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Understanding place value with numeration units  

Catherine Houdement *, Frédérick Tempier ** 
 
 
Abstract. Numeration units (ones, tens, hundreds, etc.) are an epistemological foundation for place 
value. Here, we assume that they are a didactic support in countries where spoken numbers are 
incongruent with written numbers. In France, teaching practices neglect the relations between units, 
and numeration units are typically used only to designate the positions of digits. Our research, which 
adopts the didactical engineering framework, aims to develop a set of reference tasks for grades 1 
to 5 to support a consistent learning of place value with numeration units. This article reports the 
theoretical framework on which our research is based, and illustrates it with some examples of tasks 
designed for grade 3 students and implemented in classrooms. 
 
Keywords. Didactical engineering, Numeration units, Place value, Primary school, Task design, 
Unitizing. 

1 Introduction 

The current decimal and positional number system, known as the Hindu–Arabic system, is used 
worldwide for writing numerals. The origin of this notation remains a subject of debate among 
historians of mathematics. The counting rod rules that govern place value were initially presented 
in the Sunzi Suanjing, a Chinese mathematical treatise written during the 3rd to 5th centuries, which 
is thought to be the origin of the decimal system. The system reached India in the 5th to 9th centuries, 
the Arab Empire in the 10th century, and then Europe in the 13th century (Sun et al. 2018). But the 
integration of the place value system took more time. In France, as in other countries, at some point 
two ‘number notation’ systems coexisted, depending on the function (counting a collection, marking 
a date, computing, etc.). Proust (2000) named these systems of   concrete and abstract numbers. For 
instance, in both France and England, counting was based on highly visual means of computation 
(tokens and a counting board), which were taught until the 18th century (Ifrah 1981), whilst in France 
everyday number notation was based on the Roman system.  

History suggests that the most plausible reason for the invention and use of a positional system for 
writing integers and decimals comes from its computational power (Stevin 1585, Menninger 1969). 
Algorithms that use numbers expressed in this way can be reduced to a calculation based on the 
digits, which considerably reduces the memory load in mental calculations. Many scholars assume 
that the choice of base-ten is linked to physical reasons and human cognition: hands have ten fingers 
(Ifrah 1981), and the products of one-digit numbers are easy to remember (Guitel 1975). 

But what exactly is this system? In essence, it is a juxtaposition of digits (either zero or strictly less 
than ten), which is able to represent a quantity regardless of its size, and each digit also denotes a 
quantity. Place value makes this trick possible. The value of the digit changes according to its 
position in the number; the link between positional values is a power of ten. Place value can be 
illustrated as follows, with the number 333.3: from left to right the first digit denotes 300, the second 
30, the third 3 and the fourth 0.3. The understanding of this system is recognized by the research 
community as fundamental to grasping mathematics (e.g., Sun et al. 2015). 
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The starting point is the notion of unit, the foundation of all number systems (Guitel 1975; Ifrah 
1981; Fosnot and Dolk 2001). Ten ones form a new unit: one ten. Ten tens form another new unit: 
one hundred, etc. In this paper we use the following concept of the unit, (Ma and Kessel 2018, p. 
442), “A single thing, or one, is called a unit or unit one. A group of things or a group of units, if 
considered as a single thing or one, is also called a unit, a unit one or a one.” Ma and Kessel go on 
to define the number, “A number is a unit (one) or a collection of units (ones)” (p. 443). 

A didactically convenient way to describe the value of each digit is to use what we call number units 
(Houdement and Chambris 2013) or numeration units (Chambris 2008; Houdement and Tempier 
2015), by analogy with metric system units (length, mass). In this system, 372 can be described as 
3 hundreds, 7 tens, and 2 ones (or 7 tens, 3 hundreds, and 2 ones, or…). In the literature different 
expressions have been used. For instance the multiunit (Fuson 1990, p. 347) denotes a number 
composed of many units, which are consistently unnamed in written numbers, but can be named in 
spoken numbers. 

Place value in the decimal Hindu–Arabic system is based on two inseparable principles (Ross 1989):  

 The position of each digit in a written number corresponds to a unit (for example 
hundreds are in the third place to the left of the decimal point): this is the positional 
principle;  

 Each unit is equal to ten units of the immediately lower order (for example one hundred 
= ten tens): this is the decimal principle. 

As Fuson et al. (1997, p. 130) show, the coordination of the two principles is complex, particularly 
in European countries. How numeration units are taught could help. Although in France, the ones, 
tens, and hundreds are taught, it is only in terms of the position of a number, while the decimal 
principle is neglected. In a survey of 104 French third graders (8–9 years old), Tempier (2013) found 
a poor success rate for tasks involving relations between units (i.e., involving the decimal principal). 
Notably the question “1 hundred = … tens” was correctly answered by 48% of students; 31% could 
solve “60 tens = … hundreds”; and 39% were able to give the right answer to the problem “in 764 
ones there are ... tens”. Here, we argue that numeration units are mainly taught as the names of the 
positions of digits. A study of the French curriculum, combined with textbooks and teaching 
practices (Tempier 2013) supports this hypothesis: for instance, the 2008 French curriculum (grades 
1 to 5) made no reference to place value principles before grade 3 (Houdement and Chambris 2013). 

Our research examines how the introduction of numeration units and the relations between them in 
primary school (grades 1 to 5) can improve the understanding of place value. Our methodology is 
to design reference situations, according to the Theory of Didactical Situations (Brousseau 1997). 
Variations are provided for grades 1 to 5, and the tasks should be easy to apply in day-to-day 
teaching, according to didactical engineering for development (Perrin-Glorian 2011). 

This paper reports a consistent theoretical framework in mathematics education for considering the 
influence of numeration units on understanding place value. Various theories and pieces of research 
done in different perspectives are linked together in an epistemological and didactical analysis 
(sections 2 and 3). It provides a sound basis for designing reference situations (section 4). An 
experiment in grade 3 (section 5) illustrates the theoretical and task design choices. In fact, this  is a 
theoretical paper with a few empirically used instructional examples. 

2 Theoretical framework for task design 

Didactical Engineering (Artigue 2009; Margolinas and Drijvers 2015) is a research method for task 
design based on classroom implementation, in other words, for the design, implementation, 
observation and analysis of teaching sequences. It can be seen as a particular case of Design Based 
Research (Godino et al. 2013), which is supported by the Theory of Didactical Situations (Brousseau 
1997). Epistemological questions are crucial, while the validation method is mostly internal and 
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performed through the comparison of a priori and a posteriori analyses. However, the use of this 
method to design tasks for day-to-day teaching has been criticized in France. In an attempt to 
overcome the problem, Perrin-Glorian (2011) put forward a method (“didactical engineering for the 
development of a resource and teacher education”) designed to facilitate the use of resources in the 
classroom. Two properties are examined: the relevance of the situation (does the proposed situation 
enable students to construct the intended knowledge?); and the adaptability of the situation to day-
to-day teaching (what adaptations do teachers make during the implementation of the situation?). 
We draw upon this method in our study. Like most design-based studies in mathematics education 
we use a cycle-based methodology (Figure 1). 

  

Fig. 1 General methodology showing the design and experimentation cycle. 

In order to produce a resource that can be used by teachers, it is essential to go back and forth 
between the design stage and the analysis of the actual implementation (Tempier 2016). Therefore, 
our experiments re-examine the hypotheses put forward in the a priori analysis, by comparing them 
to the a posteriori analysis of the implemented situation (internal validation). On the one hand, 
observations of teachers help the researchers to better understand their practices and constraints. On 
the other hand, the analyses suggest ways to modify situations and/or their description. They also 
help to identify needs for teacher education.  
We use situations in this article to refer to particular types of tasks (Watson et al. 2013), while the 
implementation environment is referred to as the milieu. The milieu of the situation refers to 
everything/anything with which the student can interact, and which provides feedback on their 
actions.  

We draw upon the notion of the didactical variable to refer to variations in task design (Ko and 
Marton 2004). These planned variations in task design are under the teacher’s control. The ‘values’ 
of the variable reflect the increasingly complex problems students are asked to solve, and 
dramatically change the knowledge that is engaged. As Watson et al. (2013) state, 

To understand how tasks are linked in order to support teaching, it is important to 
understand the nature of the transformation of knowledge from implicit knowledge-in-
action […] to knowledge which is formulated, formalized, memorized, related to 
cultural knowledge, and so on. (p. 13) 

Situations are theoretically divided into four phases: action, formulation, validation and 
institutionalization (Brousseau 1997). In the action phase, the student is faced with a milieu that can 
provide feedback on his or her actions. If the situation is well-designed, the student’s implicit 
knowledge1 put into action is linked to the intended mathematical knowledge2 (Brousseau 1997; 
Watson et al. 2013). Here, action does not mean only the manipulation of materials; actions can be 
performed on symbolic objects such as written texts, either orally or in writing. The formulation 
phase corresponds to an explanation of the procedure. The validation phase consists of discussing 
validity and checking mathematical coherence. During institutionalization, the cultural 

                                                           
1 ‘Connaissance’, in French 
2 ‘Savoir’, in French 
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(mathematical) knowledge to be learned is situated in relation to students’ implicit knowledge. These 
phases are not necessarily successive, and can be nested.  

In the classroom, the teacher supports the smooth functioning of this process. Although in the 
example that follows, he or she does not construct the situation, the teacher does play an essential 
role in giving students autonomy to act (the action phase), the choice of the procedure that must be 
formulated or clarified (the formulation phase), and the links that they weave between implicit and 
targeted knowledge (the institutionalization phase). 

The design of situations draws upon a preliminary analysis of place value, which, in turn, is based 
on earlier research on numeration units. That is the subject of the next section. 

3 Preliminary analysis of numeration units in relation to place value  

3.1 A third system for representing numbers 

Dehaene (1992) argues there are three representations of cardinal numbers (the analog magnitude 
representation, the verbal word frame, and the visual Arabic frame), which are mentally 
manipulated in comparisons and calculations. He therefore proposes a three-code model of number 
processing, numerical activities that would rely on translating from one code to another. His model 
emphasizes that neither the written number nor the spoken number contain any semantic information 
per se.  
Houdement and Chambris (2013), Houdement and Tempier (2015), and Chambris and Tempier 
(2017) introduced a hybrid number system (in the sense of Guitel 1975) for giving meaning to 
numbers and place value. This approach, which they call the ‘base-ten numeration units system’, is 
a regular, named- value, multiunit system (in the sense of Fuson 1990). Based upon an ordered list 
of numeration units, it sets aside the positional principle and draws only upon the decimal principle. 
Consistent with this earlier work, we propose a didactical variant (Figure 2) of the Dehaene (1992) 
model, which summarizes these three systems and their relations.  

 

  Fig. 2 Three systems for representing numbers. 

We argue that there is great value in closely connecting these three systems, not only for place value 
understanding (see next sections), but also for the understanding of computational algorithms (Ma 
1999), and the decimal form of rational numbers, especially decimal fractions. Furthermore, it may 
support the teaching of measurement units: length and mass, for example (Chambris 2008). 

3.2 Numeration units as a way to say and write numbers  

How numbers are spoken is naturally and significantly influenced by national culture, unlike the 
written number system, which is often imported from other civilizations at a later date. Therefore, 
how numbers are said is not always consistent with how they are written (Menninger 1969). It is 
well-known that the irregularities found in most European languages hide meanings structured on 
base-ten principles (Fuson et al. 1997). In France, for example, there are examples of groupings by 

Numeration units number 
1h 2t 3o, 12t 3o, 123o… 

Quantity 
(collection) 

Written number 
123 

 

Spoken number 
One hundred and twenty-three 
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twenty, heard in the number eighty (twenty multiplied by four) and ninety (twenty multiplied by 
four plus ten). 

However, at least one oral number system stands out from the others (at least for numbers up to 
100,000): the ‘regular’ named-value Chinese system (Fuson 1990). In this system, the number 29583 
is spoken as “two ten thousand, nine thousand, five hundred, eight ten, three”. In comparison, the 
French and English spoken systems are qualified by Fuson as ‘irregular’ systems as they are based 
on units that are either partly or fully spoken.  

Numeration units are a very powerful alternative to spoken systems. The system is bivalent (oral 
and written) and place value (for written numbers) is explicit. It is very close to a ‘regular’ system. 
Moreover, a number can be written (or read) in multiple ways. For example, 512 can be written as: 
5 hundreds, 1 ten, and 2 ones—or 5 hundreds and 12 ones—or 4 hundreds, 11 tens, and 2 ones—or 
4 hundreds and 112 ones. It is a base-ten language that overcomes the irregularities of the standard 
spoken system and provides an alternative way to say a written number (72 is 7 tens, and 2 ones). It 
can also help to connect written and spoken numbers: in French, 72 is spoken as ‘sixty twelve’, 
which is also 6 tens and 12 ones, which is also 7 tens and 2 ones. In our work, we seek to define a 
canonical form, in which the number of units of each rank is smaller than ten. This form is congruent 
with how digits are written (but less congruent with how they are said). For example, 5 hundreds, 1 
ten, and 2 ones is the canonical form, which is congruent with the written number 512, while 5 
hundreds and 12 ones is a non-canonical form that is congruent with the spoken number (cinq-cent-
douze in French, five hundred and twelve in English).  

Another issue concerns numeration units that are not a faithful copy of the base-ten units described 
above. For small numbers, the numeration unit ‘ten’ is spoken differently. English uses the suffix 
‘ty’ (fifty, sixty), while French uses ‘ante’ (cinquante, soixante). ‘Hundred’ and ‘thousand’ are 
spoken in English and French (five hundred, five thousand; cinq cents, cinq mille). French uses cent 
as the number word for ‘hundred’, but centaine as the numeration unit. ‘Ten-thousands’, ‘hundred-
thousands’, ‘ten-millions’, ‘hundred-millions’, etc. are not used to say numbers, either in English or 
French. Above 9999, only some base-ten numeration units are used orally, namely the powers of 
one thousand: thousand, million, and billion. The link between larger oral and written numbers 
(above 9999) is even more complex, a point that was made very clear by Fuson (1990):  

To avoid the necessity of memorizing a huge list of multiunit names, most systems of 
number words meet this problem by creating certain large multiunits within which a 
small list of multiunit names is reused. Thus, in English very large numbers are chunked 
into large multiunits of a thousand, and the smaller multiunits of hundred and ten are 
used within these thousand-unit chunks. (p. 351)  

It is the same in French: large numbers (in everyday language) also use base-1000. Therefore: 
(1) three-digit numbers play a fundamental role in learning the words for larger numbers; and 
(2) learning how to say large numbers (over 9999), and translating spoken numbers into written 
numbers requires “reunitizing” (Baturo 2000). In this context, Chambris and Tempier (2017) 
propose that teaching should include, in addition to the base-ten numeration unit system, the base- 
1000 system, and the link between them (the dual numeration unit system).  

3.3 Quantities as a support to give meaning to numeration units 

Appropriate manipulatives are useful to help students create mental images of numeration units, and 
give sense to the conversion of ten units into one ten and vice versa (Fuson et al. 1997). Problem-
solving, material-based actions, such as grouping or partitioning with base-ten models (e.g., bundles 
of ten sticks), or pre-grouped base-ten models (plastic cubes, longs, flats, etc.) are common in 
educational materials (Ross 1989; Fuson and Briars 1990; Fuson et al. 1997). However, the 
introduction of such materials into the classroom—even those with the semiotic potential to 
demonstrate the idea of the unit—does not guarantee that the student is able to construct the concept 
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(Bartolini Bussi and Mariotti 2002; Fuson et al. 1997; Baturo 2000). As Brissiaud (2005) notes, 
students who associate a representation of a quantity (with some base-ten material) with a written 
number can give the illusion of understanding; in fact, their reasoning may lack a link with the 
underlying groupings. Fuson (1990), Ross (1989), Hiebert and Wearne (1992), and Baturo (2000) 
point out the difficulty of passing from the grouping of objects into tens, to the concept of the group 
as a unit and, conversely, spotting the group of ten hidden in the notation. Finally, Chandler and 
Kamii (2009) highlight that the monetary equivalence 1 dime = 10 pennies is obvious to adults, but 
not so simple for young students.  

3.4 Relation between units to understand place value and computation 

Barr (1978) finds a correlation between a poor understanding of numeration principles and poor 
performance in computational algorithms. Students who are comfortable with additive or subtractive 
algorithms that involve two-digit numbers are not necessarily able to extend this skill to three or 
more digit numbers (Thomas 2004). It is crucial that teachers know how to identify, and explain to 
their students, the links between numeration (concepts) and computation (procedures), what Ma 
(1999) refers to as a Profound Understanding of Fundamental Mathematics. In a study of pre-service 
trainee teachers in the United States, Thanheiser (2012) shows how carrying and borrowing in an 
additive or subtractive computation algorithm can be difficult to explain. Numeration units and their 
relations play a key role in this respect. 

The (symmetrical) relation between ones and tens has been widely studied (e.g., Ross 1989; Fosnot 
and Dolk 2001; Chandler and Kamii 2009), whether as the organization of a collection, or as an 
additive or subtractive calculation (mental, online, or in-column). Coordinating these two units (and 
not just juxtaposing them) influences the understanding of larger numbers (Thomas 2004; Steffe and 
Cobb 1988). But being able to coordinate tens and ones does not guarantee an extension to numbers 
larger than one hundred, and the latter appears to remain difficult (Bednarz and Janvier 1982; Baturo 
2000; Thomas 2004). 

This observation is consistent with the mathematical analysis: the move from an n-digit number to 
a (n+1)-digit number increments by 1 the number of numeration units. On the other hand, the 

number of relations between these numeration units increases by n: from (2
𝑛

) to (
2

𝑛 + 1
) for n ≥ 2 

and the ratios between the two units in question vary from 1:10 to 1:10n-1. The student must therefore 
consider more relations, which can be integrated/remembered only if they understand numeration 
units as part of a coherent, regular system consisting of ordered units, and a 1:10 ratio between 
consecutive units. In other words, 

place value is continuous (i.e., across whole-number and decimal-fraction places), bi-
directional (to the left is 10 times larger in value − ×10; to the right is 10 times smaller 
in value − ÷ 10), and exponential (i.e., nonadjacent places are related by powers of 10 
− 102, 103, etc.). (Baturo 2000, p. 96) 

This level of abstraction requires the simultaneous understanding that ten units of a rank are, at the 
same time, one unit of an immediately higher rank (Fosnot and Dolk 2001). 

Unitizing requires that children use number to count not only objects but also groups—
and to count them both simultaneously. The whole is thus seen as a group of a number 
of objects. The parts together become the new whole, and the parts (the objects in the 
group) and the whole can be considered simultaneously. (Fosnot and Dolk 2001, p. 11)  

3.5 Towards the design of reference situations 

In the previous section, we argue that there is great value in closely connecting the three number 
representation systems (eventually using manipulatives): the written number, the spoken number 
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and the numeration units number (Figure 2). A challenge is to identify specific conditions that can 
help students to construct a full or partial abstraction of place value (Chandler and Kamii 2009). 
How can positional and decimal principles be integrated into task sequences?  

4 Design of reference situations 

4.1 The root situation 

For the design of situations, we relied on both our preliminary analysis, presented in the previous 
sections, and the fundamental situation of numbers3 proposed by Brousseau (1995) in his Theory of 
Didactical Situations. The fundamental situation considers the whole number as a discrete measure 
of quantity, and it is used in early number learning (Dorier 2015). We therefore adopted it for our 
study of primary school learning. In our work, students are shown collections that may include 
existing groupings, which encourages them to use quantitative reasoning to construct arithmetic 
reasoning (Nunes et al. 2016). To simulate an ordinary classroom situation, materials and 
organizational conditions were as similar as possible to day-to-day teaching practices. A 
consequence of this is that students could have less autonomy than in Brousseau’s situations.  

Although collections provided a milieu, they were not always physically available to students: some 
were shown, or simply evoked by words or in drawings. Students were asked to associate a written 
number with a quantity (collection) or, conversely, produce a collection from a written number. The 
challenge was not to manipulate collections, but rather to anticipate the effects of actions on 
manipulatives (Brousseau 1997). Written quantities used numeration units from grade 2. The aim is 
that these units become an element of the milieu that helps to evoke different groupings of the 
collection, and encourages students to reason without having to pack or unpack the collection. The 
situation requires learning about conversions between units: both higher (superunitising) and lower 
order (subunitising) (Baturo 2000). 

4.2 Description of the reference situations 

Two reference situations are used:  

 Collection counting consists of writing the number corresponding to a quantity from 
a collection of objects, or a numeration unit number. 

 Collection ordering is the inverse. A collection of objects or numeration units number 
must be produced from a written number. 

In collection ordering a constraint can be introduced (e.g., no hundred group is available). Although 
this is similar to the ‘Candy Factory’ situation (Bowers et al. 1999), here we use it specifically for 
place value work, without extending it to computation techniques. 

 

Fig. 3 The two reference situations. 

                                                           
3 An example for children aged 5/6: “There is paint in these pots. You have to get the paintbrushes from over 
there and put one in each pot. You must bring back all the paintbrushes at once. There mustn’t be a paintbrush 
that isn’t in a pot, or a pot that doesn’t have a paintbrush. If you make a mistake, you’ll have to collect all of 
the paintbrushes, bring them back and try again” (Brousseau 1995; see also Dorier 2015).  

Written number  
Numeration units 

number  

Collection Collection counting 

Collection ordering 
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These situations meet Ross’ (1989) concern; “Pupils need to engage in problem-solving tasks that 
challenge them to think about useful ways to partition and compose numbers” (p. 50). 

The two milieux: collections or numeration units 

In both reference situations, the presence of the collection4 can influence students’ actions. For 
example, it enables them to make a grouping or trade, leading to an initial appropriation of units. 
Table 1 shows an example of a problem for each situation in which the collection is available or not. 
If it is not, students can make a drawing and simulate grouping or trading. 

Table 1. The two reference situations with collections in the milieu. 

When the collection is not available in the milieu, we describe the quantity with numeration units. 
The student can then group or trade by drawing the collection, but he or she is encouraged to reason 
directly using units. 

Table 2. The two reference situations with numeration units in the milieu. 

Collections can be present in the classroom and be used, or not, to illustrate the problem and validate 
students’ responses. In our experiments with grades 1 and 2, the collection is present (either initially, 
or to be built). With grades 3 to 5, even when working on large numbers (over 1000) the collection 
is used initially to show quantities corresponding to each unit.  

                                                           
4 Like Van de Walle et al. (2010) we distinguish between groupable manipulatives (wooden sticks, bundles of 
ten sticks tied with rubber bands, bundles of one hundred sticks with 10 tens sticks in a bag, etc.), and pre-
grouped and trading manipulatives (base-ten blocks: longs for tens, flats for hundreds, etc.). 

Collection counting Collection ordering 

Example situation 

How many cubes are there in this collection?  

 

We need to order 302 cubes. How many bundles 
of ten cubes and single cubes can we order? 

  

Targeted actions 

Grouping (groupable 
cubes) of a real or drawn 
collection: convert ten 
bundles of ten cubes into 
one pack of one hundred 
cubes. 

Trading (pre-grouped and 
trading manipulations) 
with a real or drawn 
collection: ten bundles of 
ten cubes traded for one 
hundred cubes. 

Same action  
as in column 1. 

Same action  
as in column 2. 

Collection counting Collection ordering 

Example situation 

How many sticks are there in the collection of 1 
hundred (sticks), 20 tens (sticks), and 2 sticks? 

We need to order 302 sticks. How many tens of 
sticks and single sticks can we order? 

Targeted actions 

Compose the number, with conversions between 
units (into higher-value units): 20 tens = 2 hundreds 
(because 10 tens = 1 hundred). 

Decompose the number, with conversions between 
units (into lower-value units): 302 = 30 tens and 2 
ones (because 1 hundred = 10 tens, 3 hundreds = 30 
tens). 
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4.3 An essential didactical variable: the organization of the collection or number of 
units of each rank 

The organization of the collection is a didactical variable that is critical in building positional and 
decimal principles. When the collection is designated with numeration units, this didactical variable 
corresponds to the number of units of each rank. Table 3 summarizes variations (Ko and Marton 
2004) in the organization of the collection, and the number of units of each order in relation to the 
targeted mathematical knowledge. The absence of a grouping (no unit of a rank), requires the use of 
the digit 0 to write the number. The organization of the collection in relation to the task is expected 
to engage “‘regular ten-for-one and one-for-ten trades’ conceptual structures” without changing the 
initial quantity (Fuson 1990, p. 350).  

Table 3. Mathematical notions related to variations in the organization  
of the collection or number of units of each rank. 

Organization 
of the 
collection 

Collection ‘in 
bulk’. 

Collection totally 
grouped (up to nine 
units of each rank). 

Collection partially 
grouped (ten or 
more units of one 
(or more) rank. 

Absence of a 
grouping type. 

Variable: 
number of 
units of each 
rank  

 Up to nine units of 
all ranks. 

Ten or more units 
of one (or more) 
rank. 

Absence of a unit at 
one (or more) rank. 

Mathematical 
issues 

Initial approach to 
positional and 
decimal principles 
(grouping, trading). 

Positional 
principle: 
association between 
units and places in 
the written number. 

Decimal principle: 
relations between 
units. Conversions 
between 
numeration units. 

Role of 0 in the 
written number 
(positional 
principle). 

The transition from collections to numeration units (described in the previous section) should 
facilitate the transition from ten-for-one trades to conversions between units and written mark 
techniques (e.g., 265 = 26 tens and 5 ones by ‘cutting’ 265 into 26 and 5).  

5 Experiments  

Drawing upon this model, we designed situations at all grades (1 to 5) of primary school education. 
Houdement and Tempier (2015) described some elements of the implementation in grades 1 to 3. 
Here, we look in detail at an iconic grade 3 situation: the introduction to the thousand. In France, 
grade 3 students are usually taught about relations between several consecutive units, which lay the 
foundations for the decimal numbers studied in grade 4.  

Here, we focus on two tasks that are part of a six-task sequence that includes three collection 
counting and three collection ordering tasks.  
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5.1 The sequence of six tasks 

Table 4. The three variants of the grade 3 counting situation. 

Collection 
counting 

Task 1: 
Counting a 
bulk 
collection.  

How many 
sticks are there? 

The collection is 
present; children 
can handle it in 
order to group by 
tens, hundreds, etc. 

Task 2: 
Counting a 
completely 
ordered 
collection  

1 thousand 
sticks, 4 tens of 
sticks, and 
5 single sticks. 
How many 
sticks are there? 

The collection is 
present, but 
children cannot 
handle it. They can 
use analogical 
representations 
(photos) or 
numeration units. 

Task 3: 
Counting the 
union of two 
collections 

1st collection: 2 thousands, 8 hundreds, 1 
ten, and 3 ones. 
2nd collection: 4 hundreds, 1 thousand, and 
2 ones. 
How many sticks are there? Students 
choose one of 31215; 3215; 3315; 4215. 

The collection is 
suggested through 
numeration units. 

Varying the number of groups of each rank (more or less than ten) supports an evolution in the 
understanding of units. Task 3, with more than ten “units of a rank” after putting together the two 
collections, is the most difficult. 

Table 5. The three variants of the grade 3 ordering situation. 

 
 
 

Collection 
ordering 

Task 4: Ordering a 
collection of sticks. 
No bundles of 1000 
sticks are available. 

We need to buy 2615 sticks, but the 
seller has sold out of bundles of 1000 
sticks. How many bundles of one 
hundred sticks, bundles of ten sticks, and 
single sticks should we order? 

The 
collection is 
suggested 
through 
numeration 
units. 

Task 5: Ordering a 
collection of sticks. 
Only 1 bundle of 
1000 sticks is 
available. 

We need to buy 3167 sticks, but the 
seller has only 1 bundle of 1000 sticks. 
How many bundles of one hundred 
sticks, bundles of ten sticks, and single 
sticks should we order? 

Task 6: Ordering a 
collection of sticks. 
No bundles of 100 
and 1000 sticks are 
available. 

We need to buy 2375 sticks, but the 
seller has sold out of bundles of 100 and 
1000 sticks. How many bundles of ten 
sticks, and single sticks should we order? 

These three tasks are variations on the collection ordering task and concern the availability of groups 
(the stock of sticks) of each rank.  

In the following, we only study tasks 3 and 4. 

A priori analysis of task 3 

Activities designed to strengthen the understanding of place value are often linked to the additive 
and subtractive computation of sums and differences (Ross 1989, Carpenter et al. 1998, McClain et 
al. 1998, Kamii and Joseph 2004). In particular, Kamii and Joseph (2004) argue that students should 
be allowed to invent their own techniques, rather than imposing traditional computational 
algorithms. We adopted this idea for the design of task 3. Task 3 consists of determining the number 
of sticks that is obtained when two collections of sticks, described with numeration units, are 
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combined. Students can choose from four options: three are predictable, wrong answers while the 
last option is correct (Table 4). They can change their initial response after discussion with peers. 
The challenge is to use the relations between numeration units to assign a single digit to each rank, 
which is an epistemological condition for writing numbers with digits.  

The use of spoken number strategies (for instance counting by ones), is limited by the absence of 
collections in the milieu. Another difficulty is the amount of data: a written support is required. One 
initial strategy is to add units of the same rank, and write the quantity obtained in numeration units 
(3 thousands, 12 hundreds, 1 ten, and 5 ones). The conversion between hundreds and thousands 
helps the student to grasp the canonical form of the numeration unit (up to nine units in each rank, 
4 thousands, 2 hundreds, 1 ten, and 5 ones). The written number (4215) is deduced using the 
positional principle. 

Predictable errors consist in making a mistake in the conversion, or not carrying it out, leading to: 

 juxtaposing the numbers of each unit (31215), or 

 eliminating the tens digit of numbers that exceed ten units (3215), or 

 adding the two digits of a unit if it is more than ten (3315). 

Another strategy is to count each collection, and then to add the two written numbers. In this case, 
the error depends on how the student handles the carry-over process. 

For the implementation in the classroom, the role of the teacher is particularly important in the 
formulation and validation phases. Although the numeration units that are used as a first step suggest 
collection groupings, students should gradually become independent of the manipulative context: 
they are expected to talk about numeration units rather than types of groupings, or even think in 
terms of groupings. At times, the teacher may decide to hide the collection in order to help students 
understand that, for example, 12 hundreds are equivalent to 1 thousand and 2 hundreds. This can 
enable students to anticipate actions on the collection and foster direct reasoning with numeration 
units, thereby initiating the decontextualization process. The collection can be reintroduced at a later 
stage for final verification. Teachers are expected to refer to numeration units rather than types of 
groupings. Linking these two strategies is, moreover, an opportunity for the teacher to 
institutionalize the relation between unit conversion and the (column) carrying-over process in the 
addition algorithm.  

A priori analysis of task 4  

In task 4, the teacher plays the role of a stick seller: he/she has a stock of sticks bundled into ones, 
tens, hundreds, and / or thousands. A written number is given to students. They do not have access 
to the collection and are asked to fill out the following purchase order: “...thousands of sticks, 
...hundreds of sticks, ...tens of sticks, ...sticks”. There are various ways to write the numeration unit 
number. In the collection ordering situation, the challenge is to use relations between the thousands 
and lower-ranked units to determine the different decompositions of the number. Task 4 principally 
targets conversions between thousands and hundreds. Students can use several strategies to order 
their 2615 sticks, options include: 

 converting between numeration units: 2 thousands = 20 hundreds and 20 hundreds + 6 
hundreds = 26 hundreds; 

 substituting the ones and tens by 0 in the written number 2615, and reading this new 
number (2600) as the number 26 multiplied by 100, which gives 2600; 

 grouping or ungrouping, accompanied by a drawing the collection; 

 counting orally by ones, based on a collection (“one hundred”, “two hundred”, etc.) or 
additive decomposition (100 + 100 + 100...). 
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Dividing 2615 by 100 using computational techniques (in line or in column) is not expected at this 
grade under the current French curriculum. 

The main predicted errors consist in either writing one-digit numbers for each unit (i.e. 6 hundreds 
1 ten 5 ones), or adding the thousands to the hundreds (i.e. 8 hundreds, 1 ten, 5 ones), or not taking 
account of the constraint (i.e. 2 thousands 6 hundreds 1 ten 5 ones, despite the fact that no thousands 
are available). All of these errors are related to the difficulty of perceiving the hundreds contained 
in the thousands and the dominance of the canonical decomposition (2615 = 2 thousands 6 hundreds 
1 ten 5 ones).  

In task 4, the teacher should highlight the strategy for converting from thousands to hundreds, based 
on the different number decompositions obtained by students. It should be possible for them to verify 
their answers using unit conversions rather than the collection, for example: 26 hundreds 1 ten 5 ones 
= 20 hundreds and 6 hundreds 1 ten 5 ones = 2 thousands 6 hundreds 1 ten 5 ones = 2615. 
Numeration units play an important role in the institutionalization of knowledge (‘savoir’) because 
these symbolic expressions are independent of the nature of the collection: they reflect the 
mathematical knowledge that students should acquire to solve the problem. 

We are aware that students might simply see the task as a mechanical technique consisting of the 
truncation of the written number, without properly understanding the relations between units. For 
this reason, tasks 5 and 6 involve variations on the available stock, requiring students to use other 
conversions between units and carry out different decompositions. 

5.2 Experiment: an implementation at grade 3 (a posteriori analysis) 

This section addresses the appropriation of tasks and the use of numeration units in the first design 
cycle. Four grade 3 teachers participated in the experiment; they implemented the six tasks given 
above. We observed three or four sessions with each class. The analysis of situations in which 
students were asked to solve tasks 1 and 2 validated their usefulness in learning the positional 
principle, especially the role of 0 to mark the absence of a unit in the written number. The 
comparison of success rates between the initial and final assessments confirmed5 that many students 
were able to correct their initial errors (e.g., 3 tens and 6 hundreds = 36 or 63). Observations showed 
that teachers had a good understanding of how the two tasks were linked and the mathematical 
knowledge involved. In particular, they correctly used variations in the order of presentation of each 
unit, and the rank or absence of a unit. They took students’ errors into account in order to 
institutionalize the positional principle, often with the help of the place value chart, which associates 
each rank with a unit.  
Students trying to solve task 4 made the errors predicted in the a priori analysis (e.g., 6 hundreds 
1 ten 5 ones for 2615). Some students tried to use a technique based on a direct reading of the written 
number and seemed to think that “you have to take the two digits on the left to determine the number 
of hundreds”, as in the cases where no thousand was available. As teachers presented variations of 
the available stock of sticks, these techniques, which are inconsistent with conversions between 
units, were put aside. For example, when students were asked to order 3167 sticks, with only one 
bundle of thousand sticks available they wrote ‘1 thousand 31 hundreds 6 tens 7 ones’: this suggests 
that they have trouble adjusting to this new task. Therefore, the experiment showed the appropriation 
of didactical variables by teachers, consistent with the targeted knowledge. 

                                                           
5 For example, the success rate for the item ‘3 tens 6 hundreds’ in the initial assessment (before teaching 
thousands) was 52%, compared to 73% for the more difficult item ‘3 tens 1 thousand’ in the final assessment, 
after the sequence.  
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However, the analysis of the implementation of tasks 3, 4 and 5, which involved the decimal 
principle, revealed unexpected differences compared to the a priori analysis. To illustrate this, we 
report two phenomena related to their implementation. 

Task 3 implementation: A systematic return to the collection 

In task 3 the collection is named with numeration units. This led most teachers to describe the task 
in terms of units and draw a final conclusion: this was a new practice for some. However, the 
presence of numeration units does not ensure that they will be used to teach conversions between 
them: they were often used only in reference to the collection (sticks, for example) in order to carry 
out or describe groupings. For instance, in one class, a student (Mark) is asked to draw the union of 
two collections on the blackboard (a box for thousands, a bag for hundreds, etc.). Mark finds it 
difficult to count 12 bags, so the teacher asks another student (Joris) to help him:  

Joris: In fact when you have twelve, you have more hundreds [...] If you had ten hundreds, what 
does it correspond to?  

Teacher: What can you do? If you had ten bags, what would you do?  

Mark: Ah yes, a thousand.  

The student draws a new box on the blackboard. 

Teacher: You’ll put the ten in a box. [...] When we have ten bags, we can put them in a box. [...] 
So, as soon as it exceeds ten, we can put them in a ‘thousand’ box. 

Although students can use numeration units orally, the teacher reformulates their words by 
describing manipulative actions (put ten bags in a box). However, students are expected to use basic 
unit equivalences (10 ones = 1 ten, 10 tens = 1 hundred, etc.) in order to perform conversions 
between them (e.g., 12 hundreds = 1 thousand and 2 hundreds). Collections, which help to give 
meaning to these units, can be used but in this case, the back-and-forth interaction between the 
collection and the system of numeration units must be planned, in order to decontextualize6 and 
generalize7 the relation (see the a priori analysis) and support conceptualization.  

Furthermore, our observations showed that when numeration units are used in the classroom, they 
are used only to perform oral conversions. For instance, in the previous example, the teacher did not 
transpose, either orally or in writing, Joris’ suggestion into: 12 hundreds = 1 thousand and 2 
hundreds. When another student explains what he did to find the total number of sticks (“seven 
hundreds and three hundreds makes ten”), the teacher does not propose the associated conversion 
(7 hundreds + 3 hundreds = 10 hundreds = 1 thousand) but continues to refer to collections (“I 
transformed my bags; I put them in a box, because I have ten”). This does not help students to master 
the task of converting written units, nor facilitate the transition to numeration units.  

Our experimental design did not anticipate that teachers would manage the situation in this way: we 
had assumed that numeration units would be both spoken and written, and linked by equations. Our 
observations show that this practice is not obvious for teachers and should be given more attention. 

Task 4 implementation: A return to the ones  

The main issue in the ordering situation (task 4) is to explain to students why their answers are 
correct or incorrect. Two scenarios were observed: either the teacher evaluated the answers and 
provided no feedback, or feedback was provided to the student. In the latter case, numeration units 

                                                           
6 For example, ‘one hundred’ can designate one hundred sticks, one hundred euros, or one hundred grams. The 
use of ‘packs’ or ‘boxes’ only applies to the particular context of sticks. 
7 When the relations between units increase in number, the reference to groupings of groupings becomes 
difficult (Bednarz and Janvier 1982). For example, to determine the number of tens in 3 thousands it is more 
economical to use the equality 3th = 30h = 300t (or 3000 = 30 × 100 = 300 × 10) than double unpacking into 
thousands’ groups and hundreds’ groups. 
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were typically converted into the ‘number’ of sticks. For example, in one class, students were asked 
to order 3167 sticks, with only one bundle of a thousand available in the stock. The teacher used 
Sophia’s wrong answer (1 thousand 31 hundreds 6 tens 7 ones) to explore the problem with the 
class. She wrote the answer on the board and asked the student to check their response. 

Mrs. B: That number, with thirty-one hundreds of sticks, what is it? Sophia, if I tell you thirty-one 
hundreds of sticks, what is that number? 
Faced with the student’s lack of response, Mrs. B takes out the collection grouping. 
Mrs. B: Look. I have thirty-one hundreds of sticks, what’s that number? Come and write it for me on 
the board. 
The student comes to the board. 
Mrs. B: I have my bags there; I have thirty-one bags. [...] Thirty-one hundred sticks…if I have ten 
groups like that, how many sticks will I get? 
Sophia: One thousand. 
Mrs B: One thousand. If I have thirty packets like that? 
Sophia: Three thousand. 
Mrs B: And if I add a packet of one hundred, it will make? 
Sophia: Three thousand. 

The teacher’s closed questions did not encourage the student to convert 31 hundreds into 3 thousands 
and 1 hundred, and simply relied on the minimal knowledge “ten hundreds is one thousand”. If 
Sophia had been given the opportunity to use the collection named in her answer, she could have 
checked it herself, by reorganizing the collection and comparing 4 thousands, 1 hundred, 6 tens, and 
7 ones with 3167. This shows that the teacher did not use the potential of the collection either to 
explore conversions between units, or to verify the student’s answer.  

6 Conclusion 

Our research into learning and teaching place value at primary school is based on the development 
of close connections between three number representation systems, namely, the two standard ways 
(i.e., written and spoken numbers) and a third system, numeration unit numbers, which are written 
as they are spoken. Our epistemological and didactical analysis highlighted the influence of 
numeration units on understanding place value. In order to identify the specific conditions needed 
for the integration of numeration units into task sequences we used the didactical engineering 
approach. We designed two reference situations for grades 1 to 5: collection counting and collection 
ordering. The challenge is to enrich students’ (and teachers’) understanding of numeration units. 
Tasks gradually become more complex. They begin with the designation of collections (tens, 
hundreds, etc.) in terms of numeration units and go on to use these units and their relations to 
understand, designate, and calculate with written digits. This evolution is supported by a set of 
increasingly difficult constraints (didactical variables), which are a function of the knowledge to be 
learned and anticipated errors that should be eliminated. 

The grade 3 empirical instructional examples highlight various phenomena. First of all, the reference 
tasks can be effective. Students begin to use numeration units as initially intended, i.e., to speak or 
write about the collection in general without using the names of manipulatives such as bundles of 
sticks. Many students can also use numeration units to propose conversions between units. However, 
some teachers do not support this level of abstraction. For example, in the counting situation, they 
systematically use the names of manipulatives, or refer to grouping actions to describe conversions 
between units (for example, “bags that we put in boxes”). Thus, they do not address conversions 
using numeration units. In the ordering situation, they refer to the ones (or the written number) when 
checking students’ answers in the class discussion phase, and rarely spend time on conversions 
between successive units (hundreds and thousands, for example). We did not anticipate that teachers 
would find it difficult to initiate the process of decontextualization based on numeration units and 
their relations, and it appears that they believe that this is beyond the abilities of grade 3 students. 
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We are increasingly convinced that the teaching of place value should be at the core of teachers’ 
education. In France, as in other Western countries (Ma 1999), primary school teachers are unaware 
of the impact of place value understanding on the learning of mathematics. Furthermore, unlike 
Asian teachers, they are not immersed in a social environment where numeration units are usually 
spoken out loud, highlighting the value of the digit in the number. In addition to its relevance for 
student learning, we think that the numeration units system could be also a powerful tool in teacher 
education, as it makes visible the relationships between place value knowledge, decimal numbers, 
computation and measurement units. This underlines the huge need for more teacher education—
exceeded only by the need for more research into teacher education. 
____________ 
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