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ARTICLE OPEN

A tunable Josephson platform to explore many-body quantum
optics in circuit-QED
Javier Puertas Martínez1, Sébastien Léger1, Nicolas Gheeraert1, Rémy Dassonneville1, Luca Planat1, Farshad Foroughi1, Yuriy Krupko1,
Olivier Buisson1, Cécile Naud1, Wiebke Hasch-Guichard1, Serge Florens1, Izak Snyman2 and Nicolas Roch1

The interaction between light and matter remains a central topic in modern physics despite decades of intensive research.
Coupling an isolated emitter to a single mode of the electromagnetic field is now routinely achieved in the laboratory, and standard
quantum optics provides a complete toolbox for describing such a setup. Current efforts aim to go further and explore the coherent
dynamics of systems containing an emitter coupled to several electromagnetic degrees of freedom. Recently, ultrastrong coupling
to a transmission line has been achieved where the emitter resonance broadens to a significant fraction of its frequency, and
hybridizes with a continuum of electromagnetic (EM) modes. In this work we gain significantly improved control over this regime.
We do so by combining the simplicity and robustness of a transmon qubit and a bespoke EM environment with a high density of
discrete modes, hosted inside a superconducting metamaterial. This produces a unique device in which the hybridisation between
the qubit and many modes (up to ten in the current device) of its environment can be monitored directly. Moreover the frequency
and broadening of the qubit resonance can be tuned independently of each other in situ. We experimentally demonstrate that our
device combines this tunability with ultrastrong coupling and a qubit nonlinearity comparable to the other relevant energy scales
in the system. We also develop a quantitative theoretical description that does not contain any phenomenological parameters and
that accurately takes into account vacuum fluctuations of our large scale quantum circuit in the regime of ultrastrong coupling and
intermediate non-linearity. The demonstration of this new platform combined with a quantitative modelling brings closer the
prospect of experimentally studying many-body effects in quantum optics. A limitation of the current device is the intermediate
nonlinearity of the qubit. Pushing it further will induce fully developed many-body effects, such as a giant Lamb shift or nonclassical
states of multimode optical fields. Observing such effects would establish interesting links between quantum optics and the physics
of quantum impurities

npj Quantum Information            (2019) 5:19 ; https://doi.org/10.1038/s41534-018-0104-0

INTRODUCTION
Due to strong interactions between elementary constituants,
correlated solids1 and trapped cold atoms2 host fascinating many-
body phenomena. Attempts to produce similar effects in purely
optical systems are hampered by the obvious fact that photons do
not naturally interact with each other. If this obstacle can be
overcome, there is the tantalizing prospect of probing the many-
body problem using the contents of the quantum optics toolbox,
such as single photon sources and detectors, high-order correla-
tions in time-resolved measurements, entanglement measures,
and phase space tomographies to name a few3.
One route to building a many-body quantum optical system is

to rely on arrays of strongly non-linear cavities or resonators4,5,6,
but minimising disorder in such architectures is a formidable
challenge. Another route that circumvents these difficulties
involves coupling a single well-controlled non-linear element to
a disorder free harmonic environment7–11. If the difficult experi-
mental challenge of engineering an ultra-strong coupling can be
overcome12–17, thus exceeding the boundaries of the standard
single photon regime in quantum optics, this approach could
pave the way to bosonic realizations of electronic impurity
systems such as the famous Kondo and Anderson models4,18–23.

Our goal here is to achieve a large coupling between a sufficiently
non-linear qubit and a quantum coherent environment containing
many harmonic degrees of freedom24–26.
When coupling an impurity to a finite size electromagnetic

environment, five important frequency scales have to be
considered. The impurity is characterized by its qubit frequency
ωqubit, i.e., the excitation frequency between its two lowest
internal states. Real impurities always possess more than two
levels. The anharmonicity α, defined as the difference between
ωqubit and the frequency for excitation from the second to third
internal impurity state, characterises the departure of an impurity
from a trivial harmonic oscillator (α→ 0) or a pure two-level
system (α→∞). The coupling between the impurity and environ-
ment is characterized by the spontaneous emission rate Γ at which
the impurity exchanges energy with its environment. The
environment itself is characterized by its free spectral range δω,
which measures the typical frequency spacing between environ-
mental modes, and the spectral broadening κ of these modes due
to their coupling to uncontrolled degrees of freedom. The sought-
after multi-mode regime is obtained when Γ is larger than δω so
that the impurity is always coupled to several discrete environ-
mental modes, producing a cluster of hybridized qubit-
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environment resonances27. There are several requirements for
reaching the many-body regime. First, Γ must be a significant
fraction of ωqubit (ultra-strong coupling). This is a prerequisite for
multiparticle decay19,22. If the coupling is too weak, the system
becomes trivial, since only number-conserving processes are
relevant (Equivalently Markov and rotating wave approximations
apply.) A second requirement is αgt; rsimΓ. If this condition is not
met, the non-linearity of the impurity is swamped by the
broadening of the impurity levels, and the same frequency will
drive transitions between several impurity levels, so that the
system as a whole behaves more like a set of coupled harmonic
oscillators than like a two-level system coupled to an environ-
ment28. Within the many-body regime, two limits can be
distinguished. In the case of a finite-size environment that we
address here (namely, δω > κ), each mode of the system can be
addressed and controlled individually, while in the limit of a
thermodynamically large environment (δω/κ→ 0) one recovers a
smooth dissipation-broadened qubit resonance.
The many-body ultra-strong coupling regime (defined by the

first two conditions above) is hard to reach in quantum optics
experiments because the coupling to three-dimensional vacuum
fluctuations arises at order [αQED]

3, with αQED ’ 1=137 the fine
structure constant3. However, for superconducting qubits coupled
to transmission lines, the scaling is much more favorable20,29–31

than in a vacuum. Indeed the ratio Γ/ωqubit can essentially be
made arbitrarily large, provided the impedance of the environ-
ment matches that of the qubit (see Sec. E of the Supplementary
Information). Building on this ability of superconducting circuits
to reach very large couplings, several experiments demonstrated
the ultra-strong coupling regime in coupled qubit/cavity sys-
tems14–16,32. The rich physics associated to this coupling regime
has also been evidenced using quantum simulation33,34. The
condition Γ > δω has also been fulfilled by coupling super-
conducting qubits to open transmission lines35–37 or engineered
resonators7,9. However, it is only recently that the necessary
conditions for the many-body regime were demonstrated
concurrently12,13. The device of12,13 consists of a flux qubit
coupled to the continuum provided by a superconducting
transmission line, which realises the thermodynamic limit (δω/
κ→ 0). Limitations of such setups include the lack of a microscopic
model (since it is hard to characterize the waveguide properties of

a transmission line outside the relatively narrow 4–8 GHz band
where microwave transmission experiments can comfortably be
performed), and importantly, that the transmission line is not an
in situ tunable environment.

RESULTS AND DISCUSSION
In this work, we circumvent the above limitations, by designing
circuits that provide independent tunability of both a qubit and a
finite size but very large environment, while allowing high-
precision spectroscopic measurements of the environment itself
(δω > κ) and first principle modeling. Our device, shown in Fig. 1b,
consists of a transmon qubit, which is relatively insensitive to both
charge and flux noise, capacitively coupled to a long one-
dimensional Josephson metamaterial, comprising 4700 SQUIDs.
Such chains have been studied since the early 90’s in the context
of the superconductor-insulator transition38–41 or to explore dual
of the Josephson effect42–44. Our setup differs in two ways from
these previous works. First, we took great care to produce a chain
in the linear regime, far from the onset of non-linear effects such
as quantum phase slips45, so that one of the basic benefits of
quantum optics, i.e., the elimination of non-linearities where they
are not wanted, is realized. Second, we performed AC microwave
spectroscopy of our device, instead of DC transport measure-
ments. This allows us to characterize the electromagnetic degrees
of freedom, also called Mooij-Schön plasma modes28,46–51, micro-
scopically. We managed to resolve as many as 50 individual low
frequency electromagnetic modes of this non-dissipative and fully
tunable environment (see Fig. 2c). An essential property of the
Josephson metamaterial is its high characteristic impedance
Zc ¼

ffiffiffiffiffiffiffiffiffiffiffi
LJ=Cg

p ’ 1590 Ω, which being of the same order of
magnitude as the effective impedance of our transmon qubit,
ZT ¼ �h=ð2eÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EC;T=EJ;T
p ’ 760Ω (here at zero flux), allow us to

reach multi-mode ultrastrong coupling. The simplicity of the
transmon architecture enables us to either compute from first
principles or to extract all the parameters necessary to construct a
microscopic model of the full system, without dropping the so-
called ‘A2-terms’, a routine approximation in optics52–56, that
however breaks down at ultra-strong coupling.
Our measurements are based on the frequency-resolved

microwave transmission through the whole device. Figure 2b

a

b

Fig. 1 A Josephson platform for waveguide quantum electrodynamics. a Lumped-element model of the circuit including the nodes used in
the calculations. b Optical microscope image of the sample. The two zoom-in are SEM pictures of the SQUID of the qubit (red square) and the
SQUIDs in the chain (blue square). The qubit is capacitively coupled to the chain and to a 50Ω measurement line, via large interdigital
contacts. Only a small portion of the Josephson chain, which comprises 4700 SQUIDs in total, is shown
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shows the amplitude of the transmitted field at a fixed value of
the external magnetic field, and at low probe power. This
spectrum reveals a set of resonances in our device, displaying a
narrow spectral broadening κ/2π= 20MHz (for the non hybridized
modes of the chain) caused by the coupling to the 50Ω contacts.
As the external magnetic field is varied, two modulation periods
are seen in the resonance spectrum (Fig. 2a). The short and long
periods correspond respectively to a one quantum Φ0= h/2e
increase of the flux through the large transmon or through the
small chain SQUID loops. This feature allows us to adjust
independently the flux threading the transmon SQUID loop (ΦT)
from the one threading the chain SQUID loops (ΦC). The former
controls the qubit frequency, while the latter controls the
impedance of the environment, and hence the qubit-
environment coupling strength. Before studying the hybridization
between the transmon and chain, we characterize the chain on its
own by setting ΦT=Φ0/2, so that the qubit decouples from it (See
Fig. 2c and Sec. B of the Supplementary Information). We obtain a
good fit between the dispersion relation predicted by a
microscopic model and the one extracted from the measured
resonances. This allows us to extract all of the parameters
necessary to characterize the chain modes.
The transmon qubit becomes active when ΦT 6¼ Φ0=2, and is

expected to hybridize with the chain. Figure 3a shows a low-
power spectroscopy of the system as a function of ΦT, keeping ΦC

nearly constant. When a chain mode is not hybridized with the
qubit, the corresponding spectral line runs nearly horizontally.
When ΦT is varied, the qubit frequency sweeps across the
resonances of the chain modes and creates a clear pattern of
several avoided level crossings (See Fig. 3a). We note that at fixed
ΦT, several chain modes in the vicinity of the transmon resonance
are visibly displaced. Thus, the transmon simultaneously hybri-
dizes with many modes. This is a signature of multi-mode ultra-
strong coupling, a topic that will be further addressed below.
Evidence that the transmon behaves as a qubit is provided by its
saturation spectrum (Fig. 3b). Here the fluxes ΦT and ΦC are kept
constant, while the transmission through the system is recorded at

increasing probe power. For a harmonic system, the resonance
positions are independent of driving power. In an anharmonically
oscillating classical system, a gradual dependence on the driving
power would appear. Experimentally, we observe that below a
driving power ~−10 dBm, the resonance positions in the
transmission spectrum are independent of the driving probe
power. As the driving power increases beyond −10 dBm, the peak
around 4.5 GHz disappears while the other peaks assume the
positions they have when the qubit is inactive. (The horizontal
lines correspond to the low power spectrum when ΦT=Φ0/2.)
This is evidence of saturation, a clear qubit signature18,35,36. The
fact that several chain modes are shifted when the transmon is
saturated constitutes an additional proof that the transmon
hybridizes with many modes at once.
To quantify the hybridization of the transmon mode with the

chain modes, we compare the normal mode spectrum of the full
system at ΦT ≠Φ0/2 to the spectrum at ΦT=Φ0/2. As mentioned
above, in the latter case, the transmon decouples from the bare
modes of the chain. The system with ΦT ≠Φ0/2 therefore has one
extra mode in the vicinity of the transmon frequency. We define
the relative frequency shift δϕn(ΦT, ΦC) as the difference in
frequency between the nth mode of the coupled and uncoupled
chains, normalized to the free spectral range of the chain δωn(ΦT,
ΦC)= ωn(Φ0/2, ΦC)− ωn−1(Φ0/2, ΦC), and including a π factor for
later convenience, i.e.,

δϕnðΦT;ΦCÞ ¼ π
ωnðΦ0=2;ΦCÞ � ωnðΦT;ΦCÞ

δωnðΦT;ΦCÞ ; (1)

where ωn(ΦT, ΦC) is the frequency of the nth lowest non-zero
mode for a given flux in the transmon and in the chain. This
frequency shift is readily extracted from the peak positions in our
global spectroscopic map (Fig. 2a). Remarkably (see Sec. H of the
Supplementary Information for a derivation), δϕn(ΦT, ΦC) in Eq. (1)
equals the phase shift experienced by mode n due to the
presence of the nearby transmon mode:

δϕnðΦT;ΦCÞ ¼ ϕnðΦT;ΦCÞ � ϕnðΦ0=2;ΦCÞ; (2)

b

a

c

Fig. 2 Spectroscopic analysis of the full quantum circuit. a Microwave transmission measurement of the complete device (transmon and
chain) shown in panel b of Fig. 1, as a function of flux. Two flux periods can be seen, the long one (resp. the short one) being related to the
SQUIDs in the chain (resp. in the qubit). Two vertical cuts indicate the spectroscopic traces shown in the two bottom panels respectively. b
Frequency trace of microwave transmission through the device at flux ΦC= 0 (red cut in panel a), in which case the transmon flux is also ΦT=
0. The free spectral range δω is shown in grey. c Dispersion relation of the chain alone obtained from the fit of the resonances at chain flux ΦC
=−0.015 Φ0 corresponding to ΦT=−Φ0/2 (green cut in panel a), so that the chain modes do not hybridize with the transmon
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where ϕn(ΦT, ΦC) is the phase shift of mode n of the full system at
transmon flux ΦT and chain flux ΦC. From Eq. (1) it follows that the
phase shift equals 0 (resp. π) for modes far below (resp. far above)
the renormalized transmon frequency. For hybridized modes in
the vicinity of the transmon line, δϕn(ΦT, ΦC) lies between 0 and π.
This behavior is clearly observed in Fig. 4a where the measured
relative frequency shifts are reported for a chain flux ΦC= 0 and
various transmon fluxes ΦT. The wide frequency dispersion of
intermediate δϕn(ΦT, ΦC) provides direct evidence for a hybridiza-
tion with up to ten chain modes. In the thermodynamic limit of an
infinite chain with perfect impedance matching to the measure-
ment ports, the transmon-induced phase shift δϕn(ΦT, ΦC)
becomes a continuous function δϕ(ω, ΦT, ΦC) of the mode
frequency ω. Moreover, it can be shown that the frequency
derivative of δϕ(ω, ΦT, ΦC) matches very precisely the theoretically
expected lineshape of the dissipative response of the transmon
coupled to an infinite environment. (See Sec. I of the Supplemen-
tary Information). This constitutes a central finding of our work:
the renormalized transmon frequency ωT and linewidth ΓT can be
directly inferred from a measurement of the phase shifts of the

individual modes in the finite bath. In terms of measurement
protocol however, there is a sharp difference between the chain
mode phase shifts and the qubit response functions. Usually, the
qubit response is obtained by observing the transmon, and its
environment can be viewed as a black box that combines
unmonitored decoherence channels as well as the physical ports
used for measurement. This procedure constitutes the usual
paradigm in the study of open quantum systems. Our protocol
is unusual because information about an open quantum system is
obtained by monitoring the discrete modes that constitute its
dominant environment.
We finally turn to a quantitative analysis of our data, including a

comparison to the predictions of a microscopic model, in order to
determine if the requirements for reaching the many-body regime
has been met. By extracting the maximum renormalized transmon
frequency ωT,max extracted from the phase shift data of Fig. 4a at
chain flux ΦT an integer multiples of Φ0, we are able to infer the
only remaining unknown system parameter, namely the max-
imum transmon Josehpson energy EJ,T,max. This allows us to
estimate the anharmonicity of the transmon α, which ranges from
0.36 GHz at ΦT= 0 to 0.44 GHz at ΦT= 0.3Φ0. We emphasize that
the condition αgt; rsimΓT for anharmonic many-body behavior is

a

b

Fig. 3 Hybridization of qubit and chain modes. a Transmission
spectrum as a function of transmon flux ΦT, at chain flux ΦC ≃ 0
(representing a small portion of the full spectroscopy in Fig. 2a) The
horizontal lines are the chain modes far from the qubit resonance.
The flux modulation of the transmon frequency produces a bell-
shaped succession of anticrossings. b Transmission spectrum as a
function of applied microwave power at fixed fluxes ΦT=ΦC= 0.
The white dashed lines indicate the modes of the array at ΦT=Φ0/2.
With increasing power, the transmon-like mode near 4.5 disappears,
showing its non-linear quantum character. In addition the modes of
the array shift to their bare frequencies

a

b

Fig. 4 Extraction of qubit properties from the measurement of its
controlled environment. a Phase shift δϕn of the discrete chain
modes as a function of mode frequency ωn for different transmon
fluxes ΦT, fixing ΦC= 0. The solid line is a fit using Eq. (2). The inset
shows the chosen transmon fluxes ΦT as line cuts in the
transmission measurement (with the same color code). b The
transmon width ΓT for different fluxes in the chain ΦC, showing
control of the coupling to the large but discrete environment. The
experimental points (dots) are obtained from an arctangent fit of
the data in panel a. For better visibility, only the flux values where
the transmon frequency is maximum are included. The blue shaded
area represents the theoretical expectation for ΓT, within a
confidence interval given by the error in the capacitances in Table 1
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thus fulfilled (see Fig. 4b for the extracted transmon linewidth ΓT,
which lies in the range 0.2–0.4 GHz). Using the extracted
parameters to calculate δϕ(ω, ΦT, ΦC) according to Eq. (11) we
find the predicted theoretical lines in Fig. 4a. The excellent
agreement between theory and experiment seen here for six
different values of ΦT persists for each of the hundreds of (ΦT, ΦC)
combinations where we have made the comparison. (See Sec. C of
the Supplementary Material for a further selection of results.) We
stress that this agreement is obtained after all model parameters
have been fixed, so that there is no fitting involved in comparing
the predicted and measured phase shifts. The quantitative
modeling of such a large quantum circuit clearly is an important
landmark in the field of open quantum systems. In Fig. 4b we
examine the transmon linewidth ΓT that we extracted from the
phase shift data, as a function of chain flux ΦC for fixed transmon
flux ΦT= 0. Very good agreement (with no fitting parameters) is
again obtained with the prediction of our model. These results
demonstrate that we can tune the qubit-environment coupling
independently from ωT using the flux in the chain, and that we
achieved the ultra-strong coupling in our waveguide, i.e., coupling
to a large number (here 10) of modes with a sizeable linewidth
ΓT=ωT ’ 0:1. A hallmark of ultra-strong coupling is the failure of
the rotating wave approximation (RWA), as previously discussed in
coupled qubit and cavity systems14. We have examined the
consequences of the RWA on our microscopic model (see Sec. J of
the Supplementary Information), and found a discrepancy of
100 MHz in the transmon frequency ωT, showing the quantitative
importance of non-RWA terms. We would like to stress that
demonstrating the relevance of these terms is much more than
obtaining a good data-theory agreement. With counter-rotating
contributions in the few percent range, we expect a finite rate for
parametric processes in which photon-number is not conserved.
In future we plan to use the current platform to observe these
interesting many-body effects directly.
In conclusion, this work provides the first demonstration of

many-body ultra-strong coupling between a transmon qubit and a
large and tunable bath. To obtain full control over the
environment, a superconducting metamaterial, comprising 4700
SQUIDs, was employed. Although this quantum circuit contains a
huge number of degrees of freedom, we were able to characterise
all its parameters in situ. This allows us to demonstrate
unambiguously that our systems meets the three conditions
required to reach the many-body regime, namely Γgt; rsimδω,
Γgt; rsim0:1ωqubit, and αgt; rsimΓ. A novel experimental methodol-
ogy was implemented to analyze the qubit properties by means of
the extraction of the phase shifts of the environmental modes.
Despite the large size of our quantum circuit, we succeeded in
providing a fully microscopic model which accounts for the
transmon response without any fitting parameters. We also found
that the qubit linewidth for the long chain agreed with results in
the thermodynamic limit, showing that the finite environment has
the same influence on the qubit as a truly macroscopic bath. The
further possibility to tune the coupling to the environment in situ,
demonstrated by a 50% flux-modulation of the qubit linewidth,
opens the way to controlled quantum optics experiments where
many-body effects are fully-developed18,19,21,22,57,58, as well as
more advanced environmental engineering for superconducting
qubits5.

METHODS
Sample fabrication and parameters
The sample was fabricated on a highly resistive silicon substrate, using a
microstrip geometry. The ground is defined as the backside of the wafer
which was gold-plated, ensuring a good electrical conductivity. Interdigital
capacitances were chosen to connect the transmon and the metamaterial.
They do not provide the lowest surface participation factor59,60 but they
allow us to maximize the coupling capacitances Cc of the transmon to the

chain, while minimizing the capacitances to ground Cg,T and Cg,T2. (See
panel a of Fig. 1 for the definitions of the these capacitances.) This system
is probed via two 50Ω transmission lines, one of which is capacitively
coupled to the transmon, while the other is galvanically coupled to the
chain. The whole device (Josephson junctions, capacitances and transmis-
sion lines) was fabricated in a single electron-beam lithography step, using
a bridge-free fabrication technique61. The Josephson elements of the chain
are tailored to be deep in the linear regime (EJ/EC= 8400), where EJ and EC
are the respectively the Josephson energy at ΦC= 0 and the charging
energy of a chain element), leaving the transmon as the main source of
non-linearity in the system. All parameters of the system are listed in Table
1. Here, LJ,min is the minimum inductance of a chain SQUID loop, (which
occurs when ΦC= 0). There is a slight asymmetry between the two
Josephson junctions that constitute a single chain SQUID loop, which is
quantified by the asymmetry parameter d. The flux-dependent inductance
LJ(ΦC) of a chain SQUID loop is given by

LJðΦCÞ ¼ LJ;minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 πΦC=Φ0ð Þ þ d2sin2 πΦC=Φ0ð Þ

p ; (3)

and the corresponding Josephson energy by EJðΦCÞ ¼ φ2
0=LJðΦCÞ with φ0

= ℏ/2e the reduced flux quantum. The transmon Josephson junctions are
symmetric, and hence the flux dependent transmon Josephson energy is
given by

EJ;TðΦTÞ ¼ EJ;T;max cos πΦT=Φ0ð Þj j (4)

The transmon charging energy is not an independent parameter (see Eq
(9)), but is listed in the table, due to the prominent role it plays in what
follows. The meanings of the remaining parameters in Table 1 are
explained in panel a of Fig. 1. The majority of the parameter values listed
are obtained either using a finite-element solver (Sonnet) or extracted from
the measured dispersion relation of the chain at ΦT= 0. (See Sec. B and D
of the suplementary Material.) The only exceptions are CJ, that is obtained
from knowledge of the junction areas via an empirical formula, and EJ,T,max

that we extract via a procedure described in the last subsection below,
which uses the data at ΦT equal to multiples of Φ0 in panel a of Fig. 2.

Full model
The circuit diagram for the lumped-element model is shown in Fig. 1. It
consists of N+ 2 nodes, where N is the number of SQUIDs in the chain. To
describe the circuit, we use the Cooper pair number operator n̂j , which
gives the number of Cooper pairs in node j, and the superconducting
phase operator φ̂j , which gives the superconducting phase at node j. They
satisfy the canonical commutation relations ½n̂j ; φ̂l � ¼ iδjl

62. Here j, l∈ [L, R,
1, 2, 3,…,N] with L and R referring to the left and right transmon nodes. As
explained before, the SQUIDs of the chain are linear inductors, to a very
good approximation. We define n̂T ¼ ðn̂L; n̂R; n̂1; ¼ ; n̂NÞ and
φ̂T ¼ ðφ̂L; φ̂R; φ̂1; ¼ ; φ̂NÞ. In this notation, the Hamiltonian of the circuit
is given by

H ¼ ð2eÞ2
2

n̂T Ĉ�1n̂� 1
2
φ̂T Ĵφ̂� EJ;TðΦTÞcos φ̂R � φ̂Lð Þ (5)

Ĉ is the capacitance matrix, such that elements ½Ĉ�jl ¼ ½Ĉ�lj equal the
capacitive coupling between the charges on islands j and l. In the same
way, elements ½̂J�jl ¼ ½̂J�lj of matrix Ĵ contains the Josephson energy that
couples the superconducting phase on island j and island l. Both matrices
are (N+ 2) × (N+ 2). Their explicit forms are given below in Eqs. (6) and (7).
In both matrices, the boundary conditions that determine entries (L, L) and
(N, N) are obtained by assuming that the nodes to the left of node L and to

Table 1. Sample parameters

Chain parameters Transmon qubit parameters

LJ,min (0.33 ± 0.02) nH Cg,T2 (33 ± 1)fF

Cg (0.13 ± 0.01) fF Cg,T (48 ± 2)fF

CJ (259 ± 14) fF Cc (119 ± 2) fF

N 4700 Csh (6.9 ± 0.1) fF

d (asymmetry) 0.25 CJ,T (5.2 ± 0.3) fF

EJ,T,max/h (10.2 ± 0.4) GHz

EC,T/h (2.4 ± 0.1) GHz
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the right of node N are grounded.

Ĉ ¼

C0 �Csh;T 0 0 0 0 � � � 0

�Csh;T C0 �Cc 0 0 0 � � � 0

0 �Cc C1 �CJ 0 0 � � � 0

0 0 �CJ CΣ �CJ 0 � � � 0

..

. ..
. ..

. . .
. . .

. . .
. � � � 0

0 0 0 0 �CJ CΣ �CJ 0

0 0 0 0 0 �CJ CΣ �CJ
0 0 0 0 0 0 �CJ CΣ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

(6)

The elements in the capacitance matrix are given by

C0 ¼ Cc þ Csh;T þ Cg;T
C1 ¼ Cc þ CJ þ Cg;T2

CΣ ¼ 2CJ þ Cg
Csh;T ¼ CJ;T þ Csh

Ĵ ¼ φ2
0

LJ ΦCð Þ

0 0 0 0 0 0 � � � 0

0 0 0 0 0 0 � � � 0

0 0 1 �1 0 0 � � � 0

0 0 �1 2 �1 0 � � � 0

..

. ..
. ..

. . .
. . .

. . .
. � � � 0

0 0 0 0 �1 2 �1 0

0 0 0 0 0 �1 2 �1

0 0 0 0 0 0 �1 2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

(7)

We define the operators n̂T ¼ ðn̂R � n̂LÞ=2þ constant and φ̂T ¼ ðφ̂R �
φ̂LÞ=2 associated with the transmon dynamics. Introducing these
operators, and noting that the total transmon charge n̂R þ n̂L is concerved,
we can rewrite the Hamiltonian as

H¼ EC;T
2 n̂2T � EJ;TðΦTÞcosðφ̂TÞ þ ð2eÞ2

2

PN
jl¼1

n̂j Ĉ�1
� �

j;l n̂l

þ φ2
0

2LJ ΦCð Þ
PN
j¼1

φ̂jþ1 � φ̂j

� �2þn̂T
PN
j¼1

νj n̂j

(8)

where we defined φ̂Nþ1 � 0. The transmon charging energy EC,T is given by

EC;T ¼ ð2eÞ2 Ĉ�1
� �

LLþ Ĉ�1
� �

RR�2 Ĉ�1
� �

LR

� �
: (9)

The coupling of n̂T to the charge on island j is given by

νj ¼ ð2eÞ2 Ĉ�1
� �

Rj� Ĉ�1
� �

Lj

n o
: (10)

Chain modes phase shift in the thermodynamic limit
In Fig. 4a we compare the measured relative frequency shift δϕn(ΦT, ΦC) to
the theoretically predicted transmon phase shift δϕ(ω, ΦT, ΦC) with which
it is expected to agree in the thermodynamic limit. Here we provide the
analytical formula for the phase shift ϕ(ω, ΦT, ΦC) of a mode with
frequency ω. (See Sec. G of the Supplementary Information for the
derivation.) It reads

tanϕðω;ΦT;ΦCÞ ¼ Cg � 2CeffðΦT;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CgðCg þ 4CJÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpðΦCÞ

ω

	 
2
�1

r :
(11)

In this expression ωpðΦCÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LJðΦCÞ CJ þ Cg=4

� �q
is the plasma

frequency of the chain, and

CeffðΦT;ωÞ ¼ C1 � CJ �
C2
c

C0�Csh;T
ð�hωÞ2
ð2eÞ2 C0 � ESðΦTÞ

h i

ðC0 þ Csh;TÞ ð�hωÞ
2

ð2eÞ2 � 2ESðΦTÞ
: (12)

has dimensions of capacitance. Finally, ES(ΦT) is an effective linear inductor
energy associated with the Josephson junctions in the transmon, which
nonetheless incorporates the transmon non-linearity, and is given by

ESðΦTÞ ¼ EJ;TðΦTÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ;TðΦTÞEC;T

q
=4: (13)

(See Sec. F of the Supplementary Material for further detail.) The
theoretical δϕ(ω, ΦT, ΦC) curves plotted in panel a of Fig. 4 were obtained

from ϕ(ω, ΦT, ΦC) similarly to Eq. (2) as the difference

δϕðω;ΦT;ΦCÞ ¼ ϕðω;ΦT;ΦCÞ � ϕðω;Φ0=2;ΦCÞ: (14)

Analysis of the experimental data
To extract the relative frequency shift δϕn(ΦT, ΦC) from the data presented
in Fig. 2 of the main text, we go about as follows. At a fixed value of the
magnetic field that determines ΦT and ΦC, we fit each of the peaks in the
transmission spectrum individually with a Lorentzian. This gives the center
frequency of the peaks. From these peak positions, we obtain δϕn(ΦT, ΦC)
experimentally using Eq. (1) at a particular ΦT and ΦC. Next we extract the
transmon frequency ωT for the transmon coupled to the chain from the
experimentally determined δϕn(ΦT, ΦC). The details are as follows.
Empirically, we find that the experimentally determined δϕn(ΦT, ΦC) vs.
ωn data-points fit an arctangent lineshape

FðωÞ ¼ ð1� AÞ 1
π
arctan

2 ω� ωTð Þ
ΓT

� �
þ 1
2

� �
þ A (15)

very well, for suitable choices of the parameters A, ωT, and ΓT. (In the
parameter regime where our device operates, the theoretically predicted
phase shift δϕ(ω, ΦT, ΦC) also closely approximates this line shape.) We
therefore fit the measured δϕn vs. ωn at fixed ΦT and ΦC to Eq. (15),
interpreting ωT as the frequency and ΓT as the resonance width of the
transmon when it is coupled to the chain. Before we can quantitatively
compare the experimental results for δϕn(ΦT, ΦC) to the theoretically
predicted δϕ(ω, ΦT, ΦC) (Eq. (11)), one final model parameter, namely the
maximum transmon Josephson energy EJ,T,max must be determined from
the experimental data. The general procedure is as follows. Our theoretical
model predicts that in the regime where the actual device operates, this
transmon frequency is very nearly equal to the isolated (LJ→∞) transmon
frequency, i.e., the chain only slightly renormalizes the transmon
frequency, and indeed, we see little ΦC dependence in the extracted ωT.
At ΦT= nΦ0, n= 0, ±1, ±2,…, where the transmon Josephson energy is
maximal, we therefore use the isolated transmon result (see Sec. F of the
Supplementary Information):

ωTðΦT ¼ nΦ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC;TEJ;T;max

p � EC;T=8 (16)

Taking the average over n of the experimentally determined ωT(ΦT=
nΦ0), and using our first principle estimate for EC,T in Table 1, we obtain

ωT;max=2π � ωTðΦT ¼ 0Þ=2π ¼ ð4:64± 0:01Þ GHz; (17)

EJ;T;max=h ¼ ð10:2 ± 0:4Þ GHz (18)

The theoretical curves in Fig. 4a were then obtained using the system
parameters in Table 1 in Eqs. (11), (14), (13), and (4). The full data set covers
many transmon periods. Within a given transmon period, we generally
analyze data at several values of ΦT in the interval from −0.3 ϕ0 to 0.3 ϕ0.
Each transmon period is measured at different ΦC. We also take into
account the small variation in ΦC as the transmon flux sweeps through one
flux quantum. The experimental points in Fig. 4b are obtained as the
transmon width ΓT closest to ΦT= 0. The error bars come from the least
square fit using Eq. (15). The theoretical width is obtained from a fit of the
phase shift δϕ(ω, ΦT, ΦC) with the arctangent of Eq. (15).
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