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ABSTRACT
Dimensional emotion recognition from physiological signals is a
highly challenging task. Common methods rely on hand-crafted fea-
tures that do not yet provide the performance necessary for real-life
application. In this work, we exploit a series of convolutional and
recurrent neural networks to predict affect from physiological sig-
nals, such as electrocardiogram and electrodermal activity, directly
from the raw time representation. The motivation behind this so-
called end-to-end approach is that, ultimately, the network learns
an intermediate representation of the physiological signals that bet-
ter suits the task at hand. Experimental evaluations show that, this
very first study on end-to-end learning of emotion based on physi-
ology, yields significantly better performance in comparison to ex-
isting work on the challenging RECOLA database, which includes
fully spontaneous affective behaviors displayed during naturalistic
interactions. Furthermore, we gain better understanding of the mod-
els’ inner representations, by demonstrating that some cells’ activa-
tions in the convolutional network are correlated to a large extent
with hand-crafted features.

Index Terms— End-to-end learning, Physiological signals,
Emotion recognition, Convolutional Neural Networks, Long Short-
Term Memory Recurrent Neural Networks

1. INTRODUCTION

The automatic recognition of affective behaviors has received a sig-
nificant increase of attention in the last decade, both from industry
and academics. Indeed, emotion plays a major role in many key as-
pects of everyday life interactions, such as rational decision-making,
collaborative work, learning, and health care. Physiological signals
are supposed to provide relevant insights on emotion, as they are cor-
related with responses of the autonomic nervous system, which can
be produced during adaptation to the environment or to emotional
stimuli [1]. However, such signals are not directly perceptible the
way audiovisual are. While emotion recognition from vocal and fa-
cial expressions has matured enough in the last decade to approach
real-life applications [2], performance achieved on peripheral phys-
iological signals, such as electrocardiogram (ECG) and electroder-
mal activity (EDA), has not yet lead to satisfactory results. Those
two signals can nevertheless provide complementary descriptions of
spontaneous emotion in multimodal fusion frameworks [3, 4].

One of the advantages of emotion monitoring from physiolog-
ical signals, in comparison with audiovisual, is that their acquisi-
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tion is done unconsciously; they also require much less energy and
storage capacity, thus allowing emotion sensing ‘in the wild’ at a
reduced cost. However, measurements of those signals are prone
to errors due to movements, and are also subject to non-stationary
variations that are independent of emotion. Therefore, there is a crit-
ical need for research on how peripheral physiological signals can
be exploited to perform robust prediction of spontaneous affective
behaviours.

Whereas systems from the literature have relied on hand-crafted
features to perform emotion sensing so far, we propose in this paper
a radically different approach: the raw signals are directly fed into
deep neural networks that perform the so-called end-to-end learn-
ing of the emotion. The motivation behind this idea is that, ulti-
mately, the network learns an intermediate representation of the raw
input that better suits the task at hand, and hence leads to improved
performance [5, 6]. The main contributions of this paper are the
following: we perform the first attempt in end-to-end learning of
peripheral physiological signals and apply it to dimensional emo-
tion recognition. We also show that, this method can yield a large
improvement in performance over hand-crafted features on the chal-
lenging RECOLA database [7], and that a small proportion of the
representations learned by the network presents a high correlation
with hand-crafted features.

The remainder of this paper is structured as follows: related
work on emotion recognition from ECG and EDA, and existing
attempts on end-to-end learning from audiovisual signals are de-
scribed in section 2, details of our method are explained in section 3,
evaluations are carried out in section 4, and a conclusion is given in
section 5.

2. RELATED WORK

There exists many peripheral physiological signals that can be ex-
ploited to sense human emotions, e. g., respiration amplitude [8] and
pupillary response [9]. In this paper, we focus on the ECG and
EDA signals, as they can nowadays easily be captured with wearable
devices, such as smart-watches and smart-bracelets, thus allowing
emotion monitoring ‘in the wild’ [10, 11] and continuously over the
day if desired or needed. Moreover, it is worth to mention that non-
contact methods can also be used to estimate both ECG and EDA
signals from video data [12], or even from audio [13] or motion sen-
sors included in smartphones [14].

The last two editions of the Audio Visual Emotion recognition
Challenge (AVEC) [3, 4], included a task on dimensional emotion
recognition from audiovisual and physiological signals, using the
same database of this study. We therefore describe in the following
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section the best performing systems developed by the participants
of the AVEC challenges, cf. Table 1. The evaluation metric used
for the (speaker-independent) dimensional emotion prediction task is
the concordance correlation coefficient (CCC) [15], computed over
concatenated instances [16]:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
,

where ρ is the Pearson’s correlation coefficient between the pre-
dictions and the emotion labels, µx, µy are the means of the two sig-
nals and σx, σy their standard deviations. CCC thus combines the
Pearsons correlation coefficient with the square difference between
the mean of the two compared time series, which makes it sensitive
to bias and scaling factors [17].

The overview of the three best performing systems of the last
two editions of the AVEC challenge shows that, hand-crafted fea-
tures computed from the ECG clearly outperform those extracted
from the EDA for both arousal and valence. The best performance
achieved on arousal has been obtained with the system developed
by Weber et al. [21], using the baseline feature set of the challenge;
19 features composed of linear and non-linear descriptors computed
on a band-pass filtered version of the ECG signal. A Support Vec-
tor Regression (SVR) model was trained for each subject of the
database, and fusion of these single-speaker-regression-models was
performed by a linear regression. This approach has also provided
the best performance on arousal for all other signals excepted EDA,
and on valence with the heart rate descriptors (HRHRV); five statis-
tical measures computed on the R-R signal and its first order deriva-
tive. The interest of combining single-speaker-regression-models to
adapt the system to the speaker peculiarities has also been recently
demonstrated for acoustic features [24]. In fact, methods based on
end-to-end learning have been applied on the RECOLA database,
using either the raw acoustic waveform [6] or the video signal [5],
yet not physiological information as pursued here. Performance re-
ported with this approach shows that the system can learn intermedi-
ate representations of the data that are related to affective behaviours,
and even outperform methods applied on hand-crafted features, thus
demonstrating the importance of this approach.

3. METHOD

An overview of the main building blocks of the proposed system’s
architecture is given in Figure 1. It incorporates preprocessing
phases for downsampling, normalisation and windowing of the in-
put signal. The short-term views of the signals are fed into zero
or more convolutional blocks, each convolutional block being com-
prised of a convolutional layer with a kernel size greater than one, a
non-linear activation function, a convolution layer with kernel size of
one, another non-linear activation function, and a max-pooling layer
applied over windows of two time-steps. The output of the convo-
lutional blocks is fed into zero or more recurrent layers, and their
output into one or more fully connected layers with a non-linear ac-
tivation function, followed by the output layers described in Section
3.7. An appropriate loss function is computed from the output layers,
that is in turn minimised by a gradient-based optimisation algorithm,
cf. Section 4 for specifications. Some components of the model are
optional, such as the regularisation techniques described in Section
3.6 and batch normalisation.

3.1. Normalisation and downsampling

The input signal of the model is a real valued signal x, which consists
of k channels at each time-step. We normalise the mean and stan-
dard deviation of each channel separately, across all time-steps. The
signal is downsampled to a target-frequency fm in order to remove
redundant samples. We match the frequency fy of the gold-standard
(computed from a pool of time-continuous annotations) in the train-
ing set to fm, by downsampling in case fy > fm, or by applying
linear extrapolation in case fy < fm. As in some cases the input
signal might encode variations in the annotation data better than it
encodes the actual values, we center the gold-standard during the
training phase, and restore those mean values during the inference
phase.

3.2. Windows extraction

Once normalisation and downsampling is done, the frequency of the
input and output signals is matched. We extract a maximal number
of overlapping windows of s seconds from each input signal in the
training set, each is paired with the annotation that corresponds to
the center of the window; input signals are padded on the edges.
The extracted window-annotation pairs from the training set are the
training examples the model is trained on. Note that, by extracting
a maximal number of windows (windows are shifted by one time-
step from each other), we augment our training set with the aim to
improve the performance of the model [25]. For the evaluation set,
windows are extracted with the same procedure as for the training
set, and we downsample/interpolate the time-sequence of network
predictions for the different windows, to match the frequency fy of
the output signal.

Normalization & Downsampling

Windows Extraction
Preprocessing

Convolutional Layers

Recurrent Layers

Neural Network

Fully-Connected Layers
Regularization

Batch 
Normalization

Predictions

Postprocessing

Predictions Upsampling

Smoothing

Input Signal

Fig. 1. Main building blocks of the proposed deep end-to-end learn-
ing method.



Table 1. Comparison of performance (CCC) for speaker independent dimensional emotion recognition from various peripheral physiological
signals according to the best three systems of the last two editions of the AVEC challenge (development partition). Note that for AVEC’15,
HRHRV features were included in the ECG feature set, and SCL and SCR features were included in the EDA feature set. Best performance
obtained on each channel is highlighted in bold style for arousal and valence; HRHRV: heart rate and heart rate variability; SCL: skin
conductance level; SCR: skin conductance resistance.

Arousal Valence
Authors ECG HRHRV EDA SCL SCR ECG HRHRV EDA SCL SCR

AVEC’15 [3] .275 — .078 — — .183 — .204 — —
Kächele et al. [18] .344 — .125 — — .256 — .236 — —

Chen et al. [19] .333 — — — — .314 — .315 — —
He et al. [20] .297 — .248 — — .293 — .231 — —
AVEC’16 [4] .271 .379 .073 .068 .073 .153 .293 .194 .166 .085

Weber et al. [21] .468 .424 .187 .197 .193 .221 .413 .281 .277 .174
Povolný et al [22] .323 .391 .123 .134 .167 .272 .388 .316 .310 .194

Sun et al. [23] .320 .392 .122 .116 .117 .167 .264 .234 .229 .126

3.3. 1D convolutional layers

A 1D convolutional layer [26] processes a time-sequence with k
channels, by convolving windows of l time-steps with learnable ker-
nels of size l×k each. When a convolutional layer is fed with a time-
sequence, it performs a convolution of the time-sequence with n dif-
ferent such kernels resulting in a time-sequence of the same length as
the original time-sequence and n channels. A fixed channel across
all time-steps is called a feature map. Whereas a 1D max-pooling
layer processes each channel separately by performing a max oper-
ation across all time-steps of a defined window. When max-pooling
layers is applied on a time-sequence using a window size of l and
a stride of d, each time-step in the resulting time-sequence corre-
sponds to a window in the original time-sequence, where the win-
dows are shifted with d time-steps between them.

3.4. Recurrent layers

Long-term dependencies over time are modelled with recurrent lay-
ers. Given a time-sequence a = (a1, . . . , at), a recurrent layer gen-
erates a sequence of hidden states h = (h1, . . . , ht) by performing
ht+1 = RNN(htWh + at+1Wa + b), where Wh,Wa are learn-
able weight matrices, b is a learnable bias, and RNN is a transition
function that depends on the type of recurrent layer used. The last
m elements of the time-sequence h are then passed to the next layer.
One natural extension of a recurrent layer is a bidirectional recurrent
layer, that consists of two recurrent layers as defined above. In this
approach, the first recurrent layer processes the input time-sequence
a forward from a1 to at, while the other processes it backwards,
from at to a1.

3.5. Batch normalisation

When training neural networks, the distribution of each layer’s in-
puts changes during training, as the parameters of the previous layers
change. This phenomenon slows down training by requiring smaller
learning rates and careful parameter initialisation. To alleviate this
issue, batch normalisation [27] has been proposed. It consists in ap-
plying a linear transformation on the output of a layer – just before
applying the activation function – that enforces learnt values of the
mean and standard deviation of each unit / feature map in the output.
The mean and standard deviation are calculated per mini-batch of
examples.

3.6. Regularisation

In order to reduce overfitting, which is a well known issue when
training neural networks on relatively small sized datasets, different
regularisation techniques can be applied. A prominent regularisa-
tion method for neural networks is dropout [28], that when applied
on some layer of a neural network, each element in the – possibly
multidimensional – output is set to zero with probability p or else
multiplied by 1

1−p
. At inference time, dropout is not used. Other

regularisation techniques used in our models are L1/L2 weight de-
cay and adding a zero-mean Gaussian noise to the network’s input.

3.7. Regression through classification

For the prediction of continuous-valued emotion labels from win-
dows of the input signal, the last layer of the network is usually a
standard fully-connected layer with one output unit per emotion di-
mension; multi-task learning can be performed here by using more
than one output unit [16]. Alternatively, the continuously-valued
emotion labels can be discretised into a number of classes, where
a softmax layer is then employed to model the output distribution.
In this study, we use this regression through classification approach,
with a linear discretisation of the labels to fit the range of continuous
values into the desired number of classes.

4. EXPERIMENTS

The database used in this study is briefly described in the following
section. We then discuss the optimisation of the hyper-parameters
and architecture of the system. Subsequently, obtained results are
described followed by an analysis of the representations learnt by
the end-to-end system.

4.1. RECOLA database

The Remote Collaborative and Affective Interactions (RECOLA)
database [7] contains spontaneous and naturalistic dyadic interac-
tions of French-speaking adults during the resolution of a collabora-
tive task. Multi-modal signals, i. e., audio, video, ECG and EDA,
were continuously and synchronously recorded from 27 French-
speaking subjects. Time-continuous ratings (40 ms binned frames)
of emotional arousal and valence were created for the first five min-
utes of all recordings. Those ratings were averaged over six raters
to create a single time-continuous emotion label for each dimension



Table 2. Chosen target-frequencies fm and windows sizes s.
Signal fm [Hz] s [seconds]

Arousal

EDA 1 75
ECG 25 6
HR 25 8
SCL 1.25 12
SCR 2.5 12

Valence

EDA 1 50
ECG 25 8
HR 25 14
SCL 5 16
SCR 5 15

[4]. For experimental evaluations, the dataset is equally divided into
speaker-disjoint subsets for training, development (validation) and
testing.

For the purpose of the AVEC’16 challenge [4], the heart-rate
(HR) derived from the ECG was provided as an additional phys-
iological signal. Regarding EDA, the skin conductance response
(SCR) and skin conductance level (SCL) signals were also extracted
and provided as separate physiological descriptors. Note that for
EDA, SCR and SCL, test data from subject #7 was not used, due to
an issue during the recording of this subject.

4.2. Hyperparameters and architectural choices

We optimised over many architectural setups and hyperparameters
using the training and development sets, for every combination of
input-signal (i. e., ECG, HR, EDA, SCL, and SCR) and emotional
dimension. The best performing models were then used for comput-
ing predictions on the test set. Regarding the preprocessing methods,
we experimented with different granularity with the target-frequency
fm and window size s, cf. Sections 3.1 and 3.2, respectively, as well
as with shifting the mean of the gold-standard to zero. The values of
the best performing target-frequency and window size for each phys-
iological signal and emotional dimension is given in Table 2. Results
show that, ECG and HR signals perform best when they are pro-
cessed with the same time-granularity as the one used on the gold-
standard (25 Hz), and that their best window size is in the same ball-
park as those exploited for audiovisual data [6], whereas all three
EDA related signals perform best with a low target-frequency and
much longer window size, especially for EDA.

For the model architecture, we optimised the number of con-
volutional, recurrent and fully-connected layers, and the number of
units / feature maps in each layer, as well as the size of the convo-
lution kernel, type of recurrent layers (LSTM [29] / BLSTM [30]),
and number of last time-steps from the recurrent layers to use as the
layer’s output. In addition, we performed optimisation on the regu-
larisation strategy, by experimenting with different levels of L1/L2
weight decay, Gaussian noise on the input, layers to apply dropout on
and dropout probability. The choice of learning algorithm was also
optimised (Stochastic Gradient Descent and Adadelta [31]), with dif-
ferent learning rates and a mini-batch size of 100 window-annotation
pairs. Regarding discretisation of the labels to perform regression
through classification task, we used 61 classes, with values between
-0.30 and 0.30, and 0.01 shifts. Cross-entropy loss was used as loss
function in the training of models with discritised output, whereas a
CCC loss function was used in the other models [6, 17, 18]. The type
of non-linearity in the convolutional and fully-connected layers, and

Table 3. Comparison of performance (CCC) for arousal recognition
from the various physiological signals. The proposed method (End-
to-End), the AVEC2016 baseline [4] and the two best submissions to
the AVEC2016 challenge [21, 22].

Signal End-to-End [4] [21] [22]

Dev

ECG .267 .271 .468 .323
HR .426 .379 .424 .391

EDA .212 .073 .187 .123
SCL .149 .068 .197 .134
SCR .189 .073 .193 .167

Test

ECG .309 .158 — —
HR .360 .334 — —

EDA .101 .075 — —
SCL .190 .066 — —
SCR .257 .065 — —

Table 4. Comparison of performance (CCC) for valence recognition
from the various physiological signals. The proposed method (End-
to-End), the AVEC2016 baseline [4] and the two best submissions to
the AVEC2016 challenge [21, 22].

Signal End-to-End [4] [21] [22]

Dev

ECG .135 .153 .221 .272
HR .419 .293 .413 .388

EDA .284 .194 .281 .316
SCL .308 .166 .277 .310
SCR .286 .085 .174 .194

Test

ECG .210 .121 — —
HR .225 .198 — —

EDA .336 .228 — —
SCL .353 .216 — —
SCR .313 .145 — —

batch normalisation were also optimised.
Finally, for all investigated methods, a chain of post-processing

is applied to the predictions obtained on the validation set, as done
in the AVEC baseline system [4]: (i) median filtering, with size of
the window ranging from 0.4 s to 20 s, (ii) centring by computing
the bias between gold-standard and prediction, and (iii) scaling, by
using the ratio of standard-deviation of gold-standard and prediction
as scaling factor. Any of these post-processing steps is kept when
an improvement is observed on the CCC of the validation set, and
applied then with the same configuration on the test partition.

4.3. Quantitative Results

We evaluated our deep neural network models for the prediction of
the two AVEC challenge dimensions of emotion from the RECOLA
dataset: arousal and valence. Our models’ performance is compared
to the best results from the submissions to the AVEC challenge and
to the challenge baseline itself. Results for predicting arousal and
valence levels on the development and test sets from each of the
different input-signals used are presented in Tables 3 and 4. The re-
sults demonstrate that in terms of concordance correlation coefficient
(CCC), the official evaluation metric for this dataset, our end-to-end
models in almost all settings outperformed the AVEC2016 baseline,
and yielded superior or comparable performance to the best submis-
sions thereof, that use traditional hand-crafted features with a much



Table 5. Multi-modal predictions (in CCC)
Arousal Valence

Dev .463 .477
Test .430 .407
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Fig. 2. Contributions of the different signals to the final prediction
in the late fusion model.

more complicated model pipeline. The results therefore support our
initial hypothesis, that an end-to-end learning approach directly from
raw signals can be beneficial for this task.

Multimodal fusion of the five modalities (EDA, ECG, HR, SCL,
SCR) was performed using the same procedure as the procedure as
in the AVEC2016 baseline. We employed a late-fusion scheme with
linear regression:

Predmuilti = β0 +

5∑
i=1

βiPredi,

where Predi is the prediction-signal using modality i, and
{β0, . . . , β5} are real-valued scalars that are optimised using the
development set predictions. As expected, the results in Table 5
confirm that fusing the predictions from the different signals fur-
ther improves the CCC measure. The learned coefficients β1, . . . β5
allow us to infer about the relative importance of each independent
signal for the prediction of each emotion dimension. In order to
depict the contribution of each modality in the prediction, we nor-
malised the learned linear regression coefficients that were learnt for

the multimodal fusion model into percentage: Ci = |βi|/
5∑

i=1

βi.

The normalised coefficients C1, ..., C5 are then depicted in Figure
2. It presents that the HR signal was the most dominant input-signal
for the prediction of both arousal and valence. The SCR signal con-
tributed more to the prediction of valence, while the EDA signal
contributed mostly to the arousal prediction.

4.4. Relation to Hand-Crafted Features

We investigated different cell activations (outputs) in the convolu-
tional layers of the best performing models to gain a better under-
standing of the internal representations that our models learnt. We

ρ=0.75

ρ=0.75

0 50 100 150 200 250 300
Time (s)

ρ=0.81

feature cell activation

Fig. 3. Examples of correlations between cell activations in our neu-
ral network models and hand-crafted features from the AVEC2016
baseline (mean and standard deviation are normalized). From top to
bottom: EDA skewness, ECG spectal coefficient #3, SCL standard
deviation derivative.

found cells with activations that highly correlate with some hand-
crafted features that were extracted for the AVEC2016 challenge and
that were used by the baseline approach to predict arousal and va-
lence. Some examples can be seen in Figure 3. This demonstrates
the feature extraction capabilities of convolutional neural networks,
as these models are able to learn relevant and interpretable features
solely from data, when trained in an end-to-end manner.

5. CONCLUSION

In a first of its kind study, we successfully employed a series of con-
volutional and recurrent neural networks to predict levels of arousal
and valence from physiological signals, such as electrocardiogram
and electrodermal activity, directly from the raw time representa-
tion. Experimental evaluation shows that in almost all settings, our
end-to-end approach yields superior performance to the AVEC2016
baseline and superior or comparable results to the strongest baseline
systems, that use hand-crafted features and employ a fairly compli-
cated model pipeline. Furthermore, we show that some cells’ activa-
tions in the network are correlated to a large extent with hand-crafted
features, thus gaining better understanding of our models’ inner rep-
resentations. In future work, we plan to continue exploring the ad-
vances of deep neural networks paired with raw features, to further
improve the prediction ability of dimensional emotion.
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