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Abstract
We propose a formal expansion of multiple relaxation times lattice Boltzmann schemes in
terms of a single infinitesimal numerical variable. The result is a system of partial differential
equations for the conserved moments of the lattice Boltzmann scheme. The expansion is
presented in the nonlinear case up to fourth order accuracy. The asymptotic corrections of the
nonconserved moments are developed in terms of equilibrium values and partial differentials
of the conserved moments. Both expansions are coupled and conduct to explicit compact
formulas. The new algebraic expressions are validated with previous results obtained with
this framework. The example of isothermal D2Q9 lattice Boltzmann scheme illustrates the
theoretical framework.

∗ This contribution to appear in Asymptotic Analysis has been first presented at the Institut
Henri Poincaré (Paris, France) the 10 January 2018. Edition 14 January 2021.
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1) Introduction
The lattice Boltzmann schemes in their modern form have been developed with the contri-
butions of d’Humières, Lallemand, Succi [38, 50, 37, 43] and many others. An underlying
lattice Boltzmann equation is discretised on a cartesian grid with a finite set of velocities
chosen in such a way that during one time step, an exact transport is done between two
vertices of the mesh. A lattice Boltzmann scheme is composed with two steps: a nonlinear
local relaxation step, followed by a linear advection scheme coupling a given vertex with a
given family of neighbours. The relaxation step follows in general the “BGK” approximation
introduced by Bhatnagar, Gross and Krook [4]. This numerical method allows the simula-
tion of an important number of physical phenomena as isothermal flows, compressible flows
with heat transfer, non-ideal fluids, multiphase and multi-component flows, microscale gas
flows, soft-matter flows,... up to quantum mechanics. For the actual status of the method
and the various applications, we refer e.g. to the books of Guo and Shu [32], Krüger et al.
[35] and to the prospective article of Succi [56]. The lattice Boltzmann method is founded
on a mesoscopic Boltzmann model but is not able in general to solve the Boltzmann equa-
tion or associated kinetic models. It is admitted that essentially macroscopic models are
approximated with the lattice Boltzmann schemes.
The link between mesoscopic and macroscopic models is never straightforward and an analy-
sis is necessary. The usual method of formal analysis is founded on the Chapman-Enskog [8]
expansion in the spirit of the book of Huang [39]. The classical approach for the Boltzmann
equation and other mesoscopic models posed in a continuum space-time. The Chapman-
Enskog method has been adapted to lattice Boltzmann schemes with discrete space and
time equations by Chen and Doolen [9] and by Qian and Zhou [51]. It allows the deriva-
tion the equivalent partial differential equations founded on a multiscale time analysis. This
classical Chapman Enskog expansion is popular in the lattive Boltzmann community, as
reported in the contributions of Lallemand and Luo [43], Philippi and Hegele [48] and Shan
et al. [53] among others. A main drawback of this approach is the fact that multiscale
expansions are used without a clear mathematical signification of the various variables and
associated functions.
Independently of this framework, we have proposed in [14, 15] the Taylor expansion method
for isothermal fluid problems to obtain formally equivalent partial differential equations at
second order accuracy. This work was inspired by the method of equivalent equations for
finite difference schemes, in a spirit proposed by Lerat and Peyret [45] and Warming and
Hyett [57]. In this approach, the infinitesimal variable is simply the time step (proportional
to the space step with the acoustic scaling) and there is only one infinitesimal scale for the
analysis. This approach has been experimentaly validated with Pierre Lallemand in various
contributions [21, 22, 24, 42]. It was extended to third order accuracy for thermal and fluid
problems in [16], automated at an arbitrary order in the linear case in [3], extended with
an external drift in [25] and to relative velocities in [18, 19]. Our point of view is a priori
not to consider the third and fourth order terms as approximations of Burnett of super-
Burnett equations (see e.g. [1, 55]) but simply as errors of the lattice Boltzmann scheme
when solving partial differential equations of second order type. Nevertheless, progress in
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the approximation of fourth order partial differential equations have been obtained in [47].
Here, we have no particular fluid hypothesis. It can be applied to scalar or to vectorial
[17, 29] lattice Bolzmann schemes. This Taylor expansion method has been also revisited
with the Maxwell iterations of Yong et al. [58].
In this contribution, we first recall in Section 2 classic results related to the Boltzmann
equation with discrete velocities. The link with multiple relaxation times lattice Boltzmann
schemes as initially proposed by d’Humières [37] is presented in Section 3. Then we present
the Taylor expansion method in a very general way and the result is explicited with compact
formulas. Our main result (Section 4) concerns the derivation of asymptotic partial differ-
ential equations in the nonlinear case, up to fourth order accuracy. The proof for first and
second orders is presented in Section 5, with a validation for the isothermal fluid case in the
specific case of the D2Q9 scheme. In Section 6, the expansion up to third and fourth orders
is detailed, with a confrontation with our previous work [16]. The proofs of these results
need specific algebraic developments, presented in this contribution. The linear case with
constant coefficients is described in Section 7.

2) Boltzmann equation with discrete velocities
In the space Rd of dimension d, we consider a finite set of q discrete velocities vj ∈ V with
components vαj for 1 ≤ α ≤ d. The unknowns of the Boltzmann equation are the particle
densities fj. They are functions of space x, time t and discrete velocities vj :

fj = fj(x, t), x ∈ Rd, t ≥ 0, 0 ≤ j < q .

The vector f(x, t) ∈ Rq is constructed with the numbers fj(x, t) for 0 ≤ j < q. We
introduce a collision vector Rq 3 f 7−→ Q(f) ∈ Rq of components Qj(f) for 0 ≤ j < q

with given regular functions Qj. We introduce also a small parameter ε > 0 that can be
interpreted as a Knudsen number in the context of gas dynamics (see e.g. [8]).
The Boltzmann model with discrete velocities takes the form

(1)
∂fj
∂t

+
∑

1≤α≤d

vαj
∂fj
∂xα

=
1

ε
Qj(f), 0 ≤ j < q .

It has been proposed by Carleman [7], Gross [31], Broadwell [6] and intensively developed
by Gatignol [27] and her co-workers.

• Moments
Our framework concerns multi relaxation times: we introduce a constant invertible ma-
trix M called “d’Humières matrix” [37] in this contribution. This matrix defines the vector
of moments m ∈ Rq by a simple product:

(2) mk ≡
∑

0≤j<q

Mkj fj .

We introduce the number of conservation laws N (1 ≤ N < q) such that the N first
moments of the collision kernel are equal to zero:

(3)
∑

0≤j<q

Mkj Qj(f) = 0 , ∀ f ∈ Rq, 0 ≤ k < N .





François Dubois

Then it is natural to divide the vector of moments into two families:

(4) m ≡
(
W

Y

)
.

The conserved moments or macroscopic variables W constitute a linear space of dimen-
sion N and if the Boltzmann model with discrete velocities (1) is satisfied, we have N

conservation laws due to the cancellation (3):
∂Wk

∂t
+
∑

1≤α≤d

∑
0≤j<q

Mkj v
α
j

∂fj
∂xα

= 0 , 0 ≤ k < N .

Observe that the nonconserved moments or microscopic variables Y generate a linear space
of dimension q −N .

• Equilibrium states
We suppose that the equilibrim states f eq defined by the conditions

Q(f eq) = 0

are characterized with the help of a regular nonlinear vector field Φ : RN −→ Rq−N such
that

(5) f eq = M−1

(
W

Φ(W )

)
.

In other words, the vector field W 7−→ Y eq ≡ Φ(W ) defines the set of equilibrium states.
We suppose moreover that the jacobian matrix dQ(f eq) at equilibrium is diagonalizable with
real eigenvalues and real eigenvectors. More precisely, taking into account the hypothesis (3),
we suppose that there exists a diagonal matrix

Z = diag
( 1

τ1

, . . . ,
1

τq−N

)
of order q −N with strictly positive coefficients τ` such that

(6) M dQ(f eq)M−1 = −
(

0 0

0 Z

)
.

In other words, the jacobian operator dQ(f eq) admits the matrix M−1 as a matrix of right
eigenvectors and the associated eigenvalues are all non positive.

• Momentum-velocity operator
For a linear space of dimension d, we introduce the momentum-velocity operator matrix Λ

defined by the relation

(7) Λ = M diag
( ∑

1≤α≤d

vα ∂α

)
M−1 .

It is a q × q operator matrix composed by first-order space differential operators. It is
obtained by conjugation of the first order advection operator v.∇ by the d’Humières ma-
trix M . The operator matrix Λ is nothing else than the advection operator seen in the
basis of moments. We introduce a block decomposition of the momentum-velocity operator
matrix associated to the decomposition (4) of the moments. We define a N × N operator
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matrix A, a N × (q − N) operator matrix B, a (q − N) × N operator matrix C and a
(q −N)× (q −N) operator matrix D according to

(8) Λ ≡
(
A B

C D

)
.

Remember that in the following, the matrices A, B, C and D are matrices composed with
first order space operators.

• Boltmann-BGK system with discrete velocities
We approximate now the previous discrete model with a BGK [4] type hypothesis: the
state f is close to equilibrium and we approach the collision kernel Q by its first order
expansion around the equilibrium state:

Q(f) ' Q(f eq) + dQ(f eq).(f − f eq) .

Due to the condition Q(f eq) = 0, we obtain with this approximation that we call “BGK” in
this contribution, even it is not exactly the hypothesis done in the original article [4], a new
system of partial differential equations:

(9)
∂fj
∂t

+
∑

1≤α≤d

vαj
∂fj
∂xα

=
1

ε
dQj(f

eq).(f − f eq) , 0 ≤ j < q .

Observe that f eq is a function of the particle distribution f through the relations (2), (4)
and (5). Taking into account the hypothesis (6), the definition (7) and the notation (8), we
can write the Boltmann-BGK system with discrete velocities (9) under the form of a system
of two coupled partial differential equations:

(10)
∂W

∂t
+ AW +B Y = 0 ,

∂Y

∂t
+ CW +DY = −1

ε
Z (Y − Φ(W )) .

Proposition 1. Fourth order Chapman-Enskog expansion of the Boltmann-
BGK system with discrete velocities
As ε tends to zero, the conserved moments W of the Boltmann-BGK system with dis-
crete velocities (10) satisfy formally the following asymptotic system of partial differential
equations:

(11)
∂W

∂t
+ Γ1(W ) + εΓ2(W ) + ε2 Γ3(W ) + ε3 Γ4(W ) = O(ε4) .

The nonlinear operators are related to the expansion of the microscopic moments:

(12) Y = Φ(W ) + εZ−1 Ψ1(W ) + ε2 Z−1 Ψ2(W ) + ε3 Z−1 Ψ2(W ) + O(ε4)

and we have the interlaced relations

(13)



Γ1(W ) = AW +B Φ(W )

Ψ1(W ) = dΦ(W ).Γ1(W )−
(
CW +DΦ(W )

)
Γ2(W ) = B Z−1 Ψ1(W )

Ψ2(W ) = Z−1 dΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DZ−1 Ψ1(W )

Γ3(W ) = B Z−1 Ψ2(W )

Ψ3(W ) = Z−1 dΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DZ−1 Ψ2(W )

+Z−1 dΨ2(W ).Γ1(W )

Γ4(W ) = B Z−1 Ψ3(W ) .
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In applications to fluid dynamics, the first order term Γ1(W ) is associated to the Euler
equations of gas dynamics and the second order term Γ2(W ) to the viscous terms of the
Navier-Stokes equations. The operators Γ3(W ) and Γ4(W ) represent the Burnett and
super-Burnett terms respectively. With this Proposition 1, we essentially reformulate the
classic Chapman Enskog expansion [8] in the discrete velocity case, as done e.g. in the book
of Gatignol [27].
• Proof of Proposition 1.
First we inject the representation (12) inside the first equation of (10). It comes

∂W

∂t
+ AW +B

(
Φ(W ) + εZ−1 Ψ1(W ) + ε2 Z−1 Ψ2(W ) + ε3 Z−1 Ψ2(W )

)
= O(ε4)

then after rearranging the terms,
∂W

∂t
+ AW +B Φ(W ) + εB Z−1 Ψ1(W ) + ε2B Z−1 Ψ2(W ) + ε3B Z−1 Ψ3(W ) = O(ε4) .

The confrontation of this partial differential equation with the Ansatz (11) shows that
Γ1(W ) = AW +B Φ(W )

Γ2(W ) = B Z−1 Ψ1(W )

Γ3(W ) = B Z−1 Ψ2(W )

Γ4(W ) = B Z−1 Ψ3(W )

as proposed in (13).
Secondly, we write the second equation of (10) under the form

Y = Φ− εZ−1 (∂tY + CW +DY ) .

We observe that
−∂tY = dY . (−∂tW )

= d
(
Φ(W ) + εZ−1 Ψ1(W ) + ε2 Z−1 Ψ2(W )

)
.
(
Γ1 + εΓ2(W ) + ε2 Γ3(W )

)
+ O(ε3)

= dΦ(W ) .Γ1 + ε
(
Z−1 dΨ1(W ) .Γ1 + dΦ(W ) .Γ2

)
+ε2

(
Z−1 dΨ2(W ) .Γ1 + Z−1 dΨ1(W ) .Γ2 + dΦ(W ) .Γ3

)
+ O(ε3) .

We report this expression inside the value of Y :
Y = Φ + εZ−1 (−∂tY − CW −DY )

= Φ + εZ−1
[
dΦ(W ) .Γ1 + ε (Z−1 dΨ1(W ) .Γ1 + dΦ(W ) .Γ2)

+ε2 (Z−1 dΨ2(W ) .Γ1 + Z−1 dΨ1(W ) .Γ2 + dΦ(W ) .Γ3)

−CW −D
(
Φ(W ) + εZ−1 Ψ1(W ) + ε2 Z−1 Ψ2(W )

)]
+ O(ε4)

= Φ+εZ−1 (dΦ(W ) .Γ1−CW−DΦ)+ε2 Z−1 (Z−1 dΨ1(W ) .Γ1+dΦ(W ) .Γ2−DZ−1 Ψ1)

+ε3 Z−1 (Z−1 dΨ2(W ) .Γ1 + Z−1 dΨ1(W ) .Γ2 + dΦ(W ) .Γ3 −DZ−1 Ψ2) + O(ε4) .

Comparatively to the relation (12), we obtain
Ψ1(W ) = dΦ(W ) .Γ1 − (CW +DΦ)

Ψ2(W ) = Z−1 dΨ1(W ) .Γ1 + dΦ(W ) .Γ2(W )−DZ−1 Ψ1(W )

Ψ3(W ) = Z−1 dΨ1(W ) .Γ2 + dΦ(W ) .Γ3 −DZ−1 Ψ2 + Z−1 dΨ2(W ) .Γ1

and the last relations of (13) are explicited. The proof is completed. �
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3) Multiple Relaxation Times Lattice Boltzmann schemes
We introduce now a regular cartesian lattice L composed by vertices x separated by dis-
tances that are simple expressions of the space step ∆x. A discrete time t is supposed to
be an integer multiple of a time step ∆t > 0. The unknowns of a lattice Boltzmann scheme
with q discrete velocities are the particle densities fj. They are now functions of discrete
space x, discrete time t and discrete velocities vj for 0 ≤ j < q:

fj = fj(x, t), x ∈ L, t = n∆t, n ∈ N, vj ∈ V .

The discrete velocity set V does not depend on space or time.
Multiple relaxation times lattice Boltzmann scheme considered in this contribution consists
in a simple Lie-Trotter splitting applied to the Boltzmann-BGK model with discrete veloc-
ities (9). First a relaxation step f(t) −→ R(∆t) f(t) ≡ f ∗ for the approximation of the
system of ordinary differential equations

∂f

∂t
=

1

ε
dQ(f eq).(f − f eq)

and secondly a transport step f ∗ −→ T (∆t) f ∗ ≡ f(t+ ∆t) for the free advection
∂fj
∂t

+
∑

1≤α≤d

vαj
∂fj
∂xα

= 0 , 0 ≤ j < q .

• Relaxation step
Due to the formulation (10), the relaxation scheme is simply described in the moment rep-
resentation and we have

∂W

∂t
= 0 ,

∂Y

∂t
= −1

ε
Z (Y − Φ(W )) .

After relaxation, the vector of moments m is transformed into a new vector m∗ :

(14) m∗ ≡
(
W ∗

Y ∗

)
.

The conserved moments are not modified during this relaxation step:

(15) W ∗ = W .

As remarked in [15], we use an explicit first order Euler scheme for the microscopic moments:
Y ∗ − Y

∆t
= −1

ε
Z (Y − Φ(W )) ,

id est

(16) Y ∗ = Y + S (Φ(W )− Y )

with

(17) S =
∆t

ε
Z .

Usually, as pointed by Lallemand and Luo [43], the relaxation matrix S is a diagonal matrix,
in coherence with the hypothesis concerning the diagonalization of the operator dQ(f eq)

presented in the previous section:

S = diag
(
s1, . . . , sq−N

)
.
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Moreover, the matrix S is a fixed invertible square matrix of dimension (q−N)× (q−N).
In other words, the time step ∆t is if the order of the Knudsen number ε in our asymptotic
study. Finally the particle distribution f ∗ after relaxation is given according to

(18) f ∗ = M−1m∗ .

• Necessary conditions for stability
We deduce from the relation (16)

Y ∗ − Φ(W ) = (I− S) (Y − Φ(W ))

and a natural stability condition takes the form || I− S || ≤ 1, id est

0 ≤ sj ≤ 2 , 0 ≤ j < q −N .

The case of over-relaxation 1 < sj < 2 is widely used when implementing lattice Boltzmann
schemes to take into account very law viscosities in fluid mechanics. We will emphasize this
point in the next section.

• Advection step
In the second step of advection, the method of characteristics is applied in the very particular
case when it is exact. In one time step each particle distribution fj is exactly transported
from the note x− vj ∆t of the lattice L to the vertex x ∈ L. In other words, the advection
step occurs with a Courant-Friedrichs-Lewy number cfl ≡ 1 for all discrete velocities vj.

• Lattice Boltzmann scheme as a Lie-Trotter splitting scheme
The iteration of the lattice Boltzmann scheme is finally given by the relation

(19) f(t+ ∆t) = T (∆t)R(∆t) f(t)

and it is usefull to explicit it for each component:

(20) fj(x, t+ ∆t) = f ∗j (x− vj ∆t, t) , vj ∈ V , x ∈ L .

Observe that this framework is very general. The so-called “BGK version” of the lattice
Boltzmann scheme [5, 38, 50] corresponds to the choice M = I and Z = 1

τ
I. Usual multi-

relaxation lattice Boltzmann schemes [20, 21, 37, 43] suppose in general some orthogonality
property for the d’Humières matrix. This paradigm permits also the introduction of two
particle distributions [2, 20, 33, 40] or eventually more with the vectorial schemes developed
by Graille [29] or a variant proposed in [17]. In those last cases, the numbering j 7−→ vj of
the velocities is simply non injective.
It is naturally possible to think to a second order accurate splitting scheme. A natural idea
is the Strang splitting [54]:

f(t+ ∆t) = R
(∆t

2

)
T (∆t) R

(∆t

2

)
f(t) .

In this case, as put in evidence by Dellar [11], one can write f̃(t) ≡ R
(

∆t
2

)−1
f(t) and the

previous Strang scheme can be written as

f̃(t+ ∆t) = T (∆t) R
(∆t

2

)
R
(∆t

2

)
f̃(t) .
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This scheme, up to the shift of one half relaxation step, is identical to the Lie-Trotter split-
ting (19), except that the product R

(
∆t
2

)
R
(

∆t
2

)
plays the role of R(∆t). A first possibility

is to divide the time step ∆t by a factor 2 in the relations (16)(17):

Y = Y +
1

2
S (Φ− Y ) , Y ∗ = Y +

1

2
S (Φ− Y ) .

Then
Y ∗ =

(
1− S +

1

4
S2
)
Y +

(
S − 1

4
S2
)

Φ(W )

and over-relaxation is no more possible because sj − 1
4
s2
j ≤ 1 for all sj ∈ R. So such a

numerical scheme is not used by the engineers at our knowledge.
A second possibility is to enforce the relation R

(
∆t
2

)
=
√
R(∆t), id est

Y =
√

I− S Y +
(
I−
√

I− S
)

Φ(W ) .

But this relation has a sense only if sj ≤ 1 and over-relaxation is again excluded.
An other idea is to exchange the roles of advection and relaxation in the Strang scheme:

f(t+ ∆t) = T
(∆t

2

)
R(∆t) T

(∆t

2

)
f(t)

or to use more elaborated splittings as proposed by Drui et al. [13]. In this case, the transport
step is nomore at a Courant number equal to unity and an interpolation procedure, costly in
terms of numerical viscosity or complex to implement as the semi-Lagrangian method [26],
is not usually chosen by experts developping lattice Boltzmann schemes.
In conclusion of this sub-section, the naive Lie-Trotter splitting scheme (19) gives very good
numerical results. It is important to put in evidence precise qualities and defects of this
scheme through the following formal asymptotic analysis.

Proposition 2. Exponential form of lattice Boltzmann schemes
Consider a lattice Boltzmann scheme as defined at the previous section by the relations (2),
(4), (5), (7), (8), (14), (15), (16), (18) and (20). Then we have an exponential form of the
discrete iteration (20):

(21) m(x, t+ ∆t) = exp(−∆tΛ) m∗(x, t) .

• Proof of Proposition 2.
We have simply a long sequence of identities:
mk(x, t+ ∆t) =

∑
j

Mkj fj(x, t+ ∆t) due to (2)

=
∑
j

Mkj f
∗
j (x− vj ∆t, t) due to (20)

=
∑
j `

Mkj (M−1)
j`
m∗`(x− vj ∆t, t) due to (18)

=
∑
j `

Mkj (M−1)
j`

∞∑
n=0

1

n!

(
−∆t

∑
α

vαj ∂α
)n
m∗`(x, t) Taylor expansion

=
∑
`

∞∑
n=0

1

n!

∑
j

Mkj

(
−∆t

∑
α

vαj ∂α

)n
(M−1)

j`
m∗`(x, t) elementary algebra
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=
∑
`

∞∑
n=0

1

n!
(−∆t)n

((
M
(∑

α

vα ∂α
)
M−1

)n)
k`

m∗`(x, t)

because M is a constant matrix

=
∑
`

∞∑
n=0

1

n!
(−∆t)n

(
Λn
)
k`
m∗`(x, t) due to (7)

=
∑
`

[ ∞∑
n=0

1

n!

(
−∆tΛ

)n
k`

]
m∗`(x, t) elementary algebra

=
∑
`

exp(−∆tΛ)k` m
∗
`(x, t) elementary algebra

=
(

exp(−∆tΛ) m∗(x, t)
)
k

elementary algebra
and the proof is completed. �

We can see the relation (21) as a discrete form of the Duhamel formula for ordinary differ-
ential equations. The idea of introducing a formal exponential expansion is also present in
the work of Boghosian and Coveney in the BGK case [5].

• Momentum-velocity operator for a D2Q9 lattice Boltzmann scheme
We can concretize the matrix Λ introduced in (7) with the popular two-dimensional “D2Q9”
scheme. A set of nine velocities is defined by the Figure 1.

λ

λ =
∆x

∆t

0 1

2

3

4

56

7 8

Figure 1: D2Q9 lattice Boltzmann scheme

To fix the ideas, we use the moment matrix presented in Lallemand and Luo [43]:

(22) MD2Q9 =



1 1 1 1 1 1 1 1 1

0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ
−4λ2 −λ2 −λ2 −λ2 −λ2 2λ2 2λ2 2λ2 2λ2

0 λ2 −λ2 λ2 −λ2 0 0 0 0

0 0 0 0 0 λ2 −λ2 λ2 −λ2

0 −2λ3 0 2λ3 0 λ3 −λ3 −λ3 λ3

0 0 −2λ3 0 2λ3 λ3 λ3 −λ3 −λ3

4λ4 −2λ4 −2λ4 −2λ4 −2λ4 λ4 λ4 λ4 λ4


.

Observe that other choices are possible with the Hermite moments developed in [48, 53].
The moments are associated with the lines of the matrix (22). They are denominated (in
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this order) by ρ, Jx, Jy, ε, xx, xy, qx, qy, h. The lines of this invertible matrix are chosen
orthogonal. For isothermal flows, the conserved moments

(23) W =
(
ρ , Jx , Jy

)t

correspond to the three first lines of the d’Humières matrix (22). The non-conserved moments
complete the family:

(24) Y =
(
ε , xx , xy , qx , qy , h

)t
.

They are linked to the six last lines of the matrix defined in (22). With the velocities defined
in Figure 1 and the moment matrix (22), we construct without difficulty the operator matrix
Λ for the thermal D2Q9 scheme:

(25) ΛD2Q9 =



0 ∂x ∂y 0 0 0 0 0 0
2λ2

3
∂x 0 0 1

6
∂x

1
2
∂x ∂y 0 0 0

2λ2

3
∂y 0 0 1

6
∂y −1

2
∂y ∂x 0 0 0

0 λ2 ∂x λ2 ∂y 0 0 0 ∂x ∂y 0

0 λ2

3
∂x −λ2

3
∂y 0 0 0 −1

3
∂x

1
3
∂y 0

0 2
3
λ2 ∂y

2
3
λ2 ∂x 0 0 0 1

3
∂y

1
3
∂x 0

0 0 0 λ2

3
∂x −λ2 ∂x λ2 ∂y 0 0 1

3
∂x

0 0 0 λ2

3
∂y λ2 ∂y λ2 ∂x 0 0 1

3
∂y

0 0 0 0 0 0 λ2 ∂x λ2 ∂y 0


.

In the relation (25), we have put in evidence the block decomposition (8) for the D2Q9
scheme with the conserved moments precised in (23). Even if the space differential opera-
tors commute, the matrices that compose the momentum-velocity operator matrix does not
commute! We have the very important but elementary structure

Λ2 ≡
(
A2 B2

C2 D2

)
=

(
A B

C D

) (
A B

C D

)
=

(
A2 +B C AB +BD

C A+DC C B +D2

)
and to fix the ideas

Λ3 ≡
(
A3 B3

C3 D3

)
=

(
A2 B2

C2 D2

) (
A B

C D

)
=

(
A2A+B2C A2B +B2D

C2A+D2C C2B +D2D

)
.

4) Taylor expansion method
In this section, we revisit the Taylor expansion method: we specify the hypotheses, express
our general result and begin the proof with the order zero.

• Hypotheses for a formal expansion
The formal Taylor expansion supposes some precise hypotheses. First, we adopt the acoustic
scaling: the ratio λ ≡ ∆x

∆t
is supposed to be constant in all this work. Moreover, the ratio

∆t
ε

remains constant in our asymptotic analysis. Then the relaxation matris S is fixed and
invertible; it is also the case for the matrix S−1 proportional to the matrix Z−1 who plays
an important role in the relations (13) of the Chapman-Enskog expansion (11)(12)(13) for
the continuous in time lattice Boltzmann-BGK system.
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A unintuitive result has been discovered by Hénon [36]. Due to the fact that the fully dis-
cretized in time lattice Boltzmannn scheme (20) is substantially different from the continuous
in time Boltzmann-BGK system with discrete velocities (9), the asymptotic expansions have
similarities and differences. In particular, the lattice Boltzmannn scheme put in evidence
what we call the Hénon matrix Σ in this contribution. Roughtly speaking, it plays a role
analogous to the matrix Z−1 in the relations (13). But it is defined by

(26) Σ ≡ S−1 − 1

2
I .

This matrix emerges from the very classic second order analysis presented thereafter at
Proposition 5 and detailed in the relations (40)(41). For applications to fluid dynamics,
this matrix is closely related to viscosities, as explained in Section 5 for the D2Q9 example
in relations (50) and (51). Then some values of the Hénon matrix Σ are chosen as small
as possible in order to simulate flows with high Reynolds number. In consequence, over-
relaxation is a mandatory practice for lattice Boltzmann schemes applied to high Reynolds
number flows. Recall that this matrix remains fixed in our analysis.
Secondly, we suppose also that we can differentiate all the expansions relative to space
and/or time. This hypothesis is mathematically absolutly non trivial and expresses that all
the formal expansions should take place in very regular functional spaces. Thirdly, we use the
notation dζ(W ).ξ for the action of the differential of some regular function W 7−→ ζ(W )

againts a test vector ξ. In particular,

(27) γj(W ) ≡ dΦ(W ).Γj(W ) , 1 ≤ j ≤ 3 .

For second order derivatives, we introduce

(28) ∂2Ψ.Γ1 ≡ d (dΨ(W ).Γ1).Γ1 = d2Ψ(W ).(Γ1, Γ1) + dΨ(W ).dΓ1(W ).Γ1 .

The asymptotic analysis occurs for a time step ∆t (or a space step ∆x) tending to zero.
Emerging partial differential equations for the conserved variables are denoted as

(29) ∂tW + Γ1(W ) + ∆tΓ2(W ) + ∆t2 Γ3(W ) + ∆t3 Γ4(W ) = O(∆t4) .

The vector Γj(W ) belongs in RN . It is obtained after j space derivations of the conserved
moments W and of the equilibrium vector Φ(W ). For this reason, we will speak in the
following of e.g. Γ1(W ) as “first order term”, even if it is a term of order zero relative to
the infinitesimal ∆t. For non-conserved moments (or microscopic variables), we suppose

(30)
{

Y = Φ(W ) + S−1
(

∆t Ψ1(W ) + ∆t2 Ψ2(W ) + ∆t3 Ψ3(W )
)

+ O(∆t4)

Y ∗ = Φ(W ) + (Σ− 1
2

I)
(

∆t Ψ1(W ) + ∆t2 Ψ2(W ) + ∆t3 Ψ3(W )
)

+ O(∆t4)

where I is the identity matrix of dimension q − N . Observe that the two lines of (30) are
equivalent thanks to (16) and (26). The vectors Φj(W ) are analogous to Γj(W ) but not
with the same dimension: Γj(W ) ∈ RN and Φj(W ) ∈ Rq−N .





Nonlinear fourth order Taylor expansion of Lattice Boltzmann schemes

• Main result. Recurrence formulas for fourth order expansion
We prove in this contribution that we have the following recurrence formulas for the explic-
itation of the vectors Γj(W ) and Φj(W ) up to fourth order accuracy:

(31)



Γ1(W ) = AW +B Φ(W )

Ψ1(W ) = dΦ(W ).Γ1(W )−
(
CW +DΦ(W )

)
Γ2(W ) = B Σ Ψ1(W )

Ψ2(W ) = Σ dΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣ Ψ1(W )

Γ3(W ) = B Σ Ψ2(W ) + 1
12
B2 Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

Ψ3(W ) = Σ dΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣ Ψ2(W ) + Σ dΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2 Ψ1(W )− 1

12
∂2Ψ1(W ).Γ1(W )

Γ4(W ) = B Σ Ψ3(W ) + 1
4
B2 Ψ2(W ) + 1

6
BD2 Σ Ψ1(W )− 1

6
ABΨ2(W )

−1
6
B
(
dγ1(W ).Γ2(W ) + dγ2(W ).Γ1(W )

)
− 1

6
B Σ ∂2Ψ1(W ).Γ1(W ) .

Observe that the order of the relations in (31) is mandatory. Each step has to be explicited
before the evaluation of the next expression. At second order accuracy, the three first lines
of the relations (31) summarizes what is needed for a lot of applications with only first and
second order partial differential equations. Observe that the compact form Γ2 = B Σ Ψ1 for
the second order term put in evidence the important choice of a Hénon matrix “as small as
possible”. Observe that the relations (31) have similarities with the ones obtained in (13) for
the Chapman-Enskog expansion. But essentially the matrix Σ has replaced the matrix Z−1

and new terms appear due to the post-processing with Taylor expansions.

Proposition 3. Equilibrium state and zero order expansion
When ∆t tends to zero, the microscopic moments are close to their equilibrium value:

(32) Y = Φ(W ) + O(∆t) , Y ∗ = Φ(W ) + O(∆t) .

• Proof of Proposition 3.
We expand one iteration of the scheme (21) at order zero:

(33) m+ O(∆t) = m∗ + O(∆t3) .

Then we deduce from (33):
Y − Y ∗ = O(∆t) .

Then due to the iteration (16) and the fact that the matrix S is supposed fixed, we have

(34) Y = Φ(W ) + O(∆t) .

The first relation of (32) is satisfied. It is then immediate to deduce from the scheme iteration
(16) the second relation of (32). The proposition is established. �

In the following, we detail all the ingredients that conduct to the main result (29) to (31).

5) Taylor expansion method at first and second order accuracy
In this section, we prove the two first orders of the expansion (29)(30)(31). We make the link
with the Taylor expansion as presented in [14, 15] and we apply the result for the isothermal
D2Q9 scheme.
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Proposition 4. First order expansion
When ∆t tends to zero, the macroscopic moments W satisfy asymptotically the following
system of N first order equations:

(35) ∂tW + Γ1(W ) = O(∆t) .

Moreover, the vector Γ1(W ) for the first order dynamics satisfy

(36) Γ1(W ) = AW +B Φ(W ) .

• Proof of Proposition 4.
We expand one iteration of the scheme (21) at first order:

(37) m+ ∆t ∂tm+ O(∆t2) = m∗ −∆tΛm∗ + O(∆t2) .

We can replace the vector m by its two components W and Y . We have for the first line

W + ∆t ∂tW + O(∆t2) = W −∆t (AW +B Y ∗) + O(∆t2) .

We simplify by the constant W term, divide by ∆t and take into account the expansion (32):

∂tW + O(∆t) = −
(
AW +B Φ(W )

)
+ O(∆t) .

This relation is exactly the expansion (35) with the first order dynamics Γ1(W ) evaluated
according to the relation (36).

• Example of the D2Q9 fluid scheme
The results presented here are essentially a reformulation of the classic work of Lallemand
and Luo [43]. With the moments introduced in (22), (23) and (24), we denote by Φε, Φxx

and Φxy the equilibium values of the three first non conserved moments (24). The dynamics
at first order is given by (36). We have in this D2Q9 case,

Γ1 =

 ∂xJx + ∂yJy
2
3
λ2 ∂xρ+ 1

6
∂xΦε + 1

2
∂xΦxx + ∂yΦxy

2
3
λ2 ∂yρ+ 1

6
∂yΦε − 1

2
∂yΦxx + ∂xΦxy

 .

These relations can be easily fitted with the Euler equations of gas dynamics in two space
dimensions 

∂tρ+ ∂xJx + ∂yJy = 0

∂tJx + ∂x
(

1
ρ
J2
x + p

)
+ ∂y

(
1
ρ
Jx Jy

)
= 0

∂tJy + ∂x
(

1
ρ
Jx Jy

)
+ ∂y

(
1
ρ
J2
y + p

)
= 0 .

We identify the two expressions with Jx ≡ ρ u and Jy ≡ ρ v:
2

3
λ2 ρ +

1

6
Φε +

1

2
Φxx = ρ u2 + p , Φxy = ρ u v

2

3
λ2 ρ +

1

6
Φε −

1

2
Φxx = ρ v2 + p ,

and we deduce the expression for the three first noncenserved moments:

Φε = 6 p− 4λ2 ρ + 3 ρ (u2 + v2) , Φxx = ρ (u2 − v2) , Φxy = ρ u v .

The other nonequilibrium moments qx, qy and h does not play any role in the first order
partial equivalent equations.
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Proposition 5. Taylor expansion method at second order accuracy
An essential result for the applications is the second order asymptotic analysis for a time
step ∆t (or a space step ∆x) tending to zero. The expansion of the microscopic variables
takes the form

(38) Y = Φ(W ) + ∆t S−1 Ψ1(W ) + O(∆t2)

and the vector Ψ1(W ) satisfies the relation

(39) Ψ1(W ) = dΦ(W ) .Γ1(W )−
(
CW +DΦ(W )

)
.

A set of second order partial differential equations emerges

(40) ∂tW + Γ1(W ) + ∆t Γ2(W ) = O(∆t2) .

The vector Γ1(W ) has been precised in (36) the vector Γ2(W ) is obtained after two deriva-
tions of the conserved moments W and the equilibrium vector Φ(W ):

(41) Γ2(W ) = B Σ Ψ1(W ) .

The expression of the second order term puts in evidence the importance of taking over-
relaxation in the applications where Σ should also be as small as possible.
• Proof of Proposition 5.
We first consider the first order expansion of microscopic moments. From the expansion
(37) of one iteration of the scheme at first order, we can extract relations for the second
component. We have for the microscopic moments

Y + ∆t ∂tY + O(∆t2) = Y ∗ −∆t (CW +DY ∗) + O(∆t2) .

Then
Y − Y ∗ = −∆t

(
∂tY +

(
CW +DΦ(W )

))
+ O(∆t2) .

The explicitation of ∂tY is given by the chain rule from the expansion (34):
∂tY = ∂t

(
Φ(W ) + O(∆t)

)
= dΦ(W ) . ∂tW + O(∆t)

= dΦ(W ).(−Γ1) + O(∆t) .

Then
S
(
Y − Φ(W )

)
= ∆t

(
dΦ(W ) .Γ1 − (CW +DΦ)

)
+ O(∆t2) .

The relation (38) is established, and the expression of Ψ1(W ) is obtained by the rela-
tion (39). Before using the expansion (38), we must expand the microscopic moments Y ∗

after relaxation up to first order accuracy. We have the following calculus
Y ∗ = Y + S (Φ(W )− Y )

= Y −
(
∆tΨ1 + O(∆t2)

)
due to (38)

= Φ(W ) +
(

Σ +
1

2
I
) (

∆tΨ1(W ) + O(∆t2)
)
−
(
∆tΨ1 + O(∆t2)

)
due to (26) and (38)

= Φ(W ) +
(

Σ− 1

2
I
)

∆tΨ1(W ) + O(∆t2)

and we have the relation

(42) Y ∗ = Φ(W ) +
(

Σ− 1

2
I
)

∆t Ψ1(W ) + O(∆t2) .
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The two relations (38) and (42) are nothing else that the first order terms of the general
expansion (30).

• Second order partial differential equations
We expand now one iteration of the scheme (21) at second order accuracy:

(43) m+ ∆t ∂tm+
1

2
∆t2 ∂2

tm+ O(∆t3) = m∗ −∆tΛm∗ +
1

2
∆t2 Λ2m∗ + O(∆t3) .

We replace the vector m by its two components W and Y . We use the decomposition (8)
of the momentum-velocity operator matrix Λ. We have for the first component

(44)


W + ∆t ∂tW +

1

2
∆t2 ∂2

tW + O(∆t3) =

W −∆t (AW +B Y ∗) +
1

2
∆t2 (A2W +B2 Y

∗) + O(∆t3) .

We explicit some terms present in the relation (44). We have

∂tW = −Γ1(W ) + O(∆t) = −(AW +B Φ(W )) + O(∆t)

Then, using the formal rule stated at the beginning of Section 4, we keep the order of
accuracy after derivation:
∂2
tW = −∂t

(
Γ1 + O(∆t)

)
= −dΓ1 . ∂tW + O(∆t)

= dΓ1 .Γ1 + O(∆t)

= AΓ1 +B dΦ .Γ1 + O(∆t) .

We deduce from (44):

∂tW = −1

2
∆t ∂2

tW − (AW +B Y ∗) +
1

2
∆t (A2W +B2 Y

∗) + O(∆t2) .

We order the various terms by powers of ∆t:

∂tW = −AW −B
(

Φ + (Σ− 1

2
I) ∆tΨ1

)
− 1

2
∆t (AΓ1 +B dΦ.Γ1)

+
1

2
∆t
(
(A2 +B C)W + (AB +BD) Φ

)
+ O(∆t2)

= −AW −B Φ + ∆t
[
−B Σ Ψ1 +

1

2
B
(
dΦ .Γ1 − CW −DΦ

)
− 1

2
A (AW +B Φ)

−1

2
B dΦ.Γ1 +

1

2
(A2 +B C)W +

1

2
(AB +BD) Φ

]
+ O(∆t2)

= −Γ1(W )−∆t B Σ Ψ1(W ) + O(∆t2)

and the relation (40) is proven with Γ2(W ) = B Σ Ψ1 as proposed in (41). �

• Link with the original Taylor expansion method
In [14, 15], the moments at equilibrium are denoted meq

` :

meq
` (W ) =

{
W` if 0 ≤ ` < N(
Φ(W )

)
`−N if ` ≥ N ,

the coefficients Λ̃β
i` are given according to

(45) Λ̃β
i` =

∑
j

Mij v
β
j (M−1)j` , 1 ≤ β ≤ d , 0 ≤ i, ` < q ,
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are closely related to the operator matrix Λ introduced in (7). The coefficients of the
Hénon’s matrix (26) have a shifted numbering

(46) σ̃` = σ`−N ≡
1

s`−N
− 1

2
, ` ≥ N

and the defect of conservation θ̃k is defined according to

(47) θ̃k(W ) ≡ ∂tm
eq
k +

∑
0≤`<q

∑
1≤β≤d

Λ̃β
k` ∂βm

eq
` (W ) , k ≥ N .

Proposition 6. Equivalence at second order accuracy
The second order expansion (40), (38), (36), (39) and (41) is equivalent to the expansion
proposed in [14, 15]:

(48) ∂tWi + Λ̃β
i` ∂βm

eq
` (W ) = ∆t

∑
k≥N

Λ̃β
ik σ̃k ∂β θ̃k(W ) + O(∆t2) .

• Proof of Proposition 6.
Remark first that

Λik =

q−1∑
j=0

Mij

( ∑
1≤β≤d

vβj ∂β

)
(M−1)jk =

∑
1≤β≤d

( q−1∑
j=0

Mij v
β
j (M−1)jk

)
∂β =

∑
1≤β≤d

Λ̃β
ik ∂β .

Then on one hand, the component number i of the first order term
(
AW + B Φ(W )

)
can

be expanded in the following way:(
AW +B Φ(W )

)
i

=
∑
k<N

Λ̃β
ik ∂βWk +

∑
k≥N

Λ̃β
ik ∂βΦk

=
∑
k<N

Λ̃β
ik ∂βm

eq
k +

∑
k≥N

Λ̃β
ik ∂βm

eq
k

=
∑

0≤k<q

Λ̃β
ik ∂βm

eq
k

and the first order terms of (40) and (48) are identical. Secondly, due to (47), we have for
k ≥ N

θ̃k = ∂tm
eq
k +

∑
`β

Λ̃β
k` ∂βm

eq
`

= ∂tΦk−N +
(
Λ.meq

)
k

=
(
dΦ . ∂tW

)
k−N +

(
Λ.meq

)
k

=
(
dΦ . (Γ1 + O(∆t))

)
k−N −

(
CW +DΦ

)
k−N

and due to (39),
θ̃k = −

(
Ψ1

)
k−N + O(∆t) , k ≥ N .

We deduce that for second order terms with 0 ≤ i < N :(
B σ̃ Ψ1

)
i

=
∑

0≤`<q−N

Bi` σ̃`+N
(
Ψ1(W )

)
`

=
∑
k≥N

∑
0≤β≤d

Λ̃β
ik ∂β

(
σk
(
− θ̃k + O(∆t)

))
with k = `+N
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= −
∑
k≥N

∑
0≤β≤d

Λ̃β
ik σ̃k

(
∂β θ̃k

)
+ O(∆t)

because the coefficients σ̃k are supposed constant. Then the relation (48) is established. �

• Fluid D2Q9 diffusive tensor
If we compute the second order term Γ2 for the D2Q9 scheme introduced previously, the
holy grail would be to recover the viscous terms of the compressible Navier Stokes equations
in two space dimensions. More precisely, with a given shear viscosity µ and a given bulk
viscosity ζ, we write the viscous terms of the lattice Boltzmann expansion as

(49) −∆tΓ2 =

 0

∂jτxj ≡ ∂x(2µ ∂xu+ (ζ − µ)(∂xu+ ∂yv)) + ∂y(µ(∂xv + ∂yu))

∂jτyj ≡ ∂x(µ(∂xv + ∂yu)) + ∂y((ζ − µ)(∂xu+ ∂yv) + 2µ ∂yv)

+

 0

Ψx

Ψy

 ,

with the notation Ψx, Ψy for the error for the dissipation of momentum.
The problem to enforce Ψx = Ψy = 0 is ill-posed, as recognized by Dellar [10, 12], Házi and
Kávrán [34] and Prasianakis at al. [49] among others. Nevertheless, it can be proven that
the unphysical terms involving second order space derivatives involving the density can be
removed with a pressure law of the type

p(ρ) =
λ2

3
ρ ,

id est a sound velocity equal to 1√
3

in the velocity unit of the lattice Boltzmann scheme.
Nevertheless, with the notation Φqx and Φqy for the equilibrium fonctions of the moments
qx and qy and the coefficients of the Hénon matrix Σ fixed as

(50) Σ = diag
(
σe, σx, σx, σq, σq, σh

)
,

the choice {
Φqx = −ρ λ2 u+ 3 ρ (u2 + v2)u

Φqy = −ρ λ2 v + 3 ρ (u2 + v2) v ,

conducts to the relation (49) with associated viscosities fixed in a very classical way:

(51) µ =
λ

3
ρ σx ∆x , ζ =

λ

3
ρ σe ∆x .

The equilibrium value Φh of the last fourth order moment h (see the relation (24)) has no
incidence on the value of the diffusive term Γ2. The error is then reduced to third order
terms relative to the velocity and we have precisely

Ψx = σx ∆t
[
∂x
(
u3 ∂xρ− v3 ∂yρ+ 3 ρ (u2 ∂xu− v2 ∂yv)

)
+∂y

(
− v3 ∂xρ− u3 ∂yρ− 3 ρ (u2 ∂yu+ v2 ∂xv)

)]
Ψy = σx ∆t

[
∂x
(
− v3 ∂xρ− u3 ∂yρ− 3 ρ (u2 ∂yu+ v2 ∂xv

)
+∂y

(
− u3 ∂xρ+ v3 ∂yρ+ 3 ρ (−u2 ∂xu+ v2 ∂yv)

)]
.
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6) Taylor expansion method at third and fourth order accuracy
The two following orders of the Taylor expansion does not set any theoretical difficulty,
except the care of algebra with not so short formal expressions...

Proposition 7. Nonlinear third-order expansion
When the time step ∆t has an infinitesimal value, the expansion of the microscopic variables
takes the form
(52) Y = Φ(W ) + ∆t S−1 Ψ1(W ) + ∆t2 S−1 Ψ2(W ) + O(∆t3) .

The vector Ψ1(W ) is evaluated at the relation (39) and Ψ2(W ) satisfies the relation
(53) Ψ2(W ) = Σ dΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣ Ψ1(W ) .

It is possible to precise a system of third order partial differential equations
(54) ∂tW + Γ1(W ) + ∆tΓ2(W ) + ∆t2 Γ3(W ) = O(∆t3) .

The vectors Γ1(W ) and Γ2(W ) have been precised at the relations (36) and (41) respectively.
We have moreover

(55) Γ3(W ) = B Σ Ψ2(W ) +
1

12
B2 Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W ) .

• Proof of Proposition 7.
We first establish the relations (52) and (53). We start by the expansion of the scheme (43)
at order 2. For the second component of nonconserved moments, we have
Y +∆t ∂tY + 1

2
∆t2 ∂2

t Y +O(∆t3) = Y ∗−∆t (CW +DY ∗)+ 1
2

∆t2 (C2W +D2 Y
∗)+O(∆t3)

and, due to the relaxation process Y − Y ∗ ≡ S (Y − Φ(W )), we have

(56) S (Y −Φ(W )) = −∆t (CW +DY ∗ + ∂tY ) +
1

2
∆t2 (C2W +D2 Y

∗− ∂2
t Y ) + O(∆t3) .

We can precise the two first time derivatives of the non-conserved moments. The relation
(38) can also be written as

Y = Φ(W ) +
(

Σ +
1

2
I
)

∆tΨ1(W ) + O(∆t2) .

We differentiate this previous relation relative to time:
∂tY = dΦ. ∂tW +

(
Σ + 1

2
I
)

∆t dΨ1. ∂tW + O(∆t2)

= −dΦ.
(
Γ1(W ) + ∆tΓ2(W ) + O(∆t2)

)
+ ∆t

(
Σ + 1

2
I
)

dΨ1.
(
− Γ1 + O(∆t)

)
+ O(∆t2)

and

(57) ∂tY = −dΦ(W ).Γ1(W )−∆t
[
dΦ(W ).Γ2(W ) +

(
Σ +

1

2
I
)

dΨ1(W ).Γ1(W )
]

+ O(∆t2) .

Because we need the second time derivative ∂2
t Y in the right hand side of (56), we differen-

tiate the relation (57) relative to time. Using the notation (27), we deduce
(58) ∂2

t Y = dγ1.Γ1 + O(∆t) .

We precise now the expansions of CW +DY ∗ and C2W +D2 Y
∗. We have

CW +DY ∗ = CW +D
[
Φ(W ) +

(
Σ− 1

2
I
)

∆tΨ1

]
+ O(∆t2)

and

(59) CW +DY ∗ = γ1(W )−Ψ1(W ) + ∆t D
(

Σ− 1

2
I
)

Ψ1(W ) + O(∆t2) .

With a new set of operator matrices,
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C2W +D2 Y
∗ = C2W +D2

(
Φ(W ) + O(∆t)

)
= (C A+DC)W + (C B +D2) Φ(W ) + O(∆t)

= C Γ1 +D (dΦ.Γ1 −Ψ1) + O(∆t)

and because dΦ.Γ1 = dγ1.Γ1 − (C Γ1 +D dΦ.Γ1),

(60) C2W +D2 Y
∗ = d(γ1 −Ψ1).Γ1(W )−DΨ1(W ) + O(∆t) .

Then due to (56), (57), (58), (59) and (60), we have
S (Y − Φ(W )) = −∆t (CW +DY ∗ + ∂tY ) + 1

2
∆t2 (C2W +D2 Y

∗ − ∂2
t Y ) + O(∆t3)

= −∆t
(
γ1 −Ψ1 + ∆t D

(
Σ− 1

2
I
)

Ψ1

)
− ∆t

(
− dΦ.Γ1 −∆t

[
dΦ.Γ2 +

(
Σ + 1

2
I
)

dΨ1.Γ1

])
+1

2
∆t2

(
d(γ1 −Ψ1).Γ1 −DΨ1

)
− 1

2
∆t2 dγ1.Γ1 + O(∆t3)

= ∆tΨ1 + ∆t2
(
−DΣ Ψ1 + 1

2
DΨ1 + dΦ.Γ2 + Σ dΨ1.Γ1 − 1

2
DΨ1

)
+ O(∆t3)

= ∆tΨ1 + ∆t2
(
−DΣ Ψ1 + dΦ.Γ2 + Σ dΨ1.Γ1

)
+ O(∆t3)

and the relations (52) and (53) are established.

• Third order partial differential equations
We consider now the Taylor expansion of the relation (21) at third order:

(61)
{
m+ ∆t ∂tm+ 1

2
∆t2 ∂2

tm+ 1
6

∆t3 ∂3
tm+ O(∆t4) =

m∗ −∆tΛm∗ + 1
2

∆t2 Λ2m∗ − 1
6

∆t3 Λ3m∗ + O(∆t4) .

We consider the first conserved components of the moments:{
W + ∆t ∂tW + 1

2
∆t2 ∂2

tW + 1
6

∆t3 ∂3
tW + O(∆t4) = W −∆t (AW +B Y ∗)

+1
2

∆t2 (A2W +B2 Y
∗)− 1

6
∆t3 (A3W +B3 Y

∗) + O(∆t4) .

We simplify the constant term W and divide by ∆t. We deduce

(62)
{
∂tW = −AW −B Y ∗ + 1

2
∆t (A2W +B2 Y

∗ − ∂2
tW )

−1
6

∆t2 (A3W +B3 Y
∗ + ∂3

tW ) + O(∆t3) .

We explicit the partial derivatives ∂2
tW and ∂3

tW at orders one and zero respectively. From
the relation

∂tW + Γ1 + ∆tΓ2 = O(∆t2)

we have
∂2
tW = ∂t

(
− Γ1 −∆tΓ2 + O(∆t2)

)
= d
(
− Γ1 −∆tΓ2 + O(∆t2)

)
.(∂tW )

= d
(
− Γ1 −∆tΓ2 + O(∆t2)

)
.
(
− Γ1 −∆tΓ2 + O(∆t2)

and

(63) ∂2
tW = dΓ1.Γ1 + ∆t (dΓ1.Γ2 + dΓ2.Γ1) + O(∆t2) .

Then
∂3
tW = ∂t(∂

2
tW )

= ∂t
(
dΓ1.Γ1

)
+ O(∆t)

= d
(
dΓ1.Γ1

)
.∂tW + O(∆t)

= −d
(
dΓ1.Γ1

)
.Γ1 + O(∆t)

(64) ∂3
tW = −∂2Γ1.Γ1 + O(∆t) .
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In order to compute the coefficient Γ3, we precise now the expansions of the quantities
AjW +Bj Y

∗ for j = 1, 2 and 3. We have
AW +B Y ∗ = AW +B

(
Φ(W ) +

(
Σ− 1

2
I
) (

∆tΨ1 + ∆t2 Ψ2

)
+ O(∆t3)

= AW +B Φ + ∆t B
(
Σ− 1

2
I
)

Ψ1 + ∆t2B
(
Σ− 1

2
I
)

Ψ2 + O(∆t3)

A2W +B2 Y
∗ = A2W +B2

(
Φ(W ) +

(
Σ− 1

2
I
)

∆tΨ1

)
+ O(∆t2)

= (A2 +B C)W + (AB +BD) Φ + ∆t B2

(
Σ− 1

2
I
)

Ψ1 + O(∆t2)

= AΓ1 +B (γ1 −Ψ1) + ∆t B2

(
Σ− 1

2
I
)

Ψ1 + O(∆t2)

because CW +DΨ1 = γ1 −Ψ1

= dΓ1.Γ1 −BΨ1 + ∆t B2

(
Σ− 1

2
I
)

Ψ1 + O(∆t2)

because dΓ1.Γ1 = AΓ1 +B γ1,
A3W +B3 Y

∗ = A3W +B3 Φ(W ) + O(∆t)

= (A2A+B2C)W + (A2B +B2D) Φ + O(∆t)

= A2 Γ1 +B2 (γ1 −Ψ1) + O(∆t)

= (A2 +B C) Γ1 + (AB +BD) γ1 −B2 Ψ1 + O(∆t)

= A (AΓ1 +B γ1) +B (C Γ1 +Dγ1)−B2 Ψ1 + O(∆t)

= A dΓ1.Γ1 +B (C Γ1 +Dγ1)−B2 Ψ1 + O(∆t)

because dΓ1.Γ1 = AΓ1 +B γ1

= A dΓ1.Γ1 +B d(γ1 −Ψ1).Γ1 −B2 Ψ1 + O(∆t)

because C Γ1 +Dγ1 = d(γ1 −Ψ1).Γ1

= ∂2Γ1.Γ1 −B dΨ1.Γ1 −B2 Ψ1 + O(∆t)

because ∂2Γ1.Γ1 ≡ d(dΓ1.Γ1).Γ1 = A dΓ1.Γ1 +B dγ1.Γ1.
We deduce now from (62), (63), (64) and the previous expressions:
∂tW = −AW −B Y ∗+ 1

2
∆t (A2W +B2 Y

∗−∂2
tW )− 1

6
∆t2 (A3W +B3 Y

∗+∂3
tW )+O(∆t3)

= −
(
AW +B Φ + ∆t B

(
Σ− 1

2
I
)

Ψ1 + ∆t2B
(
Σ− 1

2
I
)

Ψ2

)
+1

2
∆t
(
dΓ1.Γ1 −BΨ1 + ∆t B2

(
Σ− 1

2
I
)

Ψ1 − dΓ1.Γ1 −∆t (dΓ1.Γ2 + dΓ2.Γ1)
)

−1
6

∆t2
(
∂2Γ1.Γ1 −B dΨ1.Γ1 −B2 Ψ1 − ∂2Γ1.Γ1

)
+ O(∆t3)

= −Γ1−∆t B Σ Ψ1+∆t2
(
−B Σ Ψ2+ 1

2
BΨ2+ 1

2
B2 Σ Ψ1− 1

4
B2 Ψ1− 1

2
(dΓ1.Γ2+dΓ2.Γ1)

+1
6
B dΨ1.Γ1 + 1

6
B2 Ψ1

)
+ O(∆t3) because ∂2Γ1.Γ1 = A dΓ1.Γ1 +B dγ1.Γ1

= −Γ1−∆t B Σ Ψ1+∆t2
(
−B Σ Ψ2+ 1

2
B (Σ dΨ1.Γ1+γ2−DΣ Ψ1)+ 1

2
(AB+BD) Σ Ψ1

− 1
12
B2 Ψ1 − 1

2
(AΓ2 +B γ2)− 1

2
B Σ dΨ1.Γ1 + 1

6
B dΨ1.Γ1

)
+ O(∆t3)

= −Γ1 −∆tΓ2 −∆t2
(
B Σ Ψ2 + 1

12
B2 Ψ1 − 1

6
B dΨ1.Γ1

)
+ O(∆t3)

and the relations (54) and (55) are established. �

In [16], we have proposed a third order expansion of nonlinear lattice Boltzmann schemes for
two specific applications: scalar advection diffusion (N = 1) and fluid system (N = d + 1)
with mass and momentum conservation. In the following proposition, we show that our
previous result at third order accuracy can be reformulated with the compact formulation
(54) (55) of Proposition 6.
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Proposition 8. Third-order formal expansion for thermics and fluids
With the notations (45), (46) and (47) introduced at Proposition 5, we suppose moreover

M0j = 1 , Mαj = vαj , 0 ≤ j < q , 1 ≤ α ≤ d .

The first moments are denoted by ρ ≡
∑

j fj and Jα ≡
∑

j v
α
j fj. For the scalar advection

diffusion (N = 1), the third order equivalent partial differential equation (54) (55) can be
written

(65) ∂tρ+∂αJ
eq
α −∆t σ̃α ∂αθ̃α+∆t2

[
Λγ
β`

(
σ̃β σ̃`−

1

12

)
∂β∂γ θ̃`+

(
σ̃2
β −

1

6

)
∂t(∂β θ̃β)

]
= O(∆t3)

with Jeq
α ≡ Φα(ρ) and the defects of conservation θ̃k(W ) defined in (47). For the fluid

system (N = d+ 1), we have

(66)


∂tρ+ ∂αJα −

1

12
∆t2 Λγ

β` ∂β∂γ θ̃` = O(∆t3)

∂tJα + Λβ
αk ∂βm

eq
k −∆tΛβ

αk σ̃k ∂β θ̃k

+ ∆t2
[

Λβ
αk Λγ

k`

(
σ̃k σ̃` −

1

12

)
∂β∂γ θ̃` + Λβ

αk

(
σ̃2
k −

1

6

)
∂β∂tθ̃k

]
= O(∆t3) .

The relations (65) and (66) are axactly the ones proposed with numbers (35), (40) and (41)
in the reference [16].
• Proof of Proposition 8.
We first consider the conservation defect θ̃k(W ) ≡ ∂tm

eq
k +

∑
`β Λ̃β

k` ∂βm
eq
` introduced in

(47). We define a vector conservation defect θ of dimension q−N just obtained by a shift
of component numbering:

θk = θ̃k+N(W ) , 0 ≤ k < q −N .

We have for 0 ≤ k < q −N :
θk = (dΦ. ∂tW )k + (Λ̃.meq)k+N

= (dΦ. ∂tW )k + (CW +DΦ(W ))k

= (dΦ. (−Γ1 −∆tΓ2))k + (CW +DΦ(W ))k + O(∆t2) due to the expansion (29)
= −

(
Ψ1 + ∆t dΦ.Γ2

)
k

+ O(∆t2) due to the relation (31)
and

θ = −Ψ1 −∆t dΦ.Γ2 + O(∆t2) .

In particular, ∂tθ = −∂tΨ1 + O(∆t) = −dΨ1. (−Γ1) + O(∆t) and

∂tθ = dΨ1.Γ1 + O(∆t) .

Due to (41) and (55), we have the following calculus:
Γ2 + ∆tΓ3 = B Σ Ψ1 + ∆t (B Σ Ψ2 − 1

12
B2 Ψ1 + 1

6
B dΨ1.Γ1)

= B Σ (−θ + ∆t dΦ.Γ2 + O(∆t2)) + ∆t B Σ
(
DΣ Ψ1 − dΦ.Γ2 − Σ dΨ1.Γ1

)
− 1

12
∆t B2 Ψ1 + 1

6
∆t B dΨ1.Γ1

= −B Σ θ + ∆t
[
(B ΣDΣ − 1

12
B2) Ψ1 +B (1

6
− Σ2) dΨ1.Γ1

]
+ O(∆t2)

= −B Σ θ + ∆t
[
− (B ΣDΣ − 1

12
B2) θ +B (Σ2 − 1

6
) ∂tθ

]
+ O(∆t2) .

The third-order partial equivalent equations (54) can be written under the form

∂tW + Λ̃meq + ∆t B Σ θ + ∆t2
[ (
B ΣDΣ − 1

12
B2

)
θ −B

(
Σ2 − 1

6

)
∂tθ
]

= O(∆t3) .
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• We explicit now the following cartesian components:
(B ΣDΣ θ)

i
= −Λ̃β

ik σ̃k (−Λ̃γ
k`) σ̃` ∂β∂γ θ̃` = Λ̃β

ik σ̃k Λ̃γ
k` σ̃` ∂β∂γ θ̃` ,

(B2 θ)i = (Λ̃β
ik ∂β) (Λ̃γ

k` ∂γ) θ̃` = Λ̃β
ik Λ̃γ

k` ∂β∂γ θ̃` ,

((B ΣDΣ − 1
12
B2) θ̃)

i
= Λ̃β

ik Λ̃γ
k`

(
σ̃k σ̃` − 1

12

)
∂β∂γ θ̃`

and −(B (Σ2 − 1
6
) ∂tθ̃)i = Λ̃β

ik

(
σ̃2
k − 1

6

)
∂β∂tθ̃k.

We deduce a new form of the third-order partial equivalent equations for 0 ≤ i < N :

(67)

{
∂tWi + Λ̃α

ik ∂αm
eq
k −∆t Λ̃β

ik σ̃k ∂β θ̃k

+ ∆t2
[

Λ̃β
ik Λ̃γ

k`

(
σ̃k σ̃` − 1

12

)
∂β∂γ θ̃` + Λ̃β

ik

(
σ̃2
k − 1

6

)
∂β∂tθ̃k

]
= O(∆t3) .

• We focus on the mass conservation (i = 0). We have
Λ̃α

0` = M0j v
α
j (M−1)

j`
= Mαj (M−1)

j`
= δα`.

Then
Λ̃β

0k σ̃k ∂β θ̃k = δβk σ̃k ∂β θ̃k = σ̃β ∂β θ̃β.
In the thermal case, we have only one conservation law and σ̃β 6= 0. Thus we have enlightened
the second order term of the left hand side of the relation (65). In the fluid case, the
momentum (id est moments numbered from 1 to d) are conserved. In consequence, σ̃β = 0

and we have no second order term in the mass conservation (66).
Now for the first term relative to third order term of (67), we have
Λ̃β

0k Λ̃γ
k`

(
σ̃k σ̃` − 1

12

)
∂β∂γθ` = δβk Λ̃γ

k`

(
σ̃k σ̃` − 1

12

)
∂β∂γθ` = Λ̃γ

β`

(
σ̃β σ̃` − 1

12

)
∂β∂γθ`.

In the termal case, σ̃β 6= 0 and this term is exactly the first of the two third order terms of
the relation (65). In the fluid case, σ̃β = 0 and this term has a more compact expression.
Finally,

(68) Λ̃β
0k Λ̃γ

k`

(
σ̃k σ̃` −

1

12

)
∂β∂γθ` =

{
Λ̃γ
β`

(
σ̃β σ̃` − 1

12

)
∂β∂γθ` thermics

− 1
12

Λ̃γ
β` ∂β∂γθ` fluid.

For the second term relative to third order, we have
Λ̃β

0k

(
σ̃2
k − 1

6

)
∂β∂tθk =

(
σ̃2
β − 1

6

)
∂t(∂βθβ)

In the thermal case, σ̃β 6= 0 and Λ̃β
0k

(
σ̃2
k − 1

6

)
∂β∂tθk =

(
σ̃2
β − 1

6

)
∂t(∂βθβ). In the tluid

case, the momentum is conserved and θβ = O(∆t) and Λ̃β
0k

(
σ̃2
k − 1

6

)
∂β∂tθk = O(∆t). In a

synthetic way,

(69) Λ̃β
0k

(
σ̃2
k −

1

6

)
∂β∂tθk =

{ (
σ̃2
β − 1

6

)
∂t(∂βθβ) thermics

O(∆t) fluid.

We deduce from (68) and (69) the expansion (65) in the thermal case and the first relation
of (66) in the fluid case.
• For the momentum equation of the fluid case, 1 ≤ i = α ≤ d and the relation (67) can
be rewritten as{

∂tJα + Λ̃α
αk ∂αm

eq
k −∆t Λ̃β

αk σ̃k ∂β θ̃k

+ ∆t2
[

Λ̃β
αk Λ̃γ

k`

(
σ̃k σ̃` − 1

12

)
∂β∂γ θ̃` + Λ̃β

αk

(
σ̃2
k − 1

6

)
∂β∂tθ̃k

]
= O(∆t3) .
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This relation is exactly the second relation of (66). �

Proposition 9. Nonlinear expansion at fourth order
When the time step ∆t has an infinitesimal value, the expansion of the microscopic variables
takes the form

(70) Y = Φ(W ) + ∆t S−1 Ψ1(W ) + ∆t2 S−1 Ψ2(W ) + ∆t3 S−1 Ψ3(W ) + O(∆t4) .

The vectors Ψ1(W ) and Ψ2(W ) have been evaluated at the relations (39) and (53). We
have

(71)
{

Ψ3(W ) = dΦ(W ).Γ3(W ) + Σ dΨ1(W ).Γ2(W ) + Σ dΨ2(W ).Γ1(W )−DΣ Ψ2(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2 Ψ1(W )− 1

12
∂2Ψ1(W ).Γ1(W ) .

A system of fourth order partial differential equations is asymptotically satisfied by the
lattice Boltzmann scheme:

(72) ∂tW + Γ1(W ) + ∆tΓ2(W ) + ∆t2 Γ3(W ) + ∆t3 Γ4(W ) = O(∆t4) .

The vectors Γ1(W ), Γ2(W ) and Γ3(W ) have been precised at the relations (36), (41) and
(55) respectively. We have now

(73)


Γ4(W ) = B Σ Ψ3(W ) +

1

4
B2 Ψ2(W ) +

1

6
BD2 Σ Ψ1 −

1

6
ABΨ2(W )

−1

6
B dγ1(W ).Γ2(W )− 1

6
B dγ2(W ).Γ1(W )− 1

6
B Σ ∂2Ψ1(W ).Γ1(W ) .

• Proof of Proposition 9.
We first establish the relations (70) and (71). We start by the expansion of the scheme (61)
at order 3. For the second component of nonconserved moments, we have{

Y + ∆t ∂tY + 1
2

∆t2 ∂2
t Y + 1

6
∆t3 ∂3

t Y + O(∆t4) = Y ∗ −∆t (CW +DY ∗)

+1
2

∆t2 (C2W +D2 Y
∗)− 1

6
∆t3 (C3W +D3 Y

∗) + O(∆t4) .

The relaxation process can be written Y − Y ∗ ≡ S (Y − Φ(W )). We deduce

(74)


S (Y − Φ(W )) = −∆t (CW +DY ∗ + ∂tY ) +

1

2
∆t2 (C2W +D2 Y

∗ − ∂2
t Y )

−1

6
∆t3 (C3W +D3 Y

∗ + ∂3
t Y ) + O(∆t4) .

We have to precise the three first time derivatives of the non-conserved moments. The
relation (70) can also be written at second order accuracy:

Y = Φ(W ) +
(

Σ +
1

2
I
)

∆tΨ1(W ) +
(

Σ +
1

2
I
)

∆t2 Ψ2(W ) + O(∆t3) .

We differentiate this previous relation relative to time:
∂tY = dΦ. ∂tW +

(
Σ + 1

2
I
)

∆t dΨ1. ∂tW +
(
Σ + 1

2
I
)

∆t2 dΨ2. ∂tW + O(∆t3)

= −dΦ.
(
Γ1(W ) + ∆tΓ2(W ) + ∆t2 Γ3(W ) + O(∆t3)

)
−∆t

(
Σ+1

2
I
)

dΨ1.
(
Γ1+∆tΓ2+O(∆t2)

)
+ ∆t2

(
Σ+1

2
I
)

dΨ2.
(
−Γ1+O(∆t)

)
+O(∆t3)

and

(75)


∂tY = −dΦ(W ).Γ1(W )−∆t

[
dΦ(W ).Γ2(W ) +

(
Σ + 1

2
I
)

dΨ1(W ).Γ1(W )
]

−∆t2
[
dΦ(W ).Γ3(W ) +

(
Σ + 1

2
I
)

dΨ1(W ).Γ2(W )

+
(
Σ + 1

2
I
)

dΨ2(W ).Γ1(W )
]

+ O(∆t3) .
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We need the second time derivative ∂2
t Y and third order time derivative ∂3

t Y in the right
hand side of (74). We differentiate the relation (75) relative to time. Using the notation
(27), we deduce
∂2
t Y = −dγ1.(−Γ1 −∆tΓ2)−∆t

[
− dγ2.Γ1 −

(
Σ + 1

2
I
)
∂2Φ(W ).Γ1(W )

]
+ O(∆t2)

and

(76) ∂2
t Y = dγ1.Γ1 + ∆t

[
dγ1.Γ2 + dγ2.Γ1 +

(
Σ +

1

2
I
)
∂2Ψ1(W ).Γ1(W )

]
+ O(∆t2) .

Finally,

(77) ∂3
t Y = −∂2γ1(W ).Γ1(W ) + O(∆t) .

We precise now the expansions of CW +DY ∗, C2W +D2 Y
∗ and C3W +D3 Y

∗. We have
CW +DY ∗ = CW +D

[
Φ(W ) +

(
Σ− 1

2
I
)

∆tΨ1 +
(
Σ− 1

2
I
)

∆t2 Ψ2

]
+ O(∆t2)

and

(78)
{
CW +DY ∗ = γ1(W )−Ψ1(W ) + ∆t D

(
Σ− 1

2
I
)

Ψ1(W )

+ ∆t2 D
(
Σ− 1

2
I
)

Ψ2(W ) + O(∆t3) .

For the second order term,
C2W +D2 Y

∗ = C2W +D2

[
Φ(W ) + ∆t

(
Σ− 1

2
I
)

Ψ1

]
+ O(∆t2)

and due to (60),

(79) C2W +D2 Y
∗ = d(γ1 −Ψ1).Γ1(W )−DΨ1(W ) + ∆tD2

(
Σ− 1

2
I
)

Ψ1 + O(∆t2) .

We have finally for the third order terms
C3W +D3 Y

∗ = C3W +D3 Φ(W ) + O(∆t)

= (C2A+D2C)W + (C2B +D2D) Φ(W ) + O(∆t)

= C2 Γ1 +D2 (γ1 −Ψ1) + O(∆t)

= (C A+DC) Γ1 + (C B +D2) γ1 −D2 Ψ1 + O(∆t)

= C dγ1.Γ1 +D d(γ1 −Ψ1).Γ1 −D2 Ψ1 + O(∆t)

= C dγ1.Γ1 +D dγ1.Γ1 −D dΨ1.Γ1 −D2 Ψ1 + O(∆t)

and

(80) C3W +D3 Y
∗ = ∂2(γ1 −Ψ1).Γ1 −D dΨ1.Γ1 −D2 Ψ1 + O(∆t)

Then due to (74), (75), (76), (77), (78), (79) and (80), we have
S (Y − Φ(W )) = −∆t (CW +DY ∗ + ∂tY ) + 1

2
∆t2 (C2W +D2 Y

∗ − ∂2
t Y )

−1
6

∆t3 (C3W +D3 Y
∗ + ∂3

t Y ) + O(∆t4)

= −∆t
(
γ1 −Ψ1 + ∆t D

(
Σ− 1

2
I
)

Ψ1 + ∆t2 D
(
Σ− 1

2
I
)

Ψ2

)
−∆t

[
− dΦ.Γ1 −∆t

(
dΦ.Γ2 +

(
Σ + 1

2
I
)

dΨ1.Γ1

)
−∆t2

(
dΦ.Γ3 +

(
Σ + 1

2
I
)

dΨ1.Γ2 +
(
Σ + 1

2
I
)

dΨ2.Γ1

)]
+1

2
∆t2

(
d(γ1 −Ψ1).Γ1 −DΨ1 + ∆tD2

(
Σ− 1

2
I
)

Ψ1

)
−1

2
∆t2

(
dγ1.Γ1 + ∆t

[
dγ1.Γ2 + dγ2.Γ1 +

(
Σ + 1

2
I
)
∂2Ψ1.Γ1

])
−1

6
∆t3

(
∂2(γ1 −Ψ1).Γ1 −D dΨ1.Γ1 −D2 Ψ1

)
− 1

6
∆t3

(
− ∂2γ1.Γ1

)
+ O(∆t4)
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= ∆tΨ1 + ∆t2 Ψ2 + ∆t3
[
−D (Σ− 1

2
I) Ψ2 + dΦ.Γ3 + (Σ + 1

2
I) dΨ1.Γ2 + (Σ + 1

2
I) dΨ2.Γ1

+1
2
D2 (Σ− 1

2
I) Ψ1− 1

2
dγ1.Γ2− 1

2
dγ2.Γ1− 1

2
(Σ + 1

2
I) ∂2Ψ1.Γ1 + 1

6
∂2Ψ1.Γ1 + 1

6
D dΨ1.Γ1

+1
6
D2 Ψ1

]
+ O(∆t4)

= ∆tΨ1 + ∆t2 Ψ2 + ∆t3
[
−DΣ Ψ2 + 1

2
D (Σ dΨ1.Γ1 + γ2 −DΣ Ψ1) + dΦ.Γ3 + Σ dΨ1.Γ2

+1
2

dΨ1.Γ2 + Σ dΨ2.Γ1 + 1
2

(Σ ∂2Ψ1.Γ1 + dγ2.Γ1 −DΣ dΨ1.Γ1) + 1
2

(C B +D2) Σ Ψ1

−1
4
D2 Ψ1 − 1

2
dγ1.Γ2 − 1

2
dγ2.Γ1 − 1

2
Σ ∂2Ψ1.Γ1 − 1

12
∂2Ψ1.Γ1 + 1

6
D dΨ1.Γ1 + 1

6
D2 Ψ1

]
+O(∆t4)

= ∆tΨ1 + ∆t2 Ψ2 + ∆t3
[
dΦ.Γ3 −DΣ Ψ2 + 1

2
Dγ2 + Σ dΨ1.Γ2 + 1

2
dΨ1.Γ2 + Σ dΨ2.Γ1

+ 1
2
C B Σ Ψ1 − 1

12
D2 Ψ1 − 1

2
dγ1.Γ2 − 1

12
∂2Ψ1.Γ1 + 1

6
D dΨ1.Γ1

]
+ O(∆t4)

= ∆tΨ1 + ∆t2 Ψ2 + ∆t3
[
dΦ.Γ3−DΣ Ψ2 + 1

2
Dγ2 + Σ dΨ1.Γ2 + 1

2
(−C Γ2−Dγ2 + dγ1.Γ2)

+Σ dΨ2.Γ1 + 1
2
C B Σ Ψ1 − 1

12
D2 Ψ1 − 1

2
dγ1.Γ2 − 1

12
∂2Ψ1.Γ1 + 1

6
D dΨ1.Γ1

]
+ O(∆t4)

= ∆tΨ1 + ∆t2 Ψ2 + ∆t3
[
dΦ.Γ3 −DΣ Ψ2 + Σ dΨ1.Γ2 + Σ dΨ2.Γ1 − 1

12
D2 Ψ1 − 1

12
∂2Ψ1.Γ1

+1
6
D dΨ1.Γ1

]
+ O(∆t4) .

The relations (70) and (71) are established.

• Fourth order partial differential equations
We consider now the Taylor expansion of the relation (21) at fourth order:

m+ ∆t ∂tm+ 1
2

∆t2 ∂2
tm+ 1

6
∆t3 ∂3

tm+ 1
24

∆t4 ∂4
tm+ O(∆t5)

= m∗ −∆tΛm∗ + 1
2

∆t2 Λ2m∗ − 1
6

∆t3 Λ3m∗ + 1
24

∆t4 Λ4m∗ + O(∆t5) .

For the first components (conserved moments):

W + ∆t ∂tW + 1
2

∆t2 ∂2
tW + 1

6
∆t3 ∂3

tW + 1
24

∆t4 ∂4
tW + O(∆t5) = W −∆t (AW +B Y ∗)

+1
2

∆t2 (A2W +B2 Y
∗)− 1

6
∆t3 (A3W +B3 Y

∗) + 1
24

∆t4 (A4W +B4 Y
∗) + O(∆t5) .

We simplify the constant term W and divide by ∆t. We deduce

(81)
{
∂tW = −(AW +B Y ∗) + 1

2
∆t (A2W +B2 Y

∗ − ∂2
tW )

−1
6

∆t2 (A3W +B3 Y
∗ + ∂3

tW ) + 1
24

∆t3 (A4W +B4 Y
∗ − ∂4

tW ) + O(∆t4) .

We explicit the partial derivatives ∂2
tW , ∂3

tW and ∂4
tW at orders two, one and zero re-

spectively. We start with the relation

∂tW + Γ1 + ∆tΓ2 + ∆t2 Γ3 = O(∆t3)

where Γ1, Γ2 and Γ3 have been evaluated previously. We have
∂2
tW = ∂t

(
− Γ1 −∆tΓ2 −∆t2 Γ3 + O(∆t3)

)
= d
(
− Γ1 −∆tΓ2 −∆t2 Γ3 + O(∆t3)

)
.(∂tW )

= d
(
− Γ1 −∆tΓ2 −∆t2 Γ3 + O(∆t2)

)
.
(
− Γ1 −∆tΓ2 −∆t2 Γ3

)
+ O(∆t3)

and

(82) ∂2
tW = dΓ1.Γ1 + ∆t (dΓ1.Γ2 + dΓ2.Γ1) + ∆t2 (dΓ1.Γ3 + dΓ2.Γ2 + dΓ3.Γ1) + O(∆t2) .

Then
∂3
tW = ∂t(∂

2
tW )

= ∂t
(
AΓ1 +B dΦ.Γ1 + ∆t ∂t(dΓ2.Γ1 + dΓ1.Γ2)

)
+ O(∆t2)
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= (A dΓ1 +B d(dΦ.Γ1)).
(
− Γ1 −∆tΓ2 + O(∆t2)

)
+∆t ∂t (B Σ dΨ1.Γ1 + AΓ2 +B dΦ.Γ2) + O(∆t2)

= ∂t
(
dΓ1.Γ1 + ∆t (dΓ1.Γ2 + dΓ2.Γ1)

)
+ O(∆t2)

= d
(
dΓ1.Γ1 + ∆t (dΓ1.Γ2 + dΓ2.Γ1)

)
. ∂tW + O(∆t2)

= d
(
dΓ1.Γ1 + ∆t (dΓ1.Γ2 + dΓ2.Γ1)

)
.
(
− Γ1 −∆tΓ2) + O(∆t2)

= −d
(
dΓ1.Γ1

)
.Γ1−∆t

[
d(AΓ2 +B γ2 +B Σ dΨ1.Γ1).Γ1 +d(AΓ1 +B γ1).Γ2

]
+O(∆t2)

= −∂2Γ1.Γ1−∆t
[
A dΓ2.Γ1+B dγ2.Γ1+B Σ ∂2Ψ1.Γ1+A dΓ1.Γ2+B dγ1.Γ2

]
+O(∆t2)

and we have at first order for this third order derivative

(83)
{
∂3
tW = −∂2Γ1.Γ1 −∆t

[
A (dΓ2.Γ1 + dΓ1.Γ2)

+B (dγ2.Γ1 + dγ1.Γ2 + Σ ∂2Ψ1.Γ1)
]

+ O(∆t2) .

Last but not least, we have
∂4
tW = ∂t

(
− ∂2Γ1.Γ1 + O(∆t)

)
= −∂t

(
A dΓ1.Γ1 +B dγ1.Γ1) + O(∆t)

)
= d
(
A dΓ1.Γ1 +B dγ1.Γ1

)
. (Γ1 + O(∆t))

and finally

(84) ∂4
tW = A∂2Γ1.Γ1 +B ∂2γ1.Γ1 + O(∆t) .

For the determination of the coefficient Γ4, we precise the expansions of the quantities
AjW +Bj Y

∗ for j = 1 to j = 4. We use the previous evaluations done in the proof of the
previous propositions:
AW +B Y ∗ = AW +B

[
Φ(W ) +

(
Σ− 1

2
I
) (

∆tΨ1 + ∆t2 Ψ2 + ∆t3 Ψ3

)]
+ O(∆t4)

= AW +B Φ + ∆t B
(
Σ− 1

2
I
)

Ψ1 + ∆t2B
(
Σ− 1

2
I
)

Ψ2 + ∆t3B
(
Σ− 1

2
I
)

Ψ3 +

O(∆t4)

A2W +B2 Y
∗ = A2W +B2

[
Φ(W ) +

(
Σ− 1

2
I
)

(∆tΨ1 + ∆t2 Ψ2)
]

+ O(∆t3)

= (A2 +B C)W+(AB+BD) Φ+∆t B2

(
Σ− 1

2
I
)

Ψ1 +∆t2B2

(
Σ− 1

2
I
)

Ψ2 +O(∆t3)

= dΓ1.Γ1 −BΨ1 + ∆t B2

(
Σ− 1

2
I
)

Ψ1 + ∆t2B2

(
Σ− 1

2
I
)

Ψ2 + O(∆t3)

A3W +B3 Y
∗ = A3W +B3 [Φ(W ) + ∆t

(
Σ− 1

2
I
)

Ψ1] + O(∆t2)

= (A2A+B2C)W + (A2B +B2D) Φ + ∆t B3

(
Σ− 1

2
I
)

Ψ1 + O(∆t2)

= ∂2Γ1.Γ1 −B dΨ1.Γ1 −B2 Ψ1 + ∆t B3

(
Σ− 1

2
I
)

Ψ1 + O(∆t2)

A4W +B4 Y
∗ = A4W +B4 Φ(W ) + O(∆t)

= (A3A+B3C)W + (A3B +B3D) Φ + O(∆t)

= A3 Γ1 +B3 (γ1 −Ψ1) + O(∆t)

= (A2A+B2C) Γ1 + (A2B +B2D) γ1 −B3 Ψ1 + O(∆t)

= A2 dΓ1.Γ1 +B2 d(γ1 −Ψ1).Γ1 −B3 Ψ1 + O(∆t)

= (A2 +B C) dΓ1.Γ1 + (AB +BD) dγ1.Γ1 −B2 dΨ1.Γ1 −B3 Ψ1 + O(∆t)

= A∂2Γ1.Γ1 +B ∂2(γ1 −Ψ1).Γ1 −B2 dΨ1.Γ1 −B3 Ψ1 + O(∆t)

= A∂2Γ1.Γ1 +B ∂2γ1.Γ1 −B ∂2Ψ1.Γ1 −B2 dΨ1.Γ1 −B3 Ψ1 + O(∆t) .

We deduce now from (81), (82), (83), (84) and the previous expressions:
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∂tW = −(AW +B Y ∗) + 1
2

∆t (A2W +B2 Y
∗ − ∂2

tW )− 1
6

∆t2 (A3W +B3 Y
∗ + ∂3

tW )

+ 1
24

∆t3 (A4W +B4 Y
∗ − ∂4

tW ) + O(∆t4)

= −
(
AW +B Φ + ∆t B

(
Σ− 1

2
I
)

Ψ1 + ∆t2B
(
Σ− 1

2
I
)

Ψ2 + ∆t3B
(
Σ− 1

2
I
)

Ψ3

)
+1

2
∆t
[
dΓ1.Γ1 −BΨ1 + ∆t B2

(
Σ− 1

2
I
)

Ψ1 + ∆t2B2

(
Σ− 1

2
I
)

Ψ2

−
(
dΓ1.Γ1 + ∆t (dΓ1.Γ2 + dΓ2.Γ1) + ∆t2 (dΓ1.Γ3 + dΓ2.Γ2 + dΓ3.Γ1)

)]
−1

6
∆t2

[
∂2Γ1.Γ1 −B dΨ1.Γ1 −B2 Ψ1 + ∆t B3

(
Σ− 1

2
I
)

Ψ1

−∂2Γ1.Γ1 −∆t
(
A (dΓ2.Γ1 + dΓ1.Γ2) +B (dγ2.Γ1 + dγ1.Γ2 + Σ ∂2Ψ1.Γ1)

)]
+ 1

24
∆t3

[
A∂2Γ1.Γ1 +B ∂2γ1.Γ1 −B ∂2Ψ1.Γ1 −B2 dΨ1.Γ1 −B3 Ψ1

−
(
A∂2Γ1.Γ1 +B ∂2γ1.Γ1

)]
+ O(∆t4)

= −Γ1 −∆tΓ2 −∆t2 Γ3 + ∆t3
[
−B

(
Σ− 1

2
I
)

Ψ3 + 1
2
B2

(
Σ− 1

2
I
)

Ψ2

−1
2

(dΓ1.Γ3 + dΓ2.Γ2 + dΓ3.Γ1) + 1
6

(
−B3

(
Σ− 1

2
I
)

Ψ1 + A (dΓ2.Γ1 + dΓ1.Γ2)

+B (dγ2.Γ1 + dγ1.Γ2 + Σ ∂2Ψ1.Γ1)
)

+ 1
24

(
A∂2Γ1.Γ1 +B ∂2γ1.Γ1

−B ∂2Ψ1.Γ1 −B2 dΨ1.Γ1 −B3 Ψ1 − A∂2Γ1.Γ1 −B ∂2γ1.Γ1

)]
+ O(∆t4)

= −Γ1 −∆tΓ2 −∆t2 Γ3 −∆t3
[
B Σ Ψ3 − 1

2
B
(
γ3 + Σ dΨ1.Γ2 + Σ dΨ2.Γ1 −DΣ Ψ2

+1
6
D dΨ1.Γ1 − 1

12
D2 Ψ1 − 1

12
∂2Ψ1.Γ1

)
− 1

2
(AB +BD) Σ Ψ2 + 1

4
B2 Ψ2

+1
2

(
AΓ3 +B γ3 +B Σ dΨ1.Γ1 + dΓ3.Γ1

)
+ 1

6
B3 Σ Ψ1 − 1

12
B3 Ψ1 − 1

6
AB Σ dΨ1.Γ1

−1
6
A (AΓ2+B γ2)−1

6
B
(
dγ2.Γ1+dγ1.Γ2+Σ ∂2Ψ1.Γ1

)
+ 1

24
B ∂2Ψ1.Γ1+ 1

24
B2 dΨ1.Γ1

+ 1
24
B3 Ψ1

]
+ O(∆t4)

= −Γ1 −∆tΓ2 −∆t2 Γ3 −∆t3
[
B Σ Ψ3 − 1

2
B Σ dΨ2.Γ1 − 1

12
BD dΨ1.Γ1 + 1

24
BD2 Ψ1

+ 1
24
B ∂2Ψ1.Γ1 − 1

2
AB Σ Ψ2 + 1

4
B2 Ψ2 + 1

2
A
(
B Σ Ψ2 − 1

6
B dΨ1.Γ1 + 1

12
B2 Ψ1

)
+1

2

(
B Σ dΨ2.Γ1−1

6
B ∂2Ψ1.Γ1+ 1

12
B2 dΨ1.Γ1

)
+1

6
B3 Σ Ψ1− 1

24
B3 Ψ1−1

6
AB Σ dΨ1.Γ1

−1
6
A2 Γ2 − 1

6
AB γ2 − 1

6
B
(
dγ2.Γ1 + dγ1.Γ2 + Σ ∂2Ψ1.Γ1

)
+ 1

24
B ∂2Ψ1.Γ1

+ 1
24
B2 dΨ1.Γ1

]
+ O(∆t4)

= −Γ1−∆tΓ2−∆t2 Γ3−∆t3
[
B Σ Ψ3− 1

12
B2 dΨ1.Γ1+ 1

24
BD2 Ψ1+ 1

4
B2 Ψ2+ 1

24
AB2 Ψ1

+1
6
B3 Σ Ψ1 − 1

24
B3 Ψ1 − 1

6
AB Σ dΨ1.Γ1 − 1

6
A2B Σ Ψ1 − 1

6
AB γ2

−1
6
B
(
dγ2.Γ1 + dγ1.Γ2 + Σ ∂2Ψ1.Γ1

)
+ 1

12
B2 dΨ1.Γ1

]
+ O(∆t4)

= −Γ1 −∆tΓ2 −∆t2 Γ3 −∆t3
[
B Σ Ψ3 + 1

4
B2 Ψ2 + 1

6
B3 Σ Ψ1 − 1

6
AB Σ dΨ1.Γ1

−1
6
A2B Σ Ψ1−1

6
AB

(
Ψ2−Σ dΨ1.Γ1+DΣ Ψ1

)
−1

6
B
(
dγ2.Γ1+dγ1.Γ2+Σ ∂2Ψ1.Γ1

)]
+O(∆t4) because AB2 +BD2 = B3

= −Γ1 −∆tΓ2 −∆t2 Γ3 −∆t3
[
B Σ Ψ3 + 1

4
B2 Ψ2 + 1

6
BD2 Σ Ψ1 − 1

6
ABΨ2

−1
6
B
(
dγ2.Γ1 + dγ1.Γ2 + Σ ∂2Ψ1.Γ1

)]
+ O(∆t4)

because B3 − A (AB + BD) = BD2. The relations (72) and (73) are established and the
proposition is proven. �





Nonlinear fourth order Taylor expansion of Lattice Boltzmann schemes

7) Revisiting the “Berlin algorithm” in the linear case
In [3], we have presented the Berlin explicit algorithm in order to determine, with the help
of formal calculus, the equivalent partial differential equations of a linear lattice Boltzmann
scheme. We do not enter here into the details of our previous contribution because the
linearized version of the present algorithm is much more simple.

Proposition 10. Linearized general expansion at fourth order
We suppose that the equilibrium value of the nonconserved moments is a linear function:

Φ(W ) = E W

with a given fixed (q−N)×N rectangle matrix E. Then the nonequilibium moments can
be expanded as

Y =
[
E + S−1(∆t β1 + ∆t2 β2 + ∆t3 β3)

]
W + O(∆t4) .

The (q − N) × N matrices βj are linear operators of order j. The equivalent partial
equivalent equations are linear and can be written as

∂tW +
[
α1 + ∆t α2 + ∆t2 α3 + ∆t3 α4

]
W + O(∆t4) ,

and αj is a N × N differential matrix of order j. In other terms, Φj(W ) = βjW and
Γj(W ) = αjW are linear functions of the conserved moments. The coefficent matrices αj
and βj are computed according to a linearized version of (31):

(85)



α1 = A+BE

β1 = E α1 − C −DE

α2 = B Σ β1

β2 = Σ β1α1 + E α2 −DΣ β1

α3 = B Σ β2 + 1
12
B2 β1 − 1

6
B β1 α1

β3 = Σ β1α2 + E α3 −DΣ β2 + Σ β2α1 + 1
6
Dβ1α1 − 1

12
D2 β1 − 1

12
β1 α

2
1

α4 = B Σ β3 + 1
4
B2 β2 + 1

6
BD2 Σ β1 − 1

6
AB β2

−1
6
BE α1 α2 − 1

6
BE α2 α1 − 1

6
B Σ β1 α

2
1 .

• Proof of Proposition 10.
First observe that dΦ. ξ = E ξ for any test vector ξ. Due to the relation (36), we have
Γ1 = AW +B Φ(W ) = AW +BEW = (A+BE)W and α1 = A+BE. Due to (39), we
have moreover
Ψ1 = dΦ(W ).Γ1(W )−

(
CW +DΦ(W )

)
= E α1W − CW −DEW

= (E α1 − C −DE)W

and the second relation of (85) is established. Due to (41),
Γ2(W ) = B Σ Ψ1(W )

= B Σ β1W .
Then α2 = B Σ β1 and the third line of (85) is proven. We have now from (53),
Ψ2(W ) = Σ dΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣ Ψ1(W )
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= Σ β1 α1W + E α2W −DΣ β1W

=
(
Σ β1 α1 + E α2 −DΣ β1

)
W

and β2 = Σ β1 α1 + E α2 −DΣ β1 as suggested in the fourth line of(85). From the relation
(55), we have now
Γ3(W ) = B Σ Ψ2(W ) + 1

12
B2 Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

= B Σ β2W + 1
12
B2 β1W − 1

6
B β1.α1W

=
(
B Σ β2 + 1

12
B2 β1 − 1

6
B β1.α1

)
W .

Then α3 = B Σ β2 + 1
12
B2 β1 − 1

6
B β1.α1 as proposed in the fifth line of (85). Observe now

that due to (28), we have
∂2Ψ1.Γ1(W ) = d2Ψ1(W ).(Γ1, Γ1) + dΨ1(W ).dΓ1(W ).Γ1

= dΨ1(W ).dΓ1(W ).Γ1 because Ψ1 is linear
= β1 α

2
1 W .

Then due to (71), we have in this linear case,
Ψ3(W ) = dΦ(W ).Γ3(W ) + Σ dΨ1(W ).Γ2(W ) + Σ dΨ2(W ).Γ1(W )−DΣ Ψ2(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2 Ψ1(W )− 1

12
∂2Ψ1(W ).Γ1(W )

= E α3W + Σ β1 α2W + Σ β2 α1W −DΣ β2W + 1
6
Dβ1 α1W

− 1
12
D2 β1W − 1

12
β1 α

2
1 W

=
(
E α3 + Σ β1 α2 + Σ β2 α1 −DΣ β2 + 1

6
Dβ1 α1 − 1

12
D2 β1 − 1

12
β1 α

2
1

)
W

and β3 = E α3 +Σ β1 α2 +Σ β2 α1−DΣ β2 + 1
6
Dβ1 α1− 1

12
D2 β1− 1

12
β1 α

2
1. We have finally,

due to (73),
Γ4(W ) = B Σ Ψ3(W ) + 1

4
B2 Ψ2(W ) + 1

6
BD2 Σ Ψ1 − 1

6
ABΨ2(W )− 1

6
B dγ1(W ).Γ2(W )

−1
6
B dγ2(W ).Γ1(W )− 1

6
B Σ ∂2Ψ1(W ).Γ1(W )

= B Σ β3W + 1
4
B2 β2W + 1

6
BD2 Σ β1W − 1

6
AB β2W − 1

6
BE α2W

−1
6
BE α1W − 1

6
B Σ β1 α

2
1 W

=
(
B Σ β3+ 1

4
B2 β2+ 1

6
BD2 Σ β1− 1

6
AB β2− 1

6
BE α2 α1− 1

6
BE α1 α2− 1

6
B Σ β1 α

2
1

)
W

and the proposition is established. �

8) Conclusion
In this contribution, we have extended the Taylor expansion method of a multiple relaxation
times lattice Boltzmann scheme up to fourth order accuracy. With this expansion, nonlinear
partial differential equations for the conserved variables and various differential expressions
for the nonconserved moments emerge naturally. This expansion has been validated with
previous works on the subject.
Observe that the main result is implemented with this framework in the “pyLBM”’ software
[30]. The next step is the introduction of source terms, in the spirit proposed in [25], and
other geometries like triangles, in a way suggested in [23]. The adaptation of the Taylor
expansion method to other variants of lattice Boltzmann schemes as recentered schemes
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[28, 19], regularized lattice Boltzmann [44, 48, 53] or entropic lattice Boltzmann schemes
[41] are also into study. After a first step in [47], the link between the single scale Taylor
expansion and the multiple scale Chapman-Enskog is also a project for the near future.
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