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Accurate Characterization of Reverberation
Chamber Resonant Modes From Scattering
Parameters Measurement

Francgois Sarrazin, Member, IEEE, and Elodie Richalot, Member, IEEE

Abstract—This paper presents a novel approach to accurately
extract the resonant modes of a mode-stirred Reverberation
Chamber (RC) from measured transmission coefficient. This
approach neither requires measurements with a fine stirrer
rotation step nor assumes the pole continuity over a stirrer
rotation. First, the number of modes to be extracted by the
Matrix Pencil method needs to be overestimated in order to
obtain most of the true (physical) modes with high accuracy. As
this overestimation also implies the extraction of many spurious
modes, the second step consists in automatically filtering these
spurious modes based on a time-window increasing technique
post-process without a priori information. Performances of the
introduced technique are first shown on a didactic example,
especially in the presence of noise, and its limitations when
increasing the modal overlap are investigated. Results obtained
from measurement performed in a chaotic RC are then presented.
The introduced approach allows extracting all the true cavity
modes from measurement data while keeping the percentage of
spurious modes below 3.5 %.

Index Terms—Chaotic cavity, Matrix Pencil, pole extraction,
reverberation chamber.

I. INTRODUCTION

ODE-STIRRED Reverberation Chambers (RCs) have

been extensively used for electromagnetic compatibility
testings, either for radiated emissions or immunity measure-
ment [1]. Indeed, these measurements take advantage of the
statistically uniform and isotropic fields inside the working
volume of the chamber, thanks to various stirring processes
[2]. Recently, these attractive properties also found applica-
tions in various domains such as antenna characterization [3],
[4], 4G throughput measurement [5], and agro food treatment
[6].

The accuracy of RC measurement relies on the hypothesis
of uniform and isotropic field. In order to verify the well-
operating of RCs in regard to this ideal behavior hypothe-
sis, international standards [7] have been elaborated. They
permit to evaluate the Lowest Usable Frequency (LUF) of
the considered RC, starting from which standard criteria are
respected and the RC is expected to offer suited operating
conditions for reliable device test or characterization. The
classical calibration technique, also detailed in [7], consists in
measuring the three orthogonal components of the electrical
field at the eight corners of the working volume. However,
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Fig. 1. Picture of the mode-stirred reverberation chamber (W = 2.95m, L =
2.75 m, H = 2.35 m) after inserting three metallic hemispheres (Radius =
0.4 m).

limitations of such calibration protocol have been pointed out
recently in [8]. Indeed, in addition to the time-consuming
process needed to perform these measurements, the obtained
uniformity criterion is very sensitive to the receiving antenna
location within the chamber.

Recently, the concept of chaotic cavities has been brought
into the RC community as their resonant modes are theoret-
ically intrinsically ergodic without the need of any stirring
process (Fig. 1) [8]-[10]. Based on these studies, another well-
performing criterion has been introduced [11], that requires
measurement at a single position of the receiving antenna.
Its principle consists in evaluating the statistical distribution
of the frequency spacings between adjacent resonant modes.
This distribution follows either a Poisson law for an integrable
cavity (associated to eigenmodes of regular field distribution)
or a Wigner law for a chaotic cavity (of uniform and isotropic
eigenfields). This criterion thus lays on the accurate deter-
mination of the resonant modes and especially the ability to
retrieve all of them from measurement data. Besides, due to
their predominant impact on field homogeneity and coherence
bandwidth, the distribution of single eigenmode resonance
widths has received interest and has been derived under ideal
operation hypothesis [12]. In the specific case of a chaotic
cavity, the followed distribution is analytically known and has
been experimentally verified [13].

The resonant modes of an RC can be extracted from the
transmission coefficient Ss; between two antennas located
within the working volume. Indeed, in the specific case of
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an enclosure, the electric field can be expressed as a triple
sum of solenoidal, irrotational and static modes [14], [15].
When excluding very low frequencies and the vicinity of the
source, the contribution of irrotational and static modes can
be neglected in regard to the one of solenoidal ones. Under
weak losses assumption, the frequency-domain transmission
parameter Sa; (jw) can be modeled as (1) and its time-domain
counterpart so1(t) as (2):

R
S (jw) = ; oo ()
and
N
sa1(t) =Y Rpert 0
n=1
where N is the number of poles, R, is the n™ complex

residue and s,, = o, & jw, is the n™ complex pole, o,, being
the negative damping coefficient and w,, = 27 f,, the angular
frequency.

The accuracy of a pole extraction process is directly related
to the method used to compute the mode properties from
the So; parameter, each pole being related to a resonant
mode. Several methods have been proposed, either in the
time-domain or in the frequency domain, to extract the poles
and their related residues: Prony [16], Matrix Pencil (MP)
[17]-[21], Cauchy [22], Vector Fitting [23]-[25], Harmonic
Inversion [26]—[28] and others. These methods are based on
different approaches but they all require at some point to
indicate the number of poles N to be extracted. It can be
either decided by the user or deduced from the original data
through some processing and a priori information. Although it
is quite simple for the noiseless case, it becomes much more
challenging once dealing with noisy data. Indeed, for such
noisy cases, the extracted poles are a mix between the true
poles, the ones with a physical meaning, and the spurious
poles, the ones only due to the presence of noise [29]. Thus,
if we set the number of poles N to be extracted to the
exact number of true poles, the extraction of one spurious
pole leads consequently to the non-extraction of one true
pole. It becomes obvious that this number /N needs to be
overestimated in order to extract most of the true poles, i.e.,
most of the resonant modes. However, this overestimation
also implies the extraction of many spurious poles that need
to be filtered out. One way (as in [25]) is based on the
assumption of the mode continuity versus stirrer rotation. It
requires to track the mode variation as a function of the
stirrer rotation and to delete the modes that are extracted
randomly for specific stirrer positions. It leads to accurate
results, however, it necessitates measurements with a small
stirrer step, consequently increasing the required number of
stirrer positions in regard to the normative procedure [7].

The objective of this paper is to introduce a systematic
and automatic approach to retrieve, from scattering parame-
ter measurements, solely the true (physical) resonant modes
generated in an RC independently of the stirrer rotation step.
The approach is based on the MP method, as it is a good

candidate to extract poles when dealing with noise [30]-[34],
associated to the Window Increasing Technique (WIT) [35] as
a post-process to filter out the spurious poles. It has to be noted
that the proposed post-processing approach is not limited to
the MP algorithm and is relevant to any other pole extraction
method.

Section II presents the proposed algorithm applied on a
didactic example, first in the noiseless case and then in the
presence of noise. This section highlights the relevance of
the WIT as a filtering process to get rid of spurious modes.
The limitations of our proposed technique when increasing
the modal overlap are investigated in Section III. Then, the
algorithm is applied on practical data in Section IV using mea-
surement performed inside a chaotic RC in the 220—270 MHz
frequency range. Finally, a conclusion ends this paper.

II. THE PROPOSED ALGORITHM

This section presents the application of the MP method on
a didactic example in order to highlight the accuracy of the
proposed algorithm. The MP algorithm is recalled in a first
part. Then, it is applied on a noiseless data set and results will
serve as a reference. In the third part, a White Gaussian Noise
(WGN) is added to the data so that the poles are extracted
with some error by the MP method. Finally, the proposed post-
processing based on WIT is presented to filter out the extra
spurious poles extracted because of noise.

A. The Matrix Pencil Method

The MP method has been introduced by Hua and Sarkar
in 1990 [17] as an alternative to the Prony method [16] to
model time-domain data into a damped exponentials sum.
The total least square approach, based on a Singular Value
Decomposition (SVD), is used here. The data samples s,

can be modeled as

N
sh =D Rue™" 3)
n=1
where K =0,1,..., K — 1, with K the sample size, N is the
number of poles, R, is the n™ complex residue and s,, is the
n'™ complex pole. A data matrix [Y] is then built such as:

0 1 L
S21 S21 5L211
1 2 +
S21 521 S91
Yi=| : )
K-L-1 _K-L K-1
S21 S21 521

where L is the pencil parameter. It is very important to
filter noise and is usually chosen between K/3 and K/2
because the variance of the extracted poles is the lowest for
these values [17]. Then, a SVD is applied to this matrix as
[Y] = [U][Z][V]#, where H refers to the Hermitian transpose,
[U] and [V] are unitary matrices, composed of the eigenvectors
of [Y][Y]# and [Y]H[Y], respectively, and [¥] is a diagonal
matrix containing the singular values of [Y]. In the noiseless
case, the matrix [Y] contains exactly N nonzero eigenvalues
corresponding to the N poles of the system. However, in
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the noisy case, the other eigenvalues are not exactly equal
to zero. Therefore, a new truncated matrix [Y'] is written as
[Y'] = [U'][2][V']H, where

U] =[u1 ue U’N](K—L)*N ®)
g1 0 e 0
, 0 (o) e 0
(X = e . (6)
0 0 ON] (Nen)
[V]=Tlv1 v UN](L+1)*N O

From [V'], it is possible to define two submatrices [V7] and
(V] as

/ l1:|
V= / (¥
V] {Vl (L+1)*N
and
v = LVQ} ©)
L+1](L41)xN

where [; if the ith line of [V’]. Poles are then computed as
the eigenvalues of {[V{]7}*[VJ]H, with {[V/]# }* the Moore-
Penrose pseudo-inverse matrix of [V/]*. Residues are finally
computed thanks to (3).

B. Direct application of the MP method on noiseless data

First, we define a 24-poles set and their relative residues
in the 220 — 240 MHz frequency band. Poles and residues
have been chosen to be coherent with typical measured
data: negative damping coefficient and complex residues with
magnitude ratio from 1 to 80. Each pole comes with its
complex conjugate, i.e., the poles-set contains 12 pairs of
conjugate poles. The poles are presented in Fig. 2 in the
complex plane where the marker size depends on the residue
magnitude. Each pole is numbered so that we can easily
refer to it. As it is perfectly symmetric, only the upper half
is represented (positive frequencies) in all figures throughout
this paper. To quantify the overlapping between the resonance
contributions, the modal overlap [36], [37] has been calculated.
It is defined as the ratio between the mean resonance width
and the mean spacing between adjacent resonance frequencies,
and calculated here as

d= M (10)
(Wr+1 — W)

where () indicates a mean over the poles. A modal overlap
of d = 0.35 is obtained for the chosen poles, which corre-
sponds to an overlapping level between weak (d < 1) and
moderate (d ~ 1).

From these poles and residues, a frequency signal Sa1 (jw)
is calculated using (1). It is presented in Fig. 3 (solid black
curve), the magnitude of each peak being related to the residue
associated to the pole. An Inverse Fast Fourier Transform
(IFFT) is performed in order to apply the MP method on the
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Fig. 2. Original poles in the complex plane. The circle size is related to the
associated residue magnitude.
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Fig. 3. Frequency-domain signal created using the predefined set of poles and
residues and (1): noiseless case (solid black curve) and 10 dB SNR (dotted
red curve). The red dashed lines represent the frequency windows used to
perform frequency band variation analyses.

time-domain signal. The only degree of freedom is the number
of poles N to be extracted by the method. Here, the number
of true modes is equal to 24, but as it is generally unknown
for a random signal, we propose to apply the MP method for
several N values. Then, we compute the Normalized Mean
Square Error (NMSE) on the reconstructed time-domain signal
compared to the original one. Results for 6 < N < 50 are
presented in Fig. 4 (solid black curve). As expected, the NMSE
decreases as IV increases and tends to be very close to zero
for high N values. The NMSE stays under 0.2 % starting
from N = 22 which is almost the exact number of poles
that is considered. Thus, this NMSE study is a good way to
obtain a first estimation of the true number of poles contained
in the signal. The poles extracted for N = {24, 30,36} are
presented in Fig. 5 in the complex plane. We observe that the
poles are not always extracted the same way according to N.
The frequencies are extracted with a relative error less than
0.1 % whatever N, whereas the dampings are retrieved with
a relative error up to 40 % for N = 24.

Although no noise is considered in this part, the poles are
not perfectly retrieved for N = 24 (true number of poles)
due to the IFFT process and especially to the time-truncation
effect. However, they are better extracted for overestimated N
values and tend to be very close to the original ones when
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Fig. 4. NMSE of the reconstructed time-domain signal as a function of N.

The insert presents a zoom for 20 < N < 40.
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Fig. 5. Extracted poles by MP for several N compared to the original poles
in the complex plane (noiseless case and d ~ 0.35).

N = 36, i.e., overestimated by 50 % (relative error less than
0.5 % for both frequencies and dampings).

C. Direct application of the MP method on noisy data

A WGN is added to the original frequency signal in order
to obtain a 10 dB Signal-to-Noise Ratio (SNR). This noisy
signal is presented in Fig. 3 (dotted red curve) as a function
of frequency. An IFFT is performed so that MP can be applied
on the time domain signal. As in the previous part, the MP
method is applied for several N values and the NMSE of the
reconstructed signal is presented in Fig. 4 (dashed blue curve).
As noise values are random following a centered normal law,
200 random draws have been considered over the frequency
range and the presented results correspond to an average over
these 200 sample generations. We can see that the NMSE
decreases as a function of N and becomes very close to zero
starting from N > 24 (less than 1 %), that is the true number
of poles. The poles extracted by the MP method for N = 24
and for N overestimated by 50 %, i.e. N = 36, and 100 %,
i.e. N = 48, are compared to the original ones in Fig. 6 in
the complex plane (for a single noise sample).

We can see that the original poles are not extracted perfectly
by the method. The frequency is usually extracted with good
accuracy whereas the error on the damping might be quite
high. For N = 24, i.e. the exact number of true poles,
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Fig. 6. Extracted poles by MP for several N compared to the original poles
in the complex plane (noisy case with 10 dB SNR and d ~ 0.35).

eight pairs of poles (out of 12) are extracted with reason-
able accuracy (close frequency and reasonable error on the
damping). For N = 36 and N = 48, all poles are extracted
by the MP method although the accuracy on the damping
slightly increases for the highest N. However, some extra
spurious poles are also extracted. These poles are due to the
overestimation of N, and thus have no physical meaning.
Most of these poles are outside the considered frequency range
and/or have a high magnitude damping, so they are not visible
in Fig. 6. However, some of them do have complex value close
to the true poles (e.g. around 227 MHz for N = 48 in Fig. 6)
and would thus be considered as a true pole if no filtering
post-process were applied.

The error on the retrieved poles is linked to the SNR of the
considered signal. However, we can see that the overestimation
of N allows extracting the true poles with higher accuracy at
the expense of additional spurious poles (Fig. 6). As these
results depend on the noisy data set, we performed some
statistical analyses to evaluate MP performances as a function
of SNR and N. The average error (over the 12 pairs of poles)
between the original poles and the closest extracted ones is
computed as a function of SNR (averaged over 200 noise
samples) for several N, i.e. N = {24,30,36,48}. Results
are presented in Fig. 7a in terms of frequency and in Fig. 7b
in terms of damping. As expected, the error decreases as a
function of SNR whatever /N. We can observe that for N = 24,
the error remains much higher than for the three overestimated
cases and that the accuracy is quite similar for N = 36 and
N = 48. Thus, in the presented case, a 50 % overestimation of
N is a good tradeoff between the accuracy and the number of
spurious poles. Indeed, the accuracy of poles does not really
improve for N > 36.

D. Spurious poles filtering

It has been shown in the last two parts that one needs
to overestimate the number of poles N to be extracted by
the MP method in order to retrieve all the true poles with
good accuracy. On the other hand, this overestimation leads
to an extra number of spurious poles. In the studied case, a
50 % overestimation of N, in regard to the number of poles
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Fig. 7. Average error on all poles retrieved by MP averaged over 200 noisy
data samples as a function of the SNR for different /N (a) Frequency error
and (b) Damping error.

estimated from the NMSE study, turned out to be an interesting
tradeoff between accuracy and number of spurious poles.

We propose to use the Window Increasing Technique (WIT)
[35], [38] in order to filter out the spurious poles. This tech-
nique is derived from the window moving technique already
introduced in target identification [39], RFID interrogation
[40], and antenna characterization [29]. The principle of the
WIT is presented in Fig. 8. It consists in creating several time-
windowed signals so1 1 (t) as

t—Ty/2
Tk

where £k = 1,2,..., W, with W the total number of windows,
T, = Ty + kdt, dt is the time shift, Tj is the shortest window
duration and TI(z) = 1 for |z| < 1/2, 0 elsewhere. The first
window contains 99 % of the signal power and the window
end time is then slightly increased for each window. Thus,
the physical data contained in each window is the same but
all windows are not strictly identical. Then, the MP method is
applied on each time-windowed signal. The poles obtained for
all windows are then sorted using a minimum interval finding
algorithm in order to follow the variation of each pole value
over the time windows (details in Appendix A). This allows
tracking poles from window to window in a systematic and
automatic way and thus to perform statistical analyses on these

s21,k(t) = sa1(t) x II( ) Y

Normalized magnitude

Time (us)

Fig. 8. Principle of the Window Increasing Technique applied on a time-
domain signal.
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Fig. 9. Pole frequencies extracted by the WIT for N = 36 with a 10 dB
SNR.

poles. The number of windows needs to be of several dozens
so that the calculated statistical parameters represent relevant
information.

The WIT is applied to our didactic example using a 1150
samples window (2.17 us) and a 10 samples shift between
two consecutive windows (17 ns) in order to obtain W = 45
windows. The SNR is 10 dB and N is fixed to 36. Results are
presented in Fig. 9 in terms of frequencies. We can observe
three different cases: 1) poles extracted for each time window
and whose frequencies remain very similar: these are linked
to the true poles, 2) poles randomly extracted for only a few
windows, for example around 229 MHz for windows number
6 to 35. These latter are at once not extracted for all windows
and also highly vary so that they can easily be considered as
spurious poles. Indeed, as a first filtering step, only the poles
that are extracted for at least 90 % of the windows are kept
afterwards, and 3) poles extracted for all or almost all windows
but whose frequencies vary significantly versus window (for
example under 223 MHz and above 237 MHz).

In order to quantify the pole variation versus window, the
standard deviations over all windows of the frequencies and
dampings associated to poles extracted for at least 90 % of the
windows are computed. Results are presented in Fig. 10. The
black dashed lines represent the frequencies of the original
poles. We observe that the only spurious poles that have not
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Fig. 10. Standard deviations of the pole frequencies (in Hz) and dampings
(in Np/m) over all windows as a function of the pole frequency. Frequencies
related to true (original) poles are indicated by vertical dashed lines.

been filtered by the first step (i.e. by eliminating the poles
appearing for less than 90 % of the windows) are both outside
the true poles frequency range (under 223 MHz and above
237 MHz) and related to much higher standard deviations
than the true poles. Some comments can be made: First, a
pole associated to a low residue and/or a strong damping
and/or located close to another pole in terms of frequency is
much more difficult to accurately extract than a high residue,
low damping, isolated pole. For example, in the predefined
poles-set (Fig. 2), there are two close poles near 228 MHz
(poles 4 and 5) and the poles whose frequencies are just
below 235 MHz (pole 10) and around 236.5 MHz (pole 12)
have strong damping coefficients and relatively low residues.
As expected, these are the true poles related to the highest
standard deviations after the WIT process. Second, the pole
around 220 MHz is related to a standard deviation only a
bit higher than the one of the true poles. Indeed, this pole
is quite stable as a function of window (Fig. 9) just as the
one near 240 MHz. These two poles actually appear due to
the truncation of the frequency signal. To show the sensitivity
of these poles to the signal frequency truncation, we apply
a window variation technique on the frequency signal, then
convert it into the time domain to extract the poles through
the MP algorithm. The principle of this frequency-windowing
approach is presented in Fig. 3. The considered frequency
band is reduced from 220-240 MHz to 222-238 MHz with
a 0.07 MHz step. Results are presented in Fig. 11 in terms of
extracted resonance frequencies. We clearly see that the pole
around 220 MHz shifts according to the frequency window,
as both poles above 237 MHz. This technique can thus be
used to filter out the extra spurious poles due to the frequency
truncation that remain after the WIT process.

Finally, we compute the mean values over time windows
of all stable poles to create the final poles-set. The poles
retrieved through the WIT process (grey asterisk) are presented
in Fig. 12 and compared to the original poles (red circle) and
the ones obtained with N = 36 without any filtering process
(pink triangle). We first notice that spurious modes obtained
with a single MP application are eliminated through WIT post-
process. Besides, the poles are not identical with and without
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Fig. 11. Pole frequencies for several frequency bands (defined by the start
frequency) for N = 36 with a 10 dB SNR.
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Fig. 12. Poles extracted with N = 36 (no filtering) and after the WIT post-
process compared to the original poles in the complex plane (10 dB SNR).

the WIT process due to the averaging over the time windows.
The average accuracy (over all the physical poles) is higher
using the WIT process (poles closer to the original ones). It
has to be noted that these results are an example for a specific
noisy data set.

E. Proposed Algorithm Summary

This part summarizes the proposed algorithm to accurately
extract the true resonant modes from scattering parameter
measurement:

1) Estimation of the number of modes N. Weyl formula [41]
gives an estimation of the number of physical modes within
a closed cavity but the overestimation of this number when
applying the pole extraction technique depends on several
parameters such as the noise level or the modal overlap (as it
will be highlighted in the next section). On the other hand, the
NMSE of the reconstructed time-domain signal compared to
the original one can be used in every condition of noise and
modal overlap to estimate the number of physical modes.

2) Definition of several time-windowed signals. The first
window is chosen to contain 99 % of the signal power and
the window end time is then increased by a few time steps for
each window. The number of windows has to be of several
dozens so that the calculated statistical parameters represent
relevant information.
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Fig. 13. Frequency-domain signal created using the predefined set of poles
whose real parts are multiplied by 3 (d ~ 1): noiseless (solid black curve)
and 10 dB SNR (dotted red curve). The dashed black vertical lines represent
the pole frequencies.

3) Application of the MP method. The MP method is applied
on all time-windowed signals using the number of modes
estimated in the first step.

4) Mode tracking from one time-window to the other. A
mode tracking algorithm (presented in Appendix A) is applied
on the poles extracted for the different time-windowed signals.
As a result, it indicates for each time window if one mode
has been detected or not, and what is its complex value. This
permits to calculate, for each mode, its rate of detection over
the windows as well as its mean value and standard deviation.

5) Spurious mode filtering process. The poles that are
extracted for less than 90 % of the time windows are first
of all excluded. The remaining spurious modes are related
to high standard deviation (10 times higher than the mean
standard deviation in the previous case) and/or vary versus the
considered frequency band unlike the true modes. These two
properties can be used to remove these last spurious modes.

III. LIMITATIONS REGARDING THE MODAL OVERLAP

The study performed in the previous section focuses on
an example where the modal overlap d =~ 0.35. This cor-
responds to measurement data collected in our RC in the
220 — 270 MHz frequency range, and presented in section IV.
However, smaller RC, higher frequency, higher losses and/or
RC loading would increase the modal overlap due to resonance
widening or modal density increase. Therefore, this section
aims at investigating the limitations of the proposed algorithm
in terms of modal overlap d.

As an example, the dampings defined in the previous section
are multiplied by 3 while the frequencies are kept the same
so that d =~ 1. The obtained frequency signal is presented in
Fig. 13 both noiseless and with a 10 dB SNR. We observe
that the resonances are much wider than for the previous case
(Fig. 3). The MP method is first applied on the noiseless signal
for several N. Results presented in Fig. 14 show that N needs
to be overestimated up to 42 in order to obtain the same
accuracy than in the previous noiseless case for d ~ 0.35
with V = 36. Thus, N needs to be even more overestimated
when the modal overlap becomes larger.
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Fig. 14. Extracted poles by MP for several N compared to the original poles
in the complex plane (noiseless case and d ~ 1).

The average error on the poles retrieved by MP with NV = 48
and for several SNR from 5 dB to 30 dB is presented as a
function of modal overlap (0.18 < d < 1.75) in Fig. 15a
(frequencies) and Fig. 15b (dampings). We see that these errors
strongly increase according to d. For instance, the frequency
error reaches 1 MHz for d = 1 for a 10 dB SNR which
is about the average frequency spacing between two adjacent
modes in this case. As expected, the error decreases while the
SNR increases. However, the error remains very high for high
modal overlaps even for a SNR as large as 30 dB. It means that
it is intrinsically very difficult for the MP method to accurately
extract the poles for large modal overlaps, whatever the noise
level.

To investigate more extensively the modal overlap impact
on the pole extraction accuracy and search how the latter could
be improved, we compute the average error on the extracted
poles over 200 noisy samples, for several IV, a fixed 10 dB
SNR, and for 0.18 < d < 1.75. Results are presented in
terms of frequencies in Fig. 16a and dampings in Fig. 16b.
To increase N tends to reduce the frequency error whereas
the damping error remains similar. Nevertheless, it is shown
here that it is necessary to strongly overestimate /V in order to
minimize the overall error on the retrieved poles, which leads
at the same time to many spurious poles to extract. This strong
overestimation makes the proposed post-processing approach
even more crucial to distinguish physical modes from spurious
ones.

IV. APPLICATION ON REVERBERATION CHAMBER
MEASUREMENT

We consider in this section measurements performed inside
the RC depicted in Fig. 1 whose dimensions are 2.95 x 2.75 x
2.35 m?. This RC has been made chaotic by adding three
metallic hemispheres (radius of 0.4 m) on the walls [10].
Scattering parameters are measured in the 220 — 270 MHz
frequency band using a pair of monopole antennas over a full
stirrer rotation with a 1° step. We emphasize here that this
study is performed with a fine stirrer rotation step in order
to validate the accuracy of the extracted modes. However, the
presented approach is fully independent of the number of stir-
rer positions that are actually measured. The magnitude of the
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Fig. 15. Average error on all poles retrieved by MP averaged over 200 noise
samples as a function of modal overlap for a fixed N = 48 and for different
SNR (a) Frequency error and (b) Damping error.

So1 measured for the initial stirrer position (0°) is presented
in Fig. 17 as an example. First, we compute the NMSE of the
reconstructed S2; (over the whole 220 — 270 MHz frequency
band) as a function of V. Results are presented in Fig. 18 for
12 < N < 200. It decreases as a function of N and stays
below 0.3 % starting from N = 100. This result is coherent
with the theoretical number of resonant modes that is expected.
Indeed, according to Weyl formula [41], 52 modes resonate in
the cavity in this frequency range (52 modes means 52 pairs
of complex conjugate poles, i.e., 104 poles).

To serve as a reference, the MP method is first directly
applied for each stirrer position with N = 110, that corre-
sponds to a slight overestimation of the number of modes
estimated according to both Weyl formula and the NMSE
variation. Frequencies are presented in Fig. 19a. Only the
frequency range between 265 MHz and 270 MHz is plotted
here in order to facilitate the visualization of the extracted
frequencies, whereas the MP method has been applied over
the whole 220 — 270 MHz frequency band. We can see that
some modes are well extracted for several successive stirrer
positions but disappear for other ones. Also, some modes seem
to appear randomly for arbitrary positions. This clearly shows
that the IV value has been chosen too low to retrieve the modes
in all RC configurations (i.e., all stirrer positions). The same
behavior is obtained over the whole frequency range.
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Fig. 16. Average error on all poles retrieved by MP averaged over 200 noise
samples as a function of modal overlap for a fixed 10 dB SNR and for different
N (a) Frequency error and (b) Damping error.
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Fig. 17. Measured and reconstructed scattering parameter |S21 | for the stirrer
initial position (0°) as a function of the frequency.

Then, we overestimate the number of modes to be extracted
in regard to the one estimated from the NMSE by 50 %, so
that V = 150. Frequencies are presented in Fig. 19b as a
function of the stirrer position in the same frequency range
(265 — 270 MHz). The true modes can be clearly tracked
from one stirrer position to another, thanks to the fine stirrer
rotation step. Indeed, they form continuous lines over the
stirrer rotation. However, numerous spurious modes are also
found and located among the true modes, i.e., in the same
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Fig. 18. Normalized Mean Square Error (NMSE) of the reconstructed time-
domain signal as a function of N at the initial position of the mode stirrer.
The insert presents a zoom for 80 < N < 160.

frequency range. Based on the assumption of mode continuity
over a stirrer rotation, one would be able to manually delete
the spurious modes and eventually add some true modes
when missing. This requires collecting data with a fine stirrer
rotation step (1° here). However, in practical RC measurement,
only a limited number of positions are considered as a fine
stirrer step leads to a long measurement process associated
to highly correlated data (depending on frequency and RC
size). Then, it becomes impossible to accurately track the
modes over a stirrer rotation. This is precisely why we propose
this novel approach to discriminate the true modes from the
spurious ones without any a priori assumption.

The WIT-based post-process is now applied on the measure-
ment results. The first window is 6 us large (3201 samples)
and is increased of 18 ns (10 samples) at each iteration
until creating 31 windows. The MP method is then applied
on each time-windowed signal and for each stirrer position
(31 % 360 times). Only the mode frequencies that appear for
every single window are kept. Mode frequencies obtained from
the WIT-based approach are presented in Fig. 19c as a function
of the stirrer position. We can see that all the true modes
are kept whereas only a few spurious ones remain. In the
frequency band shown here, there are 77 spurious modes out
of 2448 modes, that is less than 3.2 %. This approach is thus
very efficient to eliminate the extracted spurious modes in an
automatic fashion with no need to perform measurement with
a fine stirrer rotation step.

Results previously presented focus on the mode frequencies
as it is visually easy to validate the mode extraction thanks to
the mode continuity over a stirrer rotation, but our algorithm
also leads to dampings and residues. The mean modal overlap,
calculated when considering all the remaining poles between
220 MHz and 270 MHz and all the stirrer positions, is of 0.35.
We now focus on dampings and residues associated to these
modes. To do so, four modes (arbitrary named A, B, C and
D) have been selected in the 265 — 270 MHz frequency range.
Their frequencies are presented in Fig. 20a. We can notice that,
at specific stirrer positions, adjacent resonance frequencies
move very close to each other, but a closer look at frequency
values reveal that no mode crossing occurs, according to the
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Fig. 19. Mode frequencies extracted using the MP method for (a) N = 110,
(b) N =150 and (c) N = 150 post-processed by the WIT approach.

avoided crossing phenomenon expected in chaotic cavities
[42]-[44]; the extensive study of frequency spacings behavior
versus stirrer rotation is however out of the scope of this paper.
Dampings related to these modes are presented in Fig. 20b.
Finally, the magnitude of their residues is also plotted in
Fig. 20c. The continuity of the extracted parameters versus
stirrer position shows the ability of the proposed approach to
accurately retrieve all resonance properties. As an example,
the reconstructed |S2;| for the stirrer initial position, using
the poles and residues extracted from our proposed approach,
is presented in Fig. 17. We can see that the original and the
reconstructed |Ss;| are in very good agreement.
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V. CONCLUSION

Accurate determination of cavity modes is required in order
to compute relevant criteria for RC characterization. The
extraction of such modes by numerical methods lead to a mix
of true and spurious modes. They are usually discriminated
in regard to the mode continuity over a stirrer rotation which
implies measurement with a fine stirrer rotation step. In this
paper, we introduced a novel approach to accurately extract the
resonant modes of an RC from scattering parameters without
the need to perform the measurement with a fine stirrer rotation
step. Indeed, the introduced WIT-based approach is fully
independent of the stirrer rotation step. First, we showed that

Window 1 | Window 2 | Window 3

Group 1 0 0 il

Window 1 | Window 2 | Window 3 Group 2 0 0 S2

Pole 1 T1 S1 S1 Group 3 0 S1 S3

Pole 2 S1 T1 S2 Group 4 T1 T1 T1

Pole 3 s2 s3 » Group 5 s1 0 0

Pole 4 S2 T1 Group 6 S2 0 0
Pole 5 Group 7
Pole 6 S3 S3 Group 8
Group 9

Group 10 S3 S3 0

Fig. 21. Illustration of the minimum interval finding algorithm for N = 6,
W = 3 and three true modes. T1: True mode number 1, S2: Spurious mode
number 2. Initial data matrix (left side) and final data matrix (right side).

the number of modes to be extracted N has to be overestimated
in order to extract all the true modes. The spurious modes,
induced by the numerical methods, can then be filtered out by
the WIT-based approach. Scattering parameters measurement
have been performed in a chaotic RC in the 220 — 270 MHz
frequency range and results showed that the percentage of
spurious modes is kept below 3.2 %.

APPENDIX A
THE WIT POST-PROCESS

A simple example is presented here in order to illustrate
the sorting process. Consider the original data are made of 3
poles. The number of modes to be extracted is chosen to be
N = 6 and the number of time windows W = 3. All poles
extracted from the three applications of the MP method are
put in a matrix and sorted regarding the ascending frequencies
(imaginary parts). For each window, the three true poles are
extracted (71, T'2 and T'3) as well as three spurious poles (51,
S2 and S3) as presented in Fig. 21 on the left side.

Starting from this matrix, one needs to “track” the poles
from one window to another in order to finally compute their
mean values and standard deviations. To do so, we use a
Minimum Interval Finding Algorithm (MIFA). The objective
of this algorithm is to group the poles according to their
frequencies so that a same pole (found for several windows)
will be put in the same row (group) as presented on the right
side of Fig. 21. It works as follows. First, all poles are put
in one column but linked to their original window (column).
Then, we compute the differences between all pole frequencies
and sort them in the ascending order. Finally, we successively
consider each difference starting from the lowest one and add
the two poles related to the current difference to a group
following the algorithm presented in Fig. 22. This allows to
sort the poles as presented on the right side of Fig. 21 and thus
enables stability statistical analyses on the retrieved poles.
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