established at equilibrium.

During the offline stage, we perform P � 21 HF computations. The singular values resulting
from the POD applied to the collection of the primal snapshots Spri decrease as illustrated in the
left panel of Figure 19. The right panel of Figure 19 displays the approximation error for the dual
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Figure 19: Test case (c) - Offline basis construction. Left: Singular values re-

sulting from the POD for the primal space pVN as a function of its size N . Right:
Approximation error for the dual space xW�

R as a function of its size R.

space xW�
R as its dimension R increases using the error norm Λ � } � }L2pΓcq. Once more, the CPG

algorithm is more efficient than the NMF. As observed in the previous test cases, the latter suffers
from stagnation (here, it occurs at the eighth iteration). Separately, we perform the EIM on both the
contact mapping κ and the gap mapping γ. The convergence is reported in Figure 20. Afterwards,
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Figure 20: Test case (c) - EIM error as a function of the rank M of the EIM ap-
proximation. Left: nonlinear gap mapping γ. Right: nonlinear contact mapping
κ.

we perform the online stage for the prescribed accuracy levels εpod � 1, εdu � 10�2, εkeim � 1, and
εgeim � 10�5. The left panel of Figure 21 displays the error on the minimum energy eenerpµq. As in the
previous test cases, the accuracies of the CPG algorithm using eight modes and the NMF using 21
modes are comparable, whereas the right panel shows the relative H1-error error on the displacement
field edisplpµq.
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Figure 21: Test case (c) - Left: Error on the minimum energy eenerpµq. Right:
Relative H1-error on the displacement field edisplpµq. The NMF uses 21 modes,
whereas the CPG algorithm and the truncated NMF use 8 modes.

6.4 Appendix: Non-negative Matrix Factorization (NMF)

For completeness, this section provides some details on the NMF. The following results can be found
in the literature on clustering [17]. The goal is to briefly describe the procedure

W � NMFpT, Rq, (66)

where we are given P vectors pt1, � � � , tP q forming the rectangular matrix T P RR�P
� whose entries

are all non-negative, and we are looking for R positive vectors pw1, . . . ,wRq forming the rectangular
matrix W P RR�R

� . We quantify the quality of the approximation of a matrix A by a matrix B by
the Frobenius norm of the difference

}A�B}2 :�
¸
ij

pAij �Bijq
2. (67)

The NMF optimization problem then reads:

pW,Hq � argmin
W̃PRR�R

�

H̃PRR�P
�

}T� W̃H̃}2, (68)

so that W P RR�R
� and H P RR�P

� . The functional }T�W̃H̃} is not convex in both variables W̃ and
H̃ together. Thus, only the recovery of local minima is considered. Regarding the search algorithm,
the decrease of the Frobenius norm is proven in [17] for the following iterative update rules:

Hij Ð Hij
pWTTqij

pWTWHqij
, W�

ij Ð W�
ij

pTHT qij
pWHHT qij

. (69)

The first update rule is equivalent to a gradient descent algorithm

Hij Ð Hij � ηij
�
pWTTqij � pWTWHqij

�
, (70)

with ηij � Hij{pWHHT qij. The reasoning for W�
ij is similar. The motivation for (69) is that if

the pair pW,Hq yields an exact reconstruction, i.e. T � WH, then pW,Hq is a fixed-point of the
algorithm. Finally, note that, in contrast to the POD, the integer R is a required input for the NMF.
Moreover, the uniqueness of the output is not guaranteed. In fact, any positive matrix D P RR�R

satisfies T � WDD�1H, thereby leading to another NMF decomposition.
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7 Conclusion and perspectives

We have presented a reduced basis scheme for parametrized nonlinear variational inequalities, which
can be efficiently applied to elastic frictionless contact problems from computational mechanics. We
tackled inequality constraints within the reduced basis method for a generic setting where neither
small displacements nor matching meshes are assumed. Reduced basis schemes that preserve key
physical properties such as the non-negativity of the Lagrange multipliers have been achieved through
a novel constrained greedy algorithm based on computing orthogonal projections onto a cone. Future
work includes the testing of the present methodology on three-dimensional test cases and on industrial
applications. Another promising research direction is the inclusion of friction in the contact problem.
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