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Methods for analysing sequential data generally produce a huge number of sequential patterns that have then to be evaluated and interpreted by domain experts. To diminish this number and thus the difficulty of the interpretation task, methods that directly extract a more compact representation of sequential patterns, namely closed partially-ordered patterns (CPO-patterns), were introduced. In spite of the fewer number of obtained CPO-patterns, their analysis is still a challenging task for experts since they are unorganised and besides, do not provide a global view of the discovered regularities.

To address these problems, we present and formalise an original approach within the framework of Relational Concept Analysis (RCA), referred to as RCA-Seq, that focuses on facilitating the interpretation task of experts. The hierarchical RCA result allows to directly obtain and organize the relationships between the extracted CPO-patterns. Moreover, a generalisation order on items is also revealed, and multilevel CPO-patterns are obtained. Therefore, a hierarchy of such CPO-patterns guides the interpretation task, helps experts in better understanding the extracted patterns, and minimises the chance of overlooking interesting CPO-patterns. RCA-Seq is compared with another approach that relies on pattern structures. In addition, we highlight the adaptability of RCA-Seq by integrating a user-defined tax-

Introduction

Formal Concept Analysis (FCA, [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF]) is a mathematical formalism which allows to analyse binary or more complex data by grouping objects with shared properties in formal concepts. These concepts are organised in a hierarchical structure called a concept lattice. Relational Concept Analysis (RCA, [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF]) is an extension of FCA designed to deal with relational data, and that results in a family of interrelated lattices, one lattice for each category of objects. It has been used with success in various domain, e.g. the fuzzy semantic annotation of web resources [START_REF] De Maio | Formal and relational concept analysis for fuzzy-based automatic semantic annotation[END_REF], the analysis and re-engineering of software models [START_REF] Dolques | Fixing Generalization Defects in UML Use Case Diagrams[END_REF], or semantic wikis [START_REF] Shi | Mining for reengineering: An application to semantic wikis using formal and relational concept analysis[END_REF], or the extraction of rules from large datasets [START_REF] Dolques | Performance-friendly rules extraction in large water datasets with AOC-posets and relational concept analysis[END_REF]. Nevertheless, RCA, as FCA, has some major challenges, one of them being the complexity of its result, since the number of concepts grows exponentially with the size of the dataset. However, several measures have been proposed to help the selection of relevant concepts (e.g. [START_REF] Buzmakov | Is concept stability a measure for pattern selection?[END_REF]). Furthermore, regarding RCA, users have to manually navigate the interrelated lattices in order to highlight the relationships between different categories of objects, which can be a complex task when there are several lattices. To deal with this problem, we proposed in a previous work [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF] to synthesise the navigation paths into closed partially-ordered patterns (CPO-patterns [START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF]), i.e. directed acyclic graphs where vertices are labelled with information extracted from the concepts out of the family of lattices.

Besides, sequential pattern mining is an active research domain whose aim is to find regularities in sequential data that can be assessed and interpreted by experts [START_REF] Agrawal | Mining sequential patterns[END_REF]. Various algorithms have therefore been proposed [START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF] and many of them focus on efficiently extracting concise representations of sequential patterns (e.g. closed sequential patterns [START_REF] Gomariz | Clasp: An efficient algorithm for mining frequent closed sequences[END_REF]). To obtain a more compact set of such sequential patterns, efficient algorithms for directly mining CPO-patterns were introduced in [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF][START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]. Precisely, a CPO-pattern summarises a set of closed sequential patterns that coexist in the same analysed sequences, and it has a graphical representation that facilitates the interpretation step. However, regardless of the fewer number of obtained CPO-patterns vs. sequential patterns, there are still some limitations as follows:

1. the interpretation task remains difficult since these CPO-patterns are unorganised; thus, experts should manually figure out how these CPOpatterns relate to each other; 2. experts do not have a global view of the discovered CPO-patterns; thus, pertinent CPO-patterns can be overlooked; 3. some interesting CPO-patterns cannot be found since they cannot be inferred. For example, one cannot infer the regularity broccoli before citrus from broccoli before lemon, and broccoli before orange without employing generalisation knowledge.

The approach we propose here is a contribution to both fields of RCA and sequential pattern analysis. The whole process is described in Fig. 1 and it is a twofold approach: (sequential data) exploration and (pattern) extraction. Firstly, RCA is applied to a relational context family (i.e. the RCA input) that encodes the analysed sequential data in order to obtain a family of concept lattices (i.e. the RCA result). Secondly, the interrelated concepts from the RCA result, are navigated to directly extract a CPO-pattern for each concept of a chosen lattice (called main lattice). The obtained CPOpatterns are automatically organised thanks to the generalisation order that exists between the associated concepts. Moreover, RCA reveals a generalisation order on items, and thus multilevel [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] CPO-patterns are obtained that provide a global view of the regularities hidden in sequential data. This generalisation order on items combined with the generalisation order on the CPO-pattern structures provides more instructive results. Finally, the hierarchy guides the experts in interpreting the obtained patterns, and provides a quick way to navigate to interesting CPO-patterns.

In this paper we contribute on:

1. formalising an RCA-based approach, referred to as RCA-Seq, which relies on the principles given by [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF], and presenting an algorithm CPOHrchy that directly extracts multilevel CPO-patterns by navigating the RCA result; 2. providing a complexity analysis of RCA-Seq based on the complexity of RCA;

Figure 1: RCA-based approach schema (taken from [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF])

3. comparing RCA-Seq with a pattern-structure approach [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] and with a sequential data mining approach [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]; 4. showing through an illustrative example that the structure of a hierarchy of multilevel CPO-patterns can be exploited to facilitate sequential data analysis; 5. extending RCA-Seq to integrate a user-defined taxonomy, and to extract CPO-patterns with user-specified constraints on the order relations on itemsets.

The paper is structured as follows. Section 2 gives the theoretical background of our work while Sect. 3 is an overview of the related work. Section 4 introduces a running example and details how to process it by using RCA. Section 5 focuses on interesting properties of the RCA result, and Sect. 6 defines and illustrates our proposal for automatically extracting hierarchies of multilevel CPO-patterns. In Sect. 7 we compare RCA-Seq with a pattern structure approach and show how it can be extended. Finally, we conclude the paper and give some perspective of our work in Sect. 8.

Preliminaries

Our approach relies on both sequential pattern analysis and FCA domains. In this section, we recall their definitions and principles.

Sequences, Sequential Patterns and PO-Patterns

Let I = {I 1 , I 2 , . . . , I m } be a set of items. An itemset I = {I j 1 , • • • , I j k }, where I j i ∈ I, is a non empty set of items. Let J = 2 I -∅ be the set of all itemsets built from I. A sequence, denoted by S = I 1 I 2 • • • I p , is an ordered list of itemsets I 1 , . . . , I p ∈ J . The order on the itemsets of S is denoted by S . Thus, for any two itemsets I α and I β in S it is possible to determine if I α S I β or I β S I α . The order S can be a temporal relation (e.g. {New Year's Eve 2015} is preceded by {New Year's Eve 2013}), a topological relation (e.g. {Polygon1} contains {Polygon2}), a directional relation (e.g. {Canada, US} is north of {Mexico}) or any other order in which related itemsets follow each other.

A sequence

S = I 1 I 2 • • • I p is a subsequence of another sequence S = I 1 I 2 • • • I q , denoted by S s S , if p ≤ q and if there are integers j 1 < j 2 < • • • < j k < • • • < j p such that I 1 ⊆ I j 1 , I 2 ⊆ I j 2 , . . . , I p ⊆ I j p .
A small example of a sequence database D S , i.e. a set of sequences, that contains three sequences built from the set of items I = {a, b, c, d} is shown in Fig. 2(a). For example, S 1 = {a}{b, c}{d} is a sequence with three itemsets {a}, {b, c} and {d}. A sequence S = {a}{c} is a subsequence of S 1 , S s S 1 , since {a} ⊆ {a}, {c} ⊆ {b, c}, and the order on itemsets is preserved.

Let us now consider a partial order on the items, denoted by (I, ). An itemset can thus contain items of various levels. Then the set inclusion on J is redefined as follows: I ⊆ I if ∀I j ∈ I, ∃I j ∈ I , I j I j and ∀I l = I j , ∃I l = I j such that I l I l . The order on sequences is defined as previously. To illustrate this, let us consider the set of items I 1 = {a, b, c, d, e, Consonant, Vowel , Letter } and the partial order (I 1 , ) depicted in Fig. 2(b), where an edge represents the binary relation is-a, denoted by . For example, a Vowel designates that letter "a" is a vowel. If we have two itemsets {a, b, c} and {a, Consonant}, then {a, Consonant} ⊆ {a, b, c} since a a and b Consonant (or c Consonant). Sequential patterns were introduced by [START_REF] Agrawal | Mining sequential patterns[END_REF] as frequent subsequences found in a sequence database. A subsequence is associated with a support, i.e. the number of sequences containing this subsequence. Formally, the support of a subsequence M in a sequence dataset D S is defined as Support(M ) = |{S ∈ D S |M s S}|. Given a user-specified minimum support θ, the M subsequence is θ-frequent, if Support(M ) ≥ θ. A θ-frequent subsequence is called a sequential pattern in the following. For instance, in Fig. 2(a) four sequential patterns are found for θ = 3, namely

Seq Id Sequence S 1 {a}{b, c}{d} S 2 {a, b, c} S 3 {a}{b, c}{a} ( 
M 1 = {a} , M 2 = {b} , M 3 = {c} , and M 4 = {b, c} .
Partially-ordered patterns (PO-patterns) were introduced by [START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF], to synthesise sets of sequential patterns. Formally, a PO-pattern is a directed acyclic graph G = (V, E, l). V is the set of vertices, E is the set of directed edges such that E ⊆ V × V, and l is the labelling function mapping each vertex to an itemset. This structure allows to define a strict partial order on vertices: let u = v, u < v if and only if there is a directed path from vertex u to vertex v. Each path of the graph represents a sequential pattern, and the set of paths in G is denoted by P G . A PO-pattern is associated with a set of sequences S G where each sequence contains all paths within P G . The support of a PO-pattern is defined as 2(c) shows the CPO-pattern G 1 that synthesises the aforementioned M 1 , M 2 , M 3 , and M 4 sequential patterns (M 1 = {a} is the upper path, M 4 is the lower one, M 2 and M 3 are covered by M 4 ) that coexist exactly in the same sequences S 1 , S 2 , and S 3 .

Support(G) = |S G | = |{S ∈ D S |∀M ∈ P G , M s S}|. Furthermore, let G and G be two PO-patterns with P G and P G their sets of paths. G is a sub PO-pattern of G, denoted by G g G, if ∀M ∈ P G , ∃M ∈ P G such that M s M . A PO-pattern G is closed, referred to as CPO-pattern, if there exists no PO-pattern G such that G ≺ g G with S G = S G . Figure

FCA

FCA considers an object-attribute context as input, and builds from it a concept lattice used to analyse the objects and their attributes. Concisely, an object-attribute context K is a 3-tuple (G, M, I), where G is a set of objects, M is a set of attributes, and I ⊆ G × M is an incidence relation that specifies which objects have which attributes

. A formal concept C derived from K is a pair (X, Y ) where X = Y and Y = X with Y = {g ∈ G|∀m ∈ Y, (g, m) ∈ I} and X = {m ∈ M |∀g ∈ X, (g, m) ∈ I}.
X and Y are respectively the extent and the intent of concept C. Let C K be the set of all formal concepts that can be built on K, and

C 1 = (X 1 , Y 1 ) and C 2 = (X 2 , Y 2 ) be two concepts from C K . The concept generalisation order K is defined by C 1 K C 2 if and only if X 1 ⊆ X 2 (⇔ Y 2 ⊆ Y 1 ). L K =(C K , K ) is the concept lattice built from K.
We denote by (L K ) the concept from L K whose extent has all the objects, and by ⊥(L K ) the concept from L K whose intent has all the attributes. The support of a concept C = (X, Y ) is defined as the cardinality of X. A concept is θ-frequent if |X| ≥ θ, where θ is user-defined minimum support. The set of all frequent concepts of C K is called the iceberg concept lattice of the context [START_REF] Stumme | Computing iceberg concept lattices with Titanic[END_REF].

Two object-attribute contexts

K 1 = (G 1 , M 1 , I 1 ) and K 2 = (G 2 , M 2 , I
2 ) represented as cross-tables are shown in Fig. 3(a) and 3(c), respectively. For instance, in cross-table K 1 the rows are the objects G 1 = {a 1 , a 2 , a 3 , a 4 }, the columns are the attributes M 1 = {m 1 , m 2 , m 3 }, and a cross in a cell identified by a pair (a i , m j ) ∈ I 1 signifies that object a i ∈ G 1 has attribute m j ∈ M 1 . Figures 3(b) and 3(d) illustrate the concept lattices L K 1 and L K 2 built respectively from K 1 and K 2 . Each concept is represented by a box structured from top to bottom as follows: concept name, simplified intent, and simplified extent. The arrows represent the generalisation order on concepts, e.g. in Fig. 3(d) CK2 2 K 2 CK2 3. The representation of the lattice is simplified as every attribute/object is top-down/bottom-up inherited. Thus an attribute/object is shown only in the highest/lowest concept where it appears. For example, in Fig. 3(b), concept CK1 3 has the extent {a 1 , a 3 , a 4 } where the objects a 1 and a 4 are inherited from concept CK1 2. The intent of CK1 2 is {m 1 , m 2 } where attributes m 1 and m 2 are inherited from CK1 4 and CK1 3, respectively. CK1 1 has the extent {a 2 }, and thus its support is |{a 2 }| = 1. If a minimum support θ = 2 is defined, then CK1 1 is not considered.

RCA

RCA extends the purpose of FCA to relational data. Compared to the data used in FCA, relational data represent several categories of objects rather than one category, and capture relations between these objects. The power of relational approaches lies in their ability to handle all this information. To handle relational data in RCA, two types of contexts are employed: object-attribute contexts describe the objects as in FCA, and object-object contexts encode binary relations between objects. For instance, by considering the K 1 and K 2 object-attribute contexts from Fig. 3 we can build the R 1 object-object context that defines the relation

r 1 ⊆ G 1 × G 2 between the objects of G 1 and G 2 .
Object-attribute and object-object contexts are gathered in a so-called Relational Context Family (RCF) that is the input of RCA. An RCF is a pair (K, R), where K is a set of object-attribute contexts and R is a set of objectobject contexts. K contains n object-attribute contexts K i = (G i , M i , I i ) , i ∈ {1, ..., n}. R contains m object-object contexts R j = (G k , G l , r j ) , j ∈ {1, ..., m}, where r j ⊆ G k × G l is a binary relation with k, l ∈ {1, ..., n}, G k = dom(r j ) is the domain of r j , and G l = ran(r j ) is the range of r j . For example, the RCF ({K 1 , K 2 }, {R 1 }) can be built from Figs. 3a, 3c and4a.

K 1 m1 m2 m3 a1 × × a2 × × a3 × a4 × × (a) K 1 ����� ����� � � ����� � � � � ����� � � � � ����� ����� � � � � (b) L K1 K 2 m 1 m 2 m 3 b1 × × b2 × b3 × (c) K 2 ����� ����� � � � � � ����� � � � � � ����� ����� � � � � � (d) L K2
RCA then relies on a relational scaling mechanism which aims at capturing in object-attribute contexts the relational information encoded in objectobject contexts. It is used to transform a relation r j into a set of relational attributes that extends the object-attribute context describing the set of objects dom(r j ). Here, we focus on a specific type of relational scaling, namely the existential scaling. A relational attribute ∃r j (C), where ∃ is the existential quantifier and C = (X, Y ) is a concept whose extent contains objects from ran(r j ), is owned by an object g ∈ dom(r j ) if r j (g) ∩ X = ∅.

The RCA process consists in applying FCA first on each object-attribute context of an RCF, and then iteratively on each object-attribute context extended by the relational attributes created by using the learnt concepts from the previous step. The RCA result is obtained when the families of lattices of two consecutive steps are isomorphic or in an equivalent manner, the object-attribute contexts are unchanged. For our example, L K 1 (Fig. 3(b)) and L K 2 (Fig. 3(d)) are respectively the initial lattices for the G 1 and G 2 sets of objects. K 1 is extended with relational attributes built by using concepts of L K 2 , and thus the extended object-attribute context K + 1 (Fig. 4(b)) is obtained. For instance, object a 3 has the relational attribute ∃r 1 (CK2 1) since the extent of CK2 1 contains b 2 and (a 3 , b 2 ) ∈ r 1 . The RCA result consists of L K + 1 (Fig. 4(c)) and L K 2 concept lattices. There is no other iteration since L K 2 has no new learnt concept. The RCA result is navigated following the concepts used to build relational attributes, e.g. ∃r 1 (CK2 1) of the CK1 7 intent (Fig. 4(c)) allows us to navigate from L K + 1 lattice to CK2 1 concept in L K 2 lattice.

R 1 b1 b2 b3 a1 × × a2 × × a3 × × a4 × × (a) R 1 K + 1 m1 m2 m3 ∃r1(CK2 4) ∃r1(CK2 3) ∃r1(CK2 2) ∃r1(CK2 1) a1 × × × × × × a2 × × × × × a3 × × × × × a4 × × × × × (b) K + 1 ����� �� � ������� �� � ������� �� � ������� ����� � � ����� � � ����� � � ����� �� � ������� ����� � � � � ����� � � ����� �� � ������� � � (c) L K + 1

Related Work

As far as we know, our work is the first attempt to explore sequential data by means of RCA. Nevertheless, there are various FCA approaches dealing with sequential data [START_REF] Wolff | Temporal concept analysis[END_REF][START_REF] Ferré | The efficient computation of complete and concise substring scales with suffix trees[END_REF][START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF][START_REF] Buzmakov | On Mining Complex Sequential Data by means of FCA and Pattern Structures[END_REF]. For example, in [START_REF] Wolff | Temporal concept analysis[END_REF] Temporal Concept Analysis (TCA) is introduced to explore objects described by dates and states. These data are merged into a single context, and temporal relations between the derived concepts are actually revealed by manually analysing the dates in the concepts. [START_REF] Poelmans | A Method based on Temporal Concept Analysis for Detecting and Profiling Human Trafficking Suspects[END_REF] used TCA to analyse sequential data about crime suspects. In contrast, RCA-Seq considers the temporal relations between dates as object-object relations, and it automatically reveals the temporal links between concepts of different lattices through the relational scaling mechanism. Authors in [START_REF] Buzmakov | On Mining Complex Sequential Data by means of FCA and Pattern Structures[END_REF] propose to use pattern structures [START_REF] Ganter | Pattern structures and their projections[END_REF] to build a concept lattice on complex sequential data about care trajectories. The pattern structure is (P, (S, ), δ), where P is the set of patients, S is a set of sequences and their subsequences, and is the set intersection. Each patient of P is described by a sequence (and its subsequences) through δ relation.This approach is deepened in [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF], where object descriptions are organised into a semi-lattice of closed sets of closed subsequences, which are built based on the corresponding CPO-patterns extracted from a sequence dataset (see a comparison with our approach in Sect. 7.1). A similar approach is used for analysing demographic sequences in [START_REF] Gizdatullin | Classification of demographic sequence basd on pattern structures and emerging patterns[END_REF].

Besides, sequential pattern mining area proposes various methods to explore sequential data [START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF]. Sequential patterns [START_REF] Agrawal | Mining sequential patterns[END_REF] have been used for different purposes, e.g. classification [START_REF] Cheng | Discriminative frequent pattern analysis for effective classification[END_REF] and prediction [START_REF] Wang | Sequential pattern mining for protein function prediction[END_REF]. Most of the existing works focus on mining efficiently sequential patterns [START_REF] Chen | An updown directed acyclic graph approach for sequential pattern mining[END_REF][START_REF] Fournier-Viger | Fast vertical mining of sequential patterns using co-occurrence information[END_REF]. To decrease the number of generated patterns and to have acceptable performance measures, many studies concentrate on finding more concise representations of sequential patterns such as closed sequential patterns [START_REF] Gomariz | Clasp: An efficient algorithm for mining frequent closed sequences[END_REF], and maximal sequential patterns [START_REF] Luo | Efficient mining of maximal sequential patterns using multiple samples[END_REF]. Regardless of the fewer number of generated concise patterns, the interpretation task is still difficult since there are closed sequential patterns that occur in the same set of sequences from the analysed database. Thus it is not an easy task for experts to gather these patterns. To this end, CPO-patterns are proposed in [START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF] where the generated closed sequential patterns are post-processed. To our knowledge, there are two algorithms [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF] and [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] that directly extract CPO-patterns, but with no generalisation on items.

FCA can classify and filter complex data (e.g. graphs and sequences) based on its extensions, such as Logical Concept Analysis [START_REF] Ferré | A logical generalization of formal concept analysis[END_REF], pattern structures [START_REF] Ganter | Pattern structures and their projections[END_REF], and Graph-FCA [START_REF] Ferré | A proposal for extending formal concept analysis to knowledge graphs[END_REF]. Lattices of closed partial orders were introduced in [START_REF] Casas-Garriga | Coproduct transformations on lattices of closed partial orders[END_REF], where a concept is defined as follows: a formal concept is a pair (S, G p ) where G p is a closed partial order for the set of sequences S, and the set of sequences S is closed for the partial order G p . In addition, Cellier et al. explain in [START_REF] Cellier | Partial orders and logical concept analysis to explore patterns extracted by data mining[END_REF] how Logical Concept Analysis can be used to organise already extracted patterns into a concept lattice. Similarly, in [START_REF] Egho | A FCA-based analysis of sequential care trajectories[END_REF] sequential patterns are mined using M3SP [START_REF] Plantevit | Mining multidimensional and multilevel sequential patterns[END_REF] algorithm from patient trajectory data.

Then, a hierarchy of such patterns is built based on FCA by considering patients as objects, and sequential patterns as attributes. Following the same idea, the set of CPO-patterns obtained by using [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF] or [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] can be organised into a lattice. The context would be (S, P, I) with S the set of sequences and P the set of CPO-patterns, and I(s, p) if s ∈ S is in the support of p ∈ P . By construction, to each subset of sequences is associated a unique CPO-pattern. Thus a concept is made of a CPO-pattern (intent) and the corresponding maximal subset of sequences (extent). If a user-defined minimum support is used, an iceberg lattice can be built as well. The resulting concept lattice can be compared to the hierarchy of CPO-patterns built in RCA-Seq. Let us however notice that first, in our approach, the CPOpatterns are extracted and organised into a hierarchy directly from the RCA result. Secondly, a partial order on items is generated, and thus multilevel CPO-patterns are obtained rather than those extracted in [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF][START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]. Such results can be related to [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF], where generalised sequential patterns are extracted based on a user-given taxonomy. In contrast, RCA allows to discover a taxonomy over the items.

Recently, [START_REF] Ferré | How hierarchies of concept graphs can facilitate the interpretation of RCA lattices?[END_REF] has proposed to help the analysis of the RCA result by extracting so-called concept graphs. There is no main lattice and both relational (inter-lattices) and hierarchical (intra-lattices) links are included within the graphs. Nevertheless, it gives the same results as those presented in [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF] when applied to sequential data.

Relational Analysis of Sequential Data

In this section, we introduce a small example inspired by the football team sport and show how it is modelled and processed by RCA.

Running Example

Patterns hidden in sequential football data about players (e.g. midfielders and goalkeepers), and their training session histories can provide valuable knowledge for coaches. Here, we propose to study the football drills (e.g. dribbling and pitch vision) that often constitute the criteria on which coaches decide the squad roles of players for the upcoming match, namely starters, substitutes, and reserves. Football drills are devised to develop the skills of players during their daily training sessions. There is a player evaluation prior to each match when coaches assign the squad roles to the football players. A football player sequence consists in a chronologically ordered set of training sessions for a player, and a corresponding evaluation which ends the sequence. A training session represents an observation itemset of football drills, while the player evaluation represents a target itemset; here this last itemset has only one item, specifically the squad role assigned to the player. Each observation or target itemset is associated with a pair (Player,Date) that uniquely identifies the itemset, where Date is the time of the Player trainig session or evaluation and is formatted as Day/Month.

Table 1 illustrates a small example of sequential football data collected during a year, where we focus on the starter squad role. Here, we study only the training sessions of midfielders prior to their evaluations. There can be several sequences of the same midfielder. The football sequences are built from three items as follows: two football drills PASSING and VISION, and a squad role STARTER. The football drills are rated as good or excellent, and the starter squad role is evaluated as important. Thus, in this example we deal with qualitative sequential data. For example, the last three rows from Tab. 1 constitute the sequence {PASSING excellent }{PASSING good , VISION excellent } {STARTER important } of midfielder P3. The first training -identified by the pair (P3,11/04) -was on April 11 th when the passing skills of midfielder P3 were excellent. The second training was on April 12 th when the passing and pitch vision skills of the same midfielder were respectively good and excellent. Then, on April 13 th , midfielder P3 was assigned as an important starter for the upcoming match.

Exploiting the relational character of our sequential football data, we propose to model our data given in Tab. 1 as shown in Fig. 5. There are four rectangles, one for each set of objects we manipulate as follows: squad roles (SR), football drills (FD), player evaluations (PE), and training sessions (TS). There is no temporal binary relation between player evaluations since our aim is to study the football drills in order to help coaches to identify the important starters for the upcoming match.

Applying RCA on Sequential Data

RCA processing firstly requires to encode the sequential football data (Tab. 1) into a relational context family. This is done in Tab. 2 according to the data model depicted in Fig. 5 Secondly, RCA is applied (by using RCAExplore1 tool) on the aforementioned relational context family and the family of concept lattices given in Fig. 6 is obtained after four iterations. There is a concept lattice for each object-attribute context as follows: L KPE (player evaluations), L KFD (football drills), and L KTS (training sessions). The obtained lattices contain temporal and/or qualitative relational attributes. For instance, the relational attribute ∃ReFD(CKFD 1) of concept CKTS 5 intent in L KTS lattice is a qualitative one since it introduces the qualitative relation has drill excellent, and allows us to navigate from L KTS to L KFD . Similarly, the relational attribute 

∃RPE-ipb-TS(CKTS 9) of concept CKPE 2 intent in L KPE is

Structure and Properties of RCA on Sequential Data

In the following we consider a database D S where sequences are made of two parts: 1) successive qualitative observations, and 2) one synthetic observation or evaluation (a target). A sequence is written as follows: S = I t 1 I t 2 • • • I tp I m where I t 1 , I t 2 , . . . , I tp ∈ J t and I m ∈ J m = J t . Each itemset in a sequence is associated with a timestamp t 1 , t 2 , . . . t p , t target and a contextual information. A contextual timestamp (p, t) combines the contextual information p with a timestamp t. Such data can represent care trajectories and the final diagnoses of patients, physico-chemical measures followed by a global biological assessment of the water quality of a river [START_REF] Nica | Exploring temporal data using relational concept analysis: An application to hydroecological data[END_REF], or football player coaching as in our running example. Itemsets are linked by the temporal relation "is preceded by" since the general aim is to explain the evaluation at the end of the sequence by previous observations. Based on the data model shown in Fig. 5, we transform the database within a relational context family with four object-attribute contexts and at least four object-object contexts. The object-attribute contexts rely on four sets of objects: G m is the set of all contextual timestamps (p, t target ), representing the sequence targets. G t is the set of all contextual timestamps (p, t) representing the observations within sequences, G i is the set of all items from singletons of J t , and G e is the set of all items from singletons of J m .

K m = (G m , M m , I m ) and K t = (G t , M t , I t ) where M m = M t = ∅, while K i = (G i , M i , I i )
and K e = (G e , M e , I e ) where M i = G i (resp. M e = G e ) and I i (resp. I e ) is the identity relation.

The object-object contexts are as follows: a first temporal relation is preceded by, denoted by ipb 1 ⊆ G m ×G t , that defines temporal links between target contextual timestamps (of G m ) and observation contextual timestamps; a second temporal relation is preceded by, denoted by ipb 2 ⊆ G t × G t , that defines temporal links between contextual timestamps of G t ; a qualitative relations has item, denoted by hi ⊆ G t × G i , that defines itemsets in J t ; a qualitative relation has evaluation, he ⊆ G m × G e , that defines itemsets in J m . If items are annotated with quality levels, the hi (resp. he) relation can be repeated into various hi q relations (resp. he q ).

Example: Table 2 represents the relational context family of the running example. Object-attribute contexts KPE and KTS correspond respectively to K m and K t . KFD corresponds to K i . K e (and he) are not represented since there is only one item in G e (i.e. STARTER). Object-object context RPE-ipb-TS corresponds to ipb 1 while RTS-ipb-TS corresponds to ipb 2 . There is two (hi q ) relations, RgFD and ReFD, according to the quality level (good or excellent) associated to the items.

The RCA result comprises four lattices, one for each set of objects, as follows: a main lattice L Km , a temporal lattice L Kt , a lattice of observation items L K i , and a lattice of target items L Ke . The corresponding lattices of the running example are represented respectively in Fig. 6(a) (L KPE ), 6(c) (L KTS ), 6(b) (L KFD ). The lattice of squad roles is unnecessary here.

The structure of resulting lattices is described in the following. Firstly, the main lattice

L Km = (C Km , Km ) has concepts C m = (X m , Y m ) such that:
the intent Y m contains temporal relational attributes of the form ∃ipb 1 (C t ), where C t ∈ L Kt describes objects from ran(ipb 1 ) = G t ; e.g. CKPE 4 ∈ L KPE has attribute ∃RPE-ipb-TS(CKTS 3) where CKTS 3 ∈ L KTS (see Fig. 6). -the extent X m gathers all objects in G m that respect the temporal order with at least one G t object pointed by temporal relational attributes of Y m ; e.g. CKPE 4 ∈ L KPE has an object (P1, 28/09) preceded by the object (P1, 27/09) of CKTS 3.

Secondly, the lattice of observation items

L K i = (C K i , K i ) is such that (L K i ) extent
contains all the items, while the other concept extents contain only one item (see Fig. 6(b) for L KFD as an example). The lattice L Ke = (C Ke , Ke ) has the same characteristics. Finally, the temporal lattice 

L Kt = (C Kt , Kt ) contains temporal concept C t = (X t , Y t )

Properties of the RCA Result

We recall here some useful properties of the RCA result (proofs are in [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF]), which rely on its aforementioned structure, and are used to help the extraction step of CPO-patterns. Briefly, sequential patterns that coexist in the same sequences in D S are revealed by navigating interrelated concept intents.

Property 1. Each temporal relational attribute of a main concept intent allows to extract at least one sequential pattern. In contrast, if there is no temporal relational attribute in a main concept intent, this concept represents no sequential pattern. Suppose, C m ∈ C Km is a main concept, and ∃ipb 1 (C t ) is a temporal relational attribute of its intent, where C t ∈ C Kt . If C t intent contains a qualitative relational attribute ∃hi (C i ), where C i ∈ C K i , then C t reveals an itemset of qualitative values; if C t concept intent contains a temporal relational attribute ∃ipb 2 (C t ), then C t leads to another itemset in the sequential pattern, depending on C t intent. Therefore, the order on itemsets in the sequential pattern is revealed by temporal relational attributes. If a navigated concept intent contains no temporal relational attribute, then the extraction of the sequential pattern is finished.

Example (Fig. 7): CKPE 4 has attribute ∃RPE-ipb-TS(CKTS 4) whereas CKTS 4 ∈ L KTS has attribute ∃RgFD(CKFD 2) revealing the itemset PASSING good (see Fig. 6); furthermore CKTS 4 has attribute ∃RTS-ipb-TS(CKTS 7) leading to CKTS 7; on the contrary CKTS 5 has only qualitative relational attributes. Property 3. The set of CPO-patterns associated with L Km main lattice is ordered according to the inclusion on extents. This order corresponds to the subsumption on graphs g (see Sect. 2.1).

The following properties 4 and 5 are useful to remove the redundancy occurring when all relational attributes of interrelated concept intents are navigated. Basically, these two properties help us to obtain directly the minimal representations of the extracted CPO-patterns by considering only the relational attributes pointing to the most specific concepts, and by pruning temporal relational attributes that can be deduced by transitivity. Property 4. Let C 1 = (X 1 , Y 1 ) and C 2 = (X 2 , Y 2 ) be two concepts from the same lattice L K such that C 1 K C 2 . Let C = (X, Y ) be a concept whose intent has two relational attributes ∃r(C 1 ) and ∃r(C 2 ) (derived from the same relation r). Then ∃r(C 1 ) → ∃r(C 2 ).

Hence, the relational attributes are ordered according to the concepts they point at, and ∃r(C 2 ) is redundant in the interpretation of C. 

Extracting Multilevel CPO-Patterns from the RCA Result

In this section we introduce an algorithm that directly generates a hierarchy of multilevel CPO-patterns. We provide a complexity analysis and show how the obtained hierarchy can be analysed and navigated with the help of our running example.

6.1. CPOHrchy Algorithm: from the RCA Result to a Hierarchy of CPO-Patterns Since our objective is to directly obtain organised CPO-patterns, and, besides, since there is a generalisation order on the concepts, we propose to use a 3-tuple structure P m = (X m , Y m , G m ) derived from a main concept C m = (X m , Y m ). G m is the CPO-pattern associated with C m , and it is built from C m and a list of nested linked concepts C t = (X t , Y t ); from each Y t is derived a vertex v t .

Algorithm 1, referred to as CPOHrchy, takes as input the three lattices L Km , L Kt and L K i , and its output is a lattice L * Km of P m structures -i.e. the main concepts of L Km are extended with the corresponding CPO-patterns. The three lattices are represented as sets of concepts, where for each concept its upper covers are known 2 .

For each main concept C m , whose intent has at least one temporal relational attribute, a list of adjacent concepts is built in a breadth-first manner based on Properties 4 and 5. The adjacent concepts are further navigated relying on the temporal relational attributes from their intents. For each navigated concept is derived a vertex labelled with an itemset (detailed below). ⊥(L Km ) is not taken into consideration, since this concept is too specific and not frequent.

Algorithm 2, called SearchAdjacentConcepts, shows how to derive from temporal relational attributes of C m intent the next concepts C next that should be navigated by relying on Properties 4 and 5, i.e. the concepts linked to C m by the temporal relational attributes of its intent. This algorithm is applicable to temporal concepts (in this case ipb 1 is replaced with ipb 2 ) as well. Lines [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF][START_REF] De Maio | Formal and relational concept analysis for fuzzy-based automatic semantic annotation[END_REF][START_REF] Dolques | Fixing Generalization Defects in UML Use Case Diagrams[END_REF][START_REF] Shi | Mining for reengineering: An application to semantic wikis using formal and relational concept analysis[END_REF][START_REF] Dolques | Performance-friendly rules extraction in large water datasets with AOC-posets and relational concept analysis[END_REF][START_REF] Buzmakov | Is concept stability a measure for pattern selection?[END_REF][START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF]: delete all concepts in C next that are upper covers for other concepts in C next , i.e. delete concepts that are not the most specific ones in C next . Lines [START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF][START_REF] Agrawal | Mining sequential patterns[END_REF][START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF][START_REF] Gomariz | Clasp: An efficient algorithm for mining frequent closed sequences[END_REF][START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF][START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF][START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF]: prune all concepts in C next that can be deduced by navigating other ones in C next .

Basically, CPOHrchy algorithm stems from our RCA-based approach introduced in [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF] in which we focused on extracting directly sequential patterns, and then on converting them to CPO-patterns using the merging and pruning methods presented in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]. However, CPOHrchy extracts directly CPO-patterns. To improve its efficiency we use two optimisations:

1. since a temporal concept C t = (X t , Y t ) can be navigated several times for distinct CPO-patterns, we process C t only at its first navigation, i.e. SearchAdjacentConcepts is applied only once and its result is saved for later use; similarly, v t is computed and saved together with C t ; 2. since a CPO-pattern G m associated with a main concept

C m = (X m , Y m ) is discovered if Support(G m ) = |X m | ≥ θ (
remember that θ is a userspecified minimum support for the main lattice), then all navigated temporal concepts

C t = (X t , Y t ) should have |X t | ≥ |X m |.
Therefore, we diminish the navigation space by defining a minimum support θ = θ for the temporal lattice as well.

The labelling of vertices was described in [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF]. We briefly recall this step. To convert a navigated concept to a vertex labelled with an itemset, all qualitative relational attributes of this concept intent are analysed. Property 4 is applied again to consider, for the same qualitative relation, only the most specific concepts used to build the corresponding qualitative relational attributes in the concept intent. A qualitative relational attribute ∃r(C i ), where C i is a concept in the L K i lattice of items, can be vague if

C i ≡ (L K i ), respectively it can be defined if C i ≺ K i (L K i ).
Based on the order on items given by lattice L K i and on the aforementioned types of qualitative relational attributes, there are three types of items that can be derived, precisely concrete qualitative, abstract qualitative and abstract. A concrete qualitative item, denoted by "item q ", is derived from a defined qualitative relational attribute ∃hi q (C i ), with extent(C i ) = {item} and q the item quality. An abstract qualitative item, denoted by "? q ", is derived from a vague qualitative relational attribute ∃hi q ( (L K i )). An abstract item, denoted by "? ? ", is obtained when the concept intent has no qualitative relational attribute.

For instance, Fig. 8(a) depicts a vertex having an abstract item that characterises all training sessions from Tab. 1 since all of them are described by at least one football drill rated either as good or excellent. Figure 8(b) shows a vertex having an abstract qualitative item characteristic to all training sessions from extent CKTS 7 that are described by different football drills, but all rated as excellent. Figure 8(c) illustrates a vertex having a concrete qualitative item characteristic to all training sessions from extent CKTS 2 that are described by a specific football drill, namely passing, rated as excellent. Depending on the number of concrete and/or abstract items in a CPOpattern (except for the target itemset, in this case), we are able to directly extract multilevel CPO-patterns, namely abstract, hybrid and concrete. An abstract CPO-pattern contains only abstract items, and reveals an imprecise common regularity of the analysed sequences. A hybrid CPO-pattern contains both abstract and concrete items, and discloses a "more or less" accurate common regularity of the analysed sequences. A concrete CPO-pattern contains only concrete items, and reveals an accurate common regularity of the analysed sequences.

Complexity Analysis

We present a time complexity analysis of the RCA-Seq approach that is compared with the time complexity of [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] and [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF].

We first consider the method of CPO-pattern extraction described in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]. In the following I is a set of items, D S is a sequence dataset built on itemsets from I, and l is the maximum length of the sequences in D S . Let us denote by m the number of obtained CPO-patterns. [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] spans two steps, and the overall complexity in the worst-case scenario is O(m • 2 • (2 • |I|) l ). If we build a hierarchy of these results in a post-processing step, and since the CPOpatterns are closed and already associated with their supporting sequences, the complexity of the added step would be 1) building the context patternssequences: O(m•|D S |) and 2) building the lattice3 : O(m 2 •|D S |•(m+2)). Thus the whole [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] process complexity would be

O(m•2•(2•|I|) l +m 3 •|D S |) = O 1 .
We now consider the current RCA-Seq approach that relies on two algorithms, namely Multi-FCA (RCA process, [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF]) and CPOHrchy. We focus on the worst-case scenario. Following our data model (Fig. 5), let us consider an RCA input that comprises the set of object-attribute contexts

{K m = (G m , M m , I m ), K t = (G t , M t , I t ), K i = (G i , M i , I i )}
and the associated object-object contexts. At the end of RCA process, the obtained RCA result contains the set of concept lattices {L Km , L Kt , L K i } built from the extended object-attribute contexts [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF], in the worst-case scenario the overall computation time of the considered RCA result is

{K + m = (G m , M + m , I + m ), K + t = (G t , M + t , I + t ), K i = (G i , M i , I i )}. We denote by |L K i | the number of formal concepts of L K i . According to
O(n c • n o • (n a + n o )), where n c = max (|L Km |, |L Kt |, |L K i |), n a = max (|M + m |, |M + t |, |M i |), and n o = max (|G m |, |G t |, |G i |).
The completeness and correctness of RCA process is discussed in [START_REF] Rouane-Hacene | Soundness and completeness of relational concept analysis[END_REF].

The worst-case scenario for CPOHrchy algorithm is when each main/temporal concept points to all concepts in L Kt . Let us denote m = |L Km | (each element of L Km reveals a CPO-pattern), p = |L Kt |, and q the number of all qualitative relational attributes from a temporal concept intent. First, we focus on Algorithm 2. The overall computation time is O(p) since we iterate throughout p concepts pointed by the temporal relational attributes of Y m at Lines [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF][START_REF] Dolques | Fixing Generalization Defects in UML Use Case Diagrams[END_REF][START_REF] Buzmakov | Is concept stability a measure for pattern selection?[END_REF][START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF][START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]. The other lines are O(1). Second, in Algorithm 1, Lines are executed m times. Lines [START_REF] Shi | Mining for reengineering: An application to semantic wikis using formal and relational concept analysis[END_REF][START_REF] Buzmakov | Is concept stability a measure for pattern selection?[END_REF] have the complexity O(p) since C next contains p concepts pointed by Y m temporal relational attributes. Lines [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF][START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF][START_REF] Agrawal | Mining sequential patterns[END_REF][START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF][START_REF] Gomariz | Clasp: An efficient algorithm for mining frequent closed sequences[END_REF][START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF][START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF][START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF][START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF][START_REF] Stumme | Computing iceberg concept lattices with Titanic[END_REF][START_REF] Van Der Merwe | Addintent: A new incremental algorithm for constructing concept lattices[END_REF][START_REF] Nica | Exploring temporal data using relational concept analysis: An application to hydroecological data[END_REF][START_REF] Roth | On succinct representation of knowledge community taxonomies with formal cconcept analysis[END_REF][START_REF] Rouane-Hacene | Soundness and completeness of relational concept analysis[END_REF] are executed p times since each temporal concept of L Kt is visited only once and the complexity of these lines is O(p(q + p)). Indeed, Lines [START_REF] Gomariz | Clasp: An efficient algorithm for mining frequent closed sequences[END_REF][START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF][START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] are O(p) since C next has p concepts pointed by Y t temporal relational attributes; Line [START_REF] Agrawal | Mining sequential patterns[END_REF] is O(q); and the other lines are O(1). Since generally q ≤ p, the computation time becomes O(p 2 ). Therefore, in the worst-case scenario the overall computation time for CPOHrchy is O(m • p 2 ).

To sum up, the overall time complexity of

RCA-Seq is O(n c • n o • (n a + n o ) + m • p 2 ) = O 2 .
To compare with the aforementioned complexity O 1 , we consider that the sizes of I and D S -which correspond to sets of objects -are smaller than n o , while m and p are smaller than

n c . Then, O 1 is upper bounded by O(n c • 2 • (2 • n o ) l + n 3 c • n o ), while O 2 is upper bounded by O(n c • n o • (n a + n o ) + n 3 c ).
Finally, since l is generally greater than 3, the complexity of RCA-Seq is better than the complexity of the approach described in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] combined with a lattice-building step.

Regarding the previous approach [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF], it employs the merging and pruning step explained in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] that has in the worst-case scenario the complexity O(m • (2 • |I|) l ), where the set of items I corresponds to all the qualitative relational attributes used to derive the items from the discovered patterns. Thus, the complexity of [START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF] 

extraction step is O(m • (p 2 + (2 • |I|) l )).

Application to the Running Example: Extraction and Navigation of a

Hierarchy of Multilevel CPO-Patterns To illustrate RCA-Seq processing, let us consider that we want to extract the CPO-pattern associated with the main concept CKPE 7 from the lattice of player evaluations L KPE (Fig. 6(a)). Following Fig. 9, from right to left, we start by examining all temporal relational attributes from intent CKPE 7 that are ordered according to the generalisation order KTS on the concepts used to build them. Since there is only one most specific concept, the next navigated concept is CKTS 8 from the lattice of training sessions L KTS .

By analysing the concepts used to build all temporal relational attributes from intent CKTS 8, we notice that there are two most specific concepts CKTS 10 and CKTS 5. Moreover, CKTS 10 intent contains the ∃RTS-ipb-TS(CKTS 5) temporal relational attribute that points to CKTS 5, and thus the next navigated concept is only CKTS 10 since CKTS 5 generates redundant information. The intent of CKTS 10 consists in three temporal relational attributes and the most specific concept used to build them is CKTS 5. The intent of CKTS 5 shown in L KTS (Fig. 6(c)) has no temporal relational attribute, and thus the navigation is finished. In Fig. 9, 1 represents the set of navigated concepts that should be converted into vertices. To this end, we analyse the qualitative relational attributes from the navigated concept intents that enable us to extract the CPO-pattern 2 , denoted by G CKPE 7 . From right to left, the vertex labelled with 1-itemset {STARTER important } contains the default concrete qualitative item associated with CKPE 7 intent. The intent of concept CKTS 8 contains four qualitative relational attributes, ∃ReFD(CKFD 3), ∃ReFD(CKFD 1), ∃RgFD(CKFD 3), and ∃RgFD(CKFD 2), that highlight two qualitative relations has drill excellent and has drill good. The concrete qualitative item VISION excellent is then derived from the most specific concept used to highlight the has drill excellent relation, and PASSING good is derived from the most specific concept used to highlight the has drill good relation. Therefore, the itemset {VISION excellent , PASSING good } is the label of the vertex derived from concept CKTS 8. Similarly, the vertex labelled with itemset {PASSING good } consists in only one concrete qualitative item derived from ∃RgFD(CKFD 2) qualitative relational attribute of CKTS 10 intent; finally the vertex labelled with itemset {VISION excellent } consists in only one concrete qualitative item derived from the ∃ReFD(CKFD 1) qualitative relational attribute of intent CKTS 5. The obtained CPO-pattern can be interpreted as follows: a midfielder should be assigned as important starter when prior to the upcoming match he has an excellent vision and at least a good level of passing.

RCA-Seq results in a hierarchy of multilevel CPO-patterns as shown in Fig. 10 In short, the hierarchy emphasises two benefits of the RCA-Seq result. Firstly, the generalisation order regarding the structure of CPO-patterns. For example, the structure of (d) is more specific than the one of its ancestor CPO-patterns. Secondly, the partial order on items and the inclusion order on itemsets. For instance, (e) reveals the {PASSING excellent } ← {STARTER important } regularity -i.e. a midfielder is selected as starter if before the upcoming match he showcases excellent passing skills -that is an accurate specialisation of the less accurate regularity {? excellent } ← {STARTER important } revealed by (c) -i.e. a midfielder is selected as starter if he showcases excellent skills. Similarly, (d) discloses the {PASSING good , VISION excellent } ← {STARTER important } regularity that is a specialisation of the {PASSING good } ← {STARTER important } one revealed by (b). In addition, the hybrid CPO-pattern (d) with Support = 3 can be uncovered when θ = 3 even if its accurate specialisation (f) is not frequent, and thus is not extracted. Therefore, relying on these benefits, we can say that the obtained hierarchy provides a quick way to navigate to interesting CPO-patterns, and, besides it can help experts (e.g. football coaches) to better understand the analysed data.

Accordingly, a coach can navigate the hierarchy given in Fig. 10 based on the employed football style. Precisely, CPO-pattern (b) emphasises the counter-attacking style, i.e. when a midfielder possesses the ball, he is reactive and immediately tries to pass the ball to the most advanced teammate. In contrast, CPO-pattern (c) highlights the possession style, i.e. midfielders have to maintain possession throughout the game by using accurate passes and/or excellent visual acuity. As a result, the coach might navigate a different number of CPO-patterns, namely 3 descendants of (b) or 4 of (c). Furthermore, the (f) and (g) CPO-patterns can assist the coach in deciding particular positions of midfielders on the pitch. Hence, firstly, (g) might represent a defensive midfielder that among other skills needs to possess good passing skills to hold the ball under sustained pressure. Secondly, (f) might represent an attacking midfielder that has to possess superior technical abilities in terms of passing and vision to deliver passes to strikers. Following the same principles, the coach can continue the navigation being guided by the relationships between the multilevel CPO-patterns.

Comparing and Extending the RCA-Seq Approach

In this section, we want to compare RCA-Seq with another FCA-based method for extracting CPO-patterns. Furthermore, we want to illustrate based on the running example how to adapt our approach to generate: first, CPO-patterns that contain items from different levels of a user-defined taxonomy; second, CPO-patterns that have user-specified constraints on the order relations on itemsets.

Hierarchies of Multilevel CPO-Patterns vs Sequence Pattern Concept

Lattices Here, we compare the results obtained by using two distinct approaches for analysing sequential data, namely our RCA-Seq and the one introduced in [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF], which relies on pattern structures. This comparison is relevant since [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] also proposes to represent the closed subsequences that coexist in one or more sequences as a directed acyclic graph of alignments, i.e. a CPO-pattern.

We use the small sequence database D S shown in Tab. 11(a), which is taken from [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF]. No threshold for the support measure is employed. Firstly, for the sake of brevity we do not explain how to apply pattern structures to D S and we rely on the generated sequence pattern concept lattice given in [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF]. Secondly, we apply RCA-Seq to D S by using the data model depicted in Fig. 11(b) and by following the steps presented in Sect. 4 and 6. In short, the three rectangles in Fig. 11(b) represent: the set of sequence-building items {a, b, c, d, e, f, g}, the set of the identifiers of sequence-building itemsets and the set of the analysed sequences {α 1 , α 2 , α 3 , α 4 }.

Seq Id

Sequence α 1 {a}{a, b, c}{a, c}{d}{c, f } α 2 {a, d}{c}{b, c}{a, e} α 3 {e, f }{a, b}{d, f }{c}{b} α 4 {e}{g}{a, f }{c}{b}{c} Both the hierarchy of multilevel CPO-patterns extracted with RCA-Seq and the sequence pattern concept lattice obtained through [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] contain 15 concepts having the same extents but different intents. For instance, in case of RCA-Seq the concept with extent {α 1 , α 2 } is associated with the multilevel CPO-pattern G 1 shown in Fig. 12(a), while in case of [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] the same concept extent is associated with the classical CPO-pattern G 2 given in Fig. 12(b). It is noted that G 1 summarises 6 closed subsequences that coexist in α 1 and α 2 , whereas G 2 summarises only 3 closed subsequences. In addition, G 2 ≺ g G 1 . Hence, G 1 uncovers the regularities captured by G 2 and besides, it reveals additional regularities common to α 1 and α 2 , but to a lesser extent. For example, {d} precedes {c} in both sequences, but {d} also precedes {?}, which indicates different items in α 1 (e.g. {f }) and α 2 (e.g. {b} or {e}). To sum up, on the one hand, RCA-Seq provides CPO-patterns that reveal really detailed overviews of the associated sequences. On the other hand, [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] generates CPO-patterns that uncover only broad overviews of the associated sequences. Furthermore, the lattice of CPO-patterns is directly built by RCA-Seq, while the approach described in [START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] first extracts CPOpatterns, and then builds the lattice.

Usage of RCA-Seq with a Taxonomy

RCA-Seq reveals a taxonomy over the items due to the nominal scaling used to encode the set of items into the RCA input. This taxonomy has only two levels: first, the level comprising each specific item, and second, the level with the general item, i.e. the item that represents the set of items used to build the analysed sequences. Accordingly, the extracted multilevel CPO-patterns contain only items from these two levels. Srikant et al. in [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] propose to use a user-defined taxonomy over the items, in order to generate sequential patterns including items across different levels. To this end, they preprocess each sequence from the database to obtain an "extendedsequence", i.e. the ancestors (from the taxonomy) of each item are added in the sequence. Thus, their algorithm GSP explores sequences that already contain the relationships between the items and their ancestors.

In contrast, RCA-Seq can easily integrate a user-defined taxonomy in the RCA input, and, besides extracts directly organised CPO-patterns that contain items from different levels of the taxonomy without preprocessing the different levels of the taxonomy of football drills. Indeed, during the relational scaling step, RCA reveals the relationships between training sessions and football drills across different levels of the taxonomy. The conversion of navigated concepts into vertices relies on the simplified lattice of football drills given in Fig. 14(c).

KFD D P S LP SP SPo LS D × P × × S × × LP × × × SP × × × SPo × × × LS × × × ( 
Let us note that our approach with a user-defined taxonomy can be applied to explore sequences that include items across different levels of the taxonomy, as well.

DRILL good

SHORT PASS excellent

SHOT POWERgood PASSINGexcellent STARTERimportant

Figure 15: CPO-pattern with items across different levels of Fig. 13(a) taxonomy 7.3. Usage of RCA-Seq with Constraints on the Order Relations on Itemsets In RCA-Seq approach the order on itemsets in a CPO-pattern is revealed by relational attributes from the navigated concept intents; these attributes being built using the existential scaling. For instance, using the running example, in Fig. 16 there is a temporal link between the CKPE 3 main concept and the CKTS 2 temporal concept (revealed by ∃RPE-ipb-TS(CKTS 2) in CKPE 3 intent) since each player evaluation in extent CKPE 3 is preceded by at least one training session in extent CKTS 2. Therefore, the CKPE 3 extent gathers all player evaluations from the analysed data (Tab. 1) that are preceded respectively by at least one training session when the midfielder passing skills were excellent. However, coaches can be interested in finding out patterns that are available for midfielders that frequently show certain skills before an upcoming match. For example, coaches can look for player evaluations that are preceded by more than 50% of the associated training sessions for which passing skills were rated excellent. Similarly, such constraints can be used on the temporal relations between training sessions. Using the RCA-Seq approach, CPO-patterns revealing such situations can be extracted by only changing the quantifier used to introduce relations encoded in temporal object-object contexts during the iterative steps. To add the constraint "player evaluation is preceded by more than 50% of the associated training sessions", we use the existential quantifier with a user-specified cardinality, denoted by ∃ >n% [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF] where n = 50. Formally, a relational attribute ∃ >n% r(C), where r is a relation and C = (X, Y ) is a concept whose extent contains objects from ran(r), describes an object g ∈ dom(r) if r(g) ∩ X = ∅ and |r(g) ∩ X| > n×|r(g)| 100 . To illustrate this, we apply again RCA to the RCA input depicted in Tab. 2 by changing quantifier ∃ to ∃ >50% for the RPE-ipb-TS temporal objectobject context (the ∃ quantifier is preserved for RTS-ipb-TS). The same RCA result from Fig. 6 is obtained except for the L KPE main lattice that has the new structure shown in Fig. 17. It is noted that the number of extracted CPOpatterns (main concepts) is smaller since the criterion imposed by coaches is more restrictive. In addition, the CPO-pattern in Fig. 16 is associated with the CKPE 2 main concept in Fig. 17 lattice, and in this case there is only a player evaluation that has more than 50% of the associated training sessions for which passing skills were excellent. Let us note that depending on the motivation behind the analysis, the various quantifiers presented in [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF] and their variants can be applied in the same way.

Conclusion

In this paper, we have presented an original framework, referred to as RCA-Seq, for helping experts when exploring sequential qualitative data. This framework allows to directly extract hierarchies of multilevel CPOpatterns thanks to the structure and the properties of the RCA result.

The primary aim of our approach is to enhance the analysis of the extracted set of CPO-patterns. To this end, we benefit from the fact that some CPO-patterns are naturally sub-patterns of others, and we propose to extract hierarchies of CPO-patterns where each CPO-pattern is projected into its descendants. Consequently, when an interesting CPO-pattern is found, the analysis can continue by exploring the surrounding area in the hierarchy.

Then, we exploit the order on items revealed by RCA, and we extract multilevel CPO-patterns. Therefore, a global view of the trends of the analysed data is obtained. In addition, we show that RCA-Seq can be easily adapted to extract CPO-patterns with items across different levels of a user-defined taxonomy, and to specify constraints on the order relations on the itemsets of extracted CPO-patterns.

This work opens up interesting research directions. One of them is to improve RCA-Seq to be applicable to large volumes of sequential data (e.g. combining AOC poset [START_REF] Godin | Building and maintaining analysis-level class hierarchies using galois lattices[END_REF] with RCA to cope with the "concept explosion" problem). A second direction is to push measures of interest (e.g. stability index [START_REF] Buzmakov | Is concept stability a measure for pattern selection?[END_REF] or distribution index [START_REF] Nica | Exploring temporal data using relational concept analysis: An application to hydroecological data[END_REF]) into the exploration step to decrease the number of extracted multilevel CPO-patterns. Using or adapting other more sophisticated scores proposed in the FCA framework [START_REF] Kuznetsov | On interestingness measures of formal concepts[END_REF] is also an important extension to the present work. Another future research direction is to study different quantifiers that can be used during the relational scaling mechanism and the types of revealed CPO-patterns [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF][START_REF] Braud | Generalization effect of quantifiers in a classification based on relational concept analysis[END_REF]. 
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 12 Figure 2: (a) a sequence database D S ; (b) a partial order on the set of items I 1 ; (c) a PO-pattern associated with the set of sequences {S 1 , S 2 , S 3 } ∈ D S
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 4 Figure 4: (a) R 1 object-object context that defines the binary relation r 1 ; (b) K + 1 is the extended object-attribute context obtained after relational scaling by using existential quantifier; (c) L K + 1 concept lattice of K + 1
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 6 Figure 6: (a) L KPE -lattice of player evaluations; (b) L KFD -lattice of football drills; (c) L KTS -lattice of training sessions (obtained by applying RCA to Tab. 2)
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 7 Figure 7: Two navigation paths beginning with CKPE 4 main concept intent (cf. Fig. 6(a))
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 5 Let ipb be a temporal relation. Let C = (X, Y ), C 1 = (X 1 , Y 1 ) and C 2 = (X 2 , Y 2 ) be three concepts such that {∃ipb(C 1 ), ∃ipb(C 2 )} ⊆ Y , and ∃ipb(C 2 ) ∈ Y 1 . Then ∃ipb(C 2 ) ∈ Y can be deduced from ∃ipb(C 1 ) ∈ Y .
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 9 Figure 9: Extracting the CPO-pattern associated with the CKPE 7 main concept. 1 is the set of navigated concepts and 2 is the generated CPO-pattern
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 10 Figure 10: The hierarchy of multilevel CPO-patterns obtained by exploring with RCA-Seq the illustrative example given in Tab. 1
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 11 Figure 11: (a) sequence database D S taken from [16]; (b) the modelling of D S used by RCA-Seq
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 12 Figure 12: (a) multilevel CPO-pattern generated by RCA-Seq; (b) classical CPO-pattern generated by[START_REF] Codocedo | A proposition for sequence mining using pattern structures[END_REF] 
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 14 Figure 14: (a) and (b) are respectively the object-attribute and the object-object contexts from the RCF built for D S 1 dataset (as explained in Sect. 4.2); (c) the lattice of football drills (items) built from KFD shown in (a)
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 16 Figure16: Temporal links between CKPE 3 main concept and CKTS 2 temporal concept from the RCA result shown in Fig.6; the CPO-pattern is associated with concept CKPE 3

CKPE_0∃Figure 17 :

 17 Figure 17: The L KPE main lattice of player evaluations obtained by scaling the temporal links with training sessions using the ∃ >50% quantifier

Algorithm 1 : 5 C

 15 CPOHrchyInput : the RCA result comprises L Km = (C Km , Km ), L Kt = (C Kt Kt ), andL Ki = (C Ki , Ki ) Output: the lattice L * Km of P m structures, based on L Km concepts and their associated CPO-patterns G m 1 L * Km ← ∅ 2 foreach C m = (X m , Y m ) ∈ C Km \ ⊥(L Km ) do 3 G m ← initialise to (C m , ∅, ∅) 4 if Y m has temporal relational attributes then next ← SearchAdjacentConcepts(Y m ) 6 G m ← initialise to (C m , ∅, C next )

Table 1 :

 1 Small illustrative example of sequential football data The squad roles are linked to player evaluations by a qualitative binary relation has squad role important. Similarly, training sessions are linked to football drills by the qualitative relation has drill, which can be rated either as good or excellent. The name 'qualitative' relation is used to refer to a relation that includes an evaluation (good, important, etc.). Player evaluations/training sessions and training sessions are linked by a temporal binary relation is preceded by that associates a player evaluation/training session to a training session if the player evaluation/training session is preceded in time by this training session.

	Player Date	Training Session Evaluation PASSING VISION STARTER
		25/09	-	excellent	-
		26/09	good	-	-
	P1	27/09 28/09	good -	excellent -	-important
		17/11 excellent	-	-
		18/11	-	-	important
		13/05 excellent	-	-
		14/05	good	excellent	-
	P2	15/05	-	-	important
		08/02	good	-	-
		09/02	-	-	important
		11/04 excellent	-	-
	P3	12/04	good	excellent	-
		13/04	-	-	important

ipb) is preceded by (ipb) has drill {good (gFD), excellent (eFD)} has squad role {important}

  . The cross-tables KFD (football drills), KPE (player evaluations), and KTS (training sessions) represent object-attribute contexts. As explained before the set of football drills contains two objects PASSING and VISION. The set of player evaluations/training sessions contains pairs (Player,Date) (e.g. the (P1,28/09) pair in KPE). Since the set of squad roles contains only one object STARTER there is no object-attribute context

	Football Drills		Squad Roles
	(FD)		(SR)
	Training Sessions (TS)	is preceded by (	Player Evaluations (PE)

Figure 5: The modelling of the sequential football data from Tab. 1 of squad roles. KTS and KPE cross-tables have no column since a training session (resp. player evaluation) is described only by using qualitative relations. RPE-ipb-TS (player evaluation is preceded by training session) and RTS-ipb-TS (training session is preceded by training session) cross-tables represent temporal object-object contexts since both define temporal relations. RgFD (training session has good football drill) and ReFD (training session has excellent football drill) cross-tables represent qualitative object-object contexts since both define qualitative relations.

Table 2 :

 2 a temporal one since it introduces the temporal relation is preceded by, and allows us to navigate from L KPE to L KTS .

	PASSING PASSING × KFD VISION	VISION ×	KPE (P1,28/09) (P1,18/11) (P2,15/05) (P2,09/02) (P3,13/04)	KTS (P1,25/09) (P1,26/09) (P1,27/09) (P1,17/11) (P2,13/05) (P2,14/05) (P2,08/02) (P3,11/04)	RPE-ipb-TS (P1,28/09) × × × (P1,25/09) (P1,26/09) (P1,27/09) (P1,18/11) (P2,15/05) (P2,09/02)	(P1,17/11) ×	(P2,13/05) × × (P2,14/05)	(P2,08/02) ×	(P3,11/04)	(P3,12/04)
								(P3,12/04)	(P3,13/04)		× ×
	RTS-ipb-TS	(P1,25/09)	(P1,26/09)	(P1,27/09)	(P1,17/11)	(P2,13/05)	(P2,14/05)	(P2,08/02)	(P3,11/04)	(P3,12/04)	RgFD	PASSING	VISION	ReFD	PASSING	VISION
	(P1,25/09)										(P1,25/09)			(P1,25/09) ×
	(P1,26/09) ×									(P1,26/09) ×		(P1,26/09)
	(P1,27/09) × ×								(P1,27/09) ×		(P1,27/09) ×
	(P1,17/11)										(P1,17/11)			(P1,17/11) ×
	(P2,13/05)										(P2,13/05)			(P2,13/05) ×
	(P2,14/05)					×					(P2,14/05) ×		(P2,14/05) ×
	(P2,08/02)										(P2,08/02) ×		(P2,08/02)
	(P3,11/04)										(P3,11/04)			(P3,11/04) ×
	(P3,12/04)								×		(P3,12/04) ×		(P3,12/04) ×

RCA input composed of object-attribute contexts: KFD, KPE, and KTS; temporal object-object contexts: RPE-ipb-TS and RTS-ipb-TS; qualitative object-object contexts: RgFD and ReFD

  such that: -the intent Y t contains two types of relational attributes: temporal attributes of the form ∃ipb 2 (C t ), where C t ∈ L Kt describes objects from ran(ipb 2 ) = G t ; qualitative relational attributes of the form ∃hi (C i ), where C i ∈ L K i describes objects from ran(hi ) = G i ; e.g. CKTS 10 ∈ L KTS has attribute ∃RTS-ipb-TS(CKTS 5) and inherits attribute ∃RgFD(CKFD 2) (see Fig. 6). -the extent X t gathers all observation timestamps in G t associated with the items revealed by qualitative relational attributes of Y t , and that respect the temporal order with G t objects pointed by temporal relational attributes of Y t . e.g. CKTS 10 ∈ L KTS has two objects (P1, 27/09) and (P1, 26/09) which are both preceded by the object (P1, 25/09) of CKTS 5; furthermore, both are associated with the itemset {PASSING good } (see Tab. 1).

  for our running example. CPO-pattern (a) is an abstract one; (c) and (d) are hybrid CPO-patterns; (b), (e), (f) and (g) are concrete ones.

			? ?	STARTER important
	PASSINGgood	STARTER important	? excellent	STARTER important
	? excellent	PASSING good VISION excellent	STARTER important
				PASSING excellent	STARTER important
			PASSING excellent	PASSING good VISION excellent	STARTER important

  a) KFD

	RgFD	D	P	S	LP	SP	SPo	LS
	(P1,17/09)						×	
	(P1,18/09)							×
	(P1,19/09)							
	(P2,15/05)						×	
	(P2,16/05)				×			
	(P3,08/04)							
	(b) RgFD				

7

  Queue ← enqueue C next concepts and mark them as visitedC t = (X t , Y t ) ← dequeue Queue10 v t ← derive an itemset based on L Ki and the qualitative relational attributes of Y t

	8	repeat
	9	

11 if Y t has temporal relational attributes then 12 C next ← SearchAdjacentConcepts(Y t ) 13 G m ← add (C t , v t , C next ) to G m 14 C next ← delete from C next already visited concepts 15 if C next is not empty then 16 Queue ← enqueue the C next concepts and mark them as visited 17 end 18 else 19 G m ← add (C t , v t , ∅) to G m 20 end 21 until Queue is empty; 22 end 23 P m ← (X m , Y m , G m ) 24 L * Km ← add P m to L * Km 25 end 26 return L * Km

http://dataqual.engees.unistra.fr/logiciels/rcaExplore tool computes an (iceberg) concept lattice by using an attribute-incremental version of AddIntent algorithm[START_REF] Van Der Merwe | Addintent: A new incremental algorithm for constructing concept lattices[END_REF], referred to as AddExtent

A concept C is an upper cover (or upper neighbour) of a concept C 1 in a latticeL K = (C K , K ), if C 1 ≺ K C and there is no C 2 ∈ C K such that C 1 ≺ K C 2 ≺ K C. This is denoted by C K C 1[START_REF] Roth | On succinct representation of knowledge community taxonomies with formal cconcept analysis[END_REF].

the complexity of building a lattice L from a context (G, M, I) is O(|G| 2 • |M | • |L|)[START_REF] Van Der Merwe | Addintent: A new incremental algorithm for constructing concept lattices[END_REF] 
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analysed sequences. To illustrate this, we consider the user-defined taxonomy over football drills depicted in Fig. 13(a), and the football sequence database D S 1 given in Fig. 13(b). It is noted that our training sessions contain only one or more specific drills, such as LONG PASS (LP), SHORT PASS (SP), SHOT POWER (SPo) and LONG SHOT (LS). To explore D S 1 sequences by using the taxonomy over football drills, we follow the steps presented in Sect. 4.2. The only difference is the mixture of ordinal and nominal scaling [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF], instead of only nominal scaling, used to build the context of football drills given in Fig. 14(a). From this context is obtained the lattice of football drills L KFD , shown in Fig. 14(c). Note that qualitative object-object contexts encode strictly the relations between training sessions and specific drills as given in D S 1 . For instance, we encode in Fig. 14(b) that on September 18 th the long shot skill of midfielder P1 was good, and no extra information regarding the ancestors of long shot.

From the obtained RCA result, e.g. the CPO-pattern depicted in Fig. 15 is extracted as explained in Sec. 6. This CPO-pattern contains items from