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ABSTRACT

Machine learning paradigms based on child vocalisations show

great promise as an objective marker of developmental disorders

such as Autism. In conventional detection systems, hand-cra�ed

acoustic features are usually fed into a discriminative classi�er

(e. g., Support Vector Machines); however it is well known that the

accuracy and robustness of such a system is limited by the size

of the associated training data. �is paper explores, for the �rst

time, the use of feature representations learnt using a deep Genera-

tive Adversarial Network (GAN) for classifying children’s speech

a�ected by developmental disorders. A comparative evaluation

of our proposed system with di�erent acoustic feature sets is per-

formed on the Child Pathological and Emotional Speech database.

Key experimental results presented demonstrate that GAN based

methods exhibit competitive performance with the conventional

paradigms in terms of the unweighted average recall metric.
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1 INTRODUCTION

In recent years, there has been a notable increase in research focused

on identifying biological and behavioural markers to aid the early

detection of Autism Spectrum Conditions (ASC). ASC is a group of

conditions characterised by social, language and communications

impairments as well as, repetitive stereotyped behaviours [1]. Early

diagnosis is important for increased positive outcomes from therapy,

as well as for reducing parental stress [6, 15].

Autism is known to manifest in di�erent ways in the speech

of children and adults [4, 15, 19]. Commonly reported linguistic

peculiarities include echolalia, out of context phrasing, as well as

pronoun and role reversal [5, 15, 21]. However, language skills in

autism show several varying subtypes within the spectrum [13, 14].

�us, linguistic based markers may not be reliable for the auto-

matic diagnosis of ASC. Since abnormal prosody has also been

reported as a core marker of ASC [12], paralinguistic cues appear,

on the other hand, be�er suited for the automatic detection. Supra-

segmental acoustic features relating to articulation, loudness, pitch,

and rhythm have indeed shown promising results for children’s

speech [4, 19, 21, 25]. �ese acoustic features have also been suc-

cessfully used in speech-based interaction systems for improving

social skills of children su�ering from ASC [18, 20].

Investigations have been undertaken with machine learning

paradigms relying on acoustic and prosodic feature sets to automat-

ically detect autism [24, 28, 32]. Whereas results show that high

levels of accuracy can be achieved for a task like discriminating

typically developing children from children with ASC, performance

obtained by such systems have been evaluated on rather small

datasets, and may lead to potential confounds [3]. �e small size of

currently available ASC related datasets represents a major obstacle

in the development of robust models which are su�ciently reliable

for clinical practice [31].

Whilst the collection of more data is the straightforward solu-

tion for this issue of data scarcity, the high costs associated with

obtaining clinical data, from a population that further includes chil-

dren, limits the practicality of this approach. Another option is

the augmentation of the training data by arti�cially generated sam-

ples [31]. �e potential of this approach has already been shown

for speech-based emotion detection systems [17, 30].
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Figure 1: Diagram of a Generative Adversarial Networks (GANs). A GAN basically involves a generator and a discriminator

competing against each other in a zero-sum game framework. �e generator takes random noise as input and tries to generate

data in the hope of fooling the discriminator. Simultaneously, the discriminator tries to classify samples as either coming from

the training data or the generated samples.

Inspired by the recent success in representation learning associ-

ated with advances in deep learning [7, 8, 16], we propose to learn

feature representations by leveraging deep Generative Adversar-
ial Networks (GANs) for automatic diagnosis of ASC in children’s

voices. �e deep GANs, a recently proposed unsupervised learning

algorithm [11, 23, 26], are used as a means of learning intrinsic

representations from unlabelled complex speech data. �e result-

ing GAN representations are input to a traditional classi�er in an

a�empt to facilitate the learning process.

Whilst predominantly used in image processing, the use of

GAN’s to learn invariant feature representations has started to

be explored in speech processing tasks such as speech enhance-

ment [22] and, automatic speech recognition (ASR) in noisy con-

ditions [33]. To the best of the author’s knowledge this is the �rst

time it has been explored in computational paralinguistics.

�e rest of this paper is laid out as follows; Section 2 introduces

the GAN based classi�cation framework; Section 3 sets out the key

experimental se�ing and present the results; a succinct conclusion

and future work plans are given in Section 4.

2 METHODOLOGY

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) have recently a�racted

considerable a�ention in the �eld of deep learning [11, 23, 26]. A

GAN, as illustrated in Figure 1, consists of two competing networks

in a zero-sum game framework. A generator network performs a

data generating process, which takes random noise sampled from

a pre-de�ned distribution (e. g., a uniform distribution or a unit

Gaussian distribution) and maps them to a given true training data

distribution. A second discriminator network receives samples

from the generator and the training data, and then is forced to

predict samples as either coming from the training data or the

generated samples. �e two networks pay a MinMax or zero-sum

game, where the discriminator is learning to di�erentiate between

the two sources as accurately as possible. �e generator is simulta-

neously learning to fool the discriminator by producing realistic

samples. By the end of the ‘game’, the generator is able to perfectly

synthesise the training data, and the discriminator is unable to �nd

a di�erence between ‘fake’ samples synthesised by the generator

and real samples from the dataset.

Mathematically, in order to learn the generator’s distribution

pд over data x , we note pz (z) as a prior on input noise variables,

G(z;θд) a mapping to the data space, and G a di�erentiable func-

tion represented by a deep neural network with parameters θд .

Similarly, we note D(x ;θd ) as a second deep neural network with

parameters θd . D(x) indicates the probability of x belonging to

the data rather than pд . �erefore, a loss function V (G,D) of the

two-player MinMax game [11] is de�ned as:

min

G
max

D
V (D,G) =Ex∼pdata(x )[logD(x)]

+ Ez∼pz (z )[log(1 − D(G(z)))],
(1)

where E denotes the expected value. As shown in [11], for a �xed

generator G, the optimal discriminator D is:

D∗G (x) =
p

data
(x)

p
data
(x) + pд(x)

. (2)

It is noteworthy that this minimax rule has a global optimum for

pд = pdata
, i. e., the generative model perfectly replicating the data

distribution [11].

2.2 Generative Adversarial Networks based

Automatic Diagnosis System

Drawing inspiration from the extensive success of deep represen-

tation learning for classi�cation tasks with small data [2, 7, 8, 16],

our proposed automatic diagnosis system, uses features learnt from

unlabelled data generated by a GAN, instead of directly using hand-

cra�ed acoustic features. �e resulting features are used as an input

to a supervised classi�er (in this work, Support Vector Machines

(SVM)), that performs classi�cation modelling on the generated

data as well as making predictions on the (real) test u�erances.

As explained in the previous section (see Section 2.1), there are

two di�erent types of neural networks in a typical GAN. To learn

meaningful representations, only GAN discriminators, which take

acoustic features as input, can act as a non-linear feature extractor

in our system: the output of an intermediate layer can be treated

as a representation of the original input data. As a result, the input

data are mapped to a feature space through a non-linear feature

mapping, which is learnt by exploring non-linear structures of the
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Table 1: ComParE acoustic feature set: 65 low-level descrip-

tors (LLD).

4 energy related LLD Group

RMS energy, zero-crossing rate Prosodic

Sum of auditory spectrum (loudness) Prosodic

Sum of RASTA-�ltered auditory spectrum Prosodic

55 spectral LLD Group

MFCC 1–14 Cepstral

Psychoacoustic sharpness, harmonicity Spectral

RASTA-�lt. aud. spect. bds. 1–26 (0–8 kHz) Spectral

Spectral energy 250–650 Hz, 1 k–4 kHz Spectral

Spectral �ux, centroid, entropy, slope Spectral

Spectral Roll-O� Pt. 0.25, 0.5, 0.75, 0.9 Spectral

Spectral variance, skewness, kurtosis Spectral

6 voicing related LLD Group

F0 (SHS and Viterbi smoothing) Prosodic

Prob. of voicing Voice qual.

log. HNR, ji�er (local and δ ), shimmer (local) Voice qual.

data. In sum, our proposed system consists of three main modules:

acoustic features extraction, a GAN, and a linear SVM.

2.2.1 Acoustic Features. �e aim of acoustic feature extraction is

to provide compact and discriminant representations of the speech

signal on the basis of expert knowledge. For transparency and

reproducibility, we exploited the openSMILE feature extraction

toolkit [10] to extract two widely used audio feature sets in the �eld

of computational paralinguistic; the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) and the large-scale Interspeech
2013 Computational Paralinguistics Challenge feature set ComParE

[10]. Both sets have been successfully utilised in the �eld of af-

fective computing [8], and recently investigated for the automatic

diagnosis of ASC in children’s voices [25, 28].

eGeMAPS is a knowledge driven data set that exploits the �rst two

statistical moments (mean and coe�cient of variation) to capture

the distribution of low-level descriptors (LLDs) describing spectral,

cepstral, prosodic and voice quality information, creating an 88

dimensional acoustical representation of an u�erance. It was specif-

ically designed by a small group of experts to be a basic standard

acoustic parameter set for voice analysis tasks including paralin-

guistic and clinical speech analysis. For full details the reader is

referred to [9]. ComParE, on the other hand, is a large-scale brute

forced acoustic feature set which contains 6 373 features represent-

ing prosodic, spectral, cepstal and voice quality LLDs. A detailed

list of all LLDs for ComParE is given in Table 1. For full details on

ComParE the reader is referred to [10].

2.2.2 Generative Adversarial Network. In our GAN model, the

generator consists of a deep feed-forward neural network with one

input layer of 100 neural units, three hidden layers of 256 hidden

units, and one output layer. As already mentioned in Section 2.1, a

uniform distribution is selected to provide random noise samples

as input to the generator. Note that the number of neural units

in the output layer is dependent on the selected acoustic feature

sets. Similarly, the discriminator is a deep feed-forward neural

network with four hidden layers of 256 hidden units which lead

into a sigmoid activation function which outputs the probabilities

of whether the input u�erance is real or arti�cial. �e binary cross

entropy is chosen as the objective function of the discriminator.

�e tanh activation function is adopted for the output layer of the

generator. For the remaining layers of these models, LeakyReLU
activations [34] and batch normalisation are employed to stabilise

the training. Finally, we train an SVM with a linear kernel using

the representations from a hidden layer of the discriminator.

3 EXPERIMENTS

3.1 ASC Corpus

We exploited the Child Pathological & Emotional Speech Database
(CPESD) [24, 25] to conduct the empirical evaluations of our diag-

nosis system. �is dataset includes spontaneous speech recordings

inducing three emotion categories of valence (positive, neutral,

and negative) from 34 monolingual children. All participants were

recruited in two university departments of child and adolescent

psychiatry located in Paris, France. All children were equipped

with communicative verbal skills, and diagnosed with one of the

following conditions: autism disorders (AD; 11 children), pervasive
developmental disorders not otherwise speci�ed (PDD-NOS; 10 chil-

dren), or speci�c language impairment (SLI; 13 children), according

to DSM–IV criteria [1]. All patients were matched for age, sex, aca-

demic grades, and lexical abilities. For the control group, 68 typically
developing (TD) children from elementary schools were recruited.

Participants were also matched for age and sex (two TD for one

patient). �eir teacher was asked to �ll in a questionnaire to exclude

children with learning disorders. In total, almost 12 hours of audio

were recorded: 7 h 38 min for TD children, 1 h 35 min for children

with AD, 1 h 12 min for children with PDD-NOS, and 1 h 56 min

for children with SLI. �ose recordings were then segmented into

u�erances, providing in total 6 380 segmented u�erances from 102

children. �e corpus was further divided into partitions for train-

ing (3 692 u�erances, approximately 60 % of data), validation (1 281

u�erances, approximately 20 % of data) and test (1 407 u�erances,

approximately 20 % of data). To ensure speaker identity is not a

confounding factor, this partitioning was done in an completely

child independent fashion i. e., all u�erance from any given child

are contained completely within one partition. All parameters of

the models were optimised on the validation set, whereas the test

partition is solely used for the purpose of performance evaluation

on unseen children.

3.2 Key Experimental Settings

For the GAN models, the training data was scaled to the range

of the tanh activation function [-1, 1]. �e models were trained

with stochastic gradient descent (SGD) with a mini-batch size of

128. In order to gain insights into the optimal representation, we

investigate the outputs from each hidden layer of the discriminator

network.

Note that the present study focusses on the recognition of diag-

nosis condition – as provided by clinicians – from speech recordings

of AD, PDD-NOS, SLI, and TD children, which leads to a 4-way

imbalanced classi�cation task. Hence, performance is evaluated by

unweighted average recall (UAR), which is suitable for imbalanced
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Table 2: Results in terms of UAR (%) for the 4-way speech-

based diagnosis ASC task on CPESD with the eGeMAPS

acoustic feature set. lo indicates the index of the selected

hidden layer used to compute the GAN representation. Max-

imum test UAR is highlighted in bold. Signi�cant results (p-
value < 0.05, one-sided z-test) are marked with an asterisk.

Method Validation Test

Linear SVM 41.06 39.91

SVM (RBF) 40.83 39.09

MLP 40.77 40.97

GAN (lo = 1)+SVM 39.33 43.13
∗

GAN (lo = 2)+SVM 40.92 42.76

GAN (lo = 3)+SVM 40.59 44.06*

GAN (lo = 4)+SVM 39.35 43.29*

Table 3: Confusion matrix of the best system with

eGeMAPS on the CPESD test set. Abbreviations: TD typ-

ically developing; NOS pervasive developmental disorders

not-otherwise speci�ed; SLI speci�c language impairment;

AD autism disorders.

Predicted Labels
TD NOS SLI AD

Tr
ue

La
be
ls TD 849 28 25 26

NOS 27 19 12 31

SLI 70 37 114 20

AD 36 9 80 24

classes. In addition, signi�cance tests are conducted by comput-

ing a one-sided z-test in order to compare two di�erent diagnosis

systems.

For comparison purposes, three representative methods includ-

ing a linear SVM, an SVM with the Radial Basis Function (RBF)

kernel, and a Multi-Layer Perceptron (MLP) with four hidden layers,

which are fed with the eGeMAPS and ComParE feature set, respec-

tively, serve as baseline systems. In these approaches, all features

are standardised w. r. t. the mean and the standard deviation of

each feature derived from the training set. Note that the complexity

parameter of the SVM was optimised w. r. t. the highest UAR on

the validation set.

3.3 Results

For eGeMAPS, we �rst observe that all systems achieved promising

performances far above the chance level UAR of 25.00 % (cf. Table 2).

We also observed that the outputs from each of the hidden layers

of our proposed system achieved notable increases in performance

on the test data. �e outputs of the third hidden layer achieved the

best test UAR of 44.06 %, which is a relative increase of 10.40 % over

the Linear SVM baseline; the confusion matrix for this system is

Table 4: Results in terms of UAR (%) for the 4-way speech-

based diagnosis ASC task on CPESD with ComParE. lo indi-

cates the index of the selected hidden layer used to compute

the GAN representation. Maximum test UAR is highlighted

in bold. Signi�cant results (p-value < 0.05, one-sided z-test)

are marked with an asterisk.

Method Validation Test

Linear SVM 64.92 42.83

SVM (RBF) 50.07 40.40

MLP 41.67 37.61

GAN (lo = 1)+SVM 51.09 46.93*

GAN (lo = 2)+SVM 50.64 44.27

GAN (lo = 3)+SVM 51.38 45.29

GAN (lo = 4)+SVM 47.06 43.83

Table 5: Confusion matrix of the best system with the Com-

ParE feature on the CPESD test set.Abbreviations: TD typ-

ically developing; NOS pervasive developmental disorders

not-otherwise speci�ed; SLI speci�c language impairment;

AD autism disorders.

Predicted Labels
TD NOS SLI AD

Tr
ue

La
be
ls TD 830 54 25 19

NOS 46 24 5 14

SLI 54 20 146 21

AD 47 9 77 16

presented in Table 3. Further, except for the second layer, our pro-

posed system with the GAN representations and SVM signi�cantly

outperforms the Linear SVM baseline system.

Similarly when using ComParE features (cf. Table 4), we ob-

served a test set performance increase for the GAN representations

when compared to the baseline systems. Furthermore all GAN

ComParE representations achieve stronger performances than their

corresponding eGeMAPS representations. Although, it is worth

noting that the outputs computed from the bo�om hidden layer

give the best ComParE test UAR of 46.93 %, which is di�erent from

the eGeMAPS case where the top layers were observed to be more

suitable. �e confusion matrix obtained by the strongest ComParE

system is presented in Table 5.

4 CONCLUSIONS AND OUTLOOK

Whilst research into using biological markers such as speech to aid

the diagnosis of autism spectrum conditions is steadily increasing,

the relative small size of the associated corpora is an important

limiting factor in the creation of robust models with clinical util-

ity. In this regards, this paper explored whether a deep Generative
Adversarial Network (GAN) could serve to generate additional data

representations that are suitable for recognising children with ASC
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from TD. Results reported on the CPESD dataset indicate that a sys-

tem trained with our generated features could achieve comparable

accuracies with a similar system trained using state-of-art-feature

representations. �is result is, to our knowledge, the �rst of its kind,

not just in speech-based autism detection, but in Computational

Paralinguistics in general, and shows great promise for many tasks

where data scarcity is an issue in general.

Future work will include testing our GAN based system in range

of other health-based tasks such as depression detection. We will

also test the GAN system capability for generating other commonly

used behavioural signals such as video descriptors or physiological

features such as electrocardiogram and electrodermal activity repre-

sentations. Furthermore, we will compare and combine GAN-based

feature learning with other unsupervised representation learning

techniques, such as bag-of-words [27, 29].
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adversarial network. CoRR, abs/1703.09452, 2017.

[23] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with

deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

[24] F. Ringeval, J. Demouy, G. Szaszák, M. Chetouani, L. Robel, J. Xavier, D. Cohen,

and M. Plaza. Automatic intonation recognition for prosodic assessment of

language impaired children. IEEE Transactions on Audio, Speech & Language
Processing, 19(5):1328–1342, 2011.

[25] F. Ringeval, E. Marchi, C. Grossard, J. Xavier, M. Chetouani, D. Cohen, and

B. Schuller. Automatic analysis of typical and atypical encoding of spontaneous

emotion in the voice of children. In Proceedings of INTERSPEECH, pages 1210–

1214, San Francisco, CA, U. S., 2016. ISCA.

[26] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.

Improved techniques for training GANs. In Proceedings Neural Information
Processing Systems, pages 2226–2234, Barcelona, Spain, 2016.

[27] M. Schmi�, C. Jano�, V. Pandit, K. Qian, C. Heiser, W. Hemmert, and B. Schuller.

A bag-of-audio-words approach for snore sounds’ excitation localisation. In

Proceedings 14th ITG Conference on Speech Communication, volume 267 of ITG-
Fachbericht, pages 230–234, Paderborn, Germany, 2016. ITG/VDE, IEEE/VDE.

[28] M. Schmi�, E. Marchi, F. Ringeval, and B. Schuller. Towards cross-lingual auto-

matic diagnosis of autism spectrum condition in children’s voices. In Proceedings
14th ITG Conference on Speech Communication, volume 267 of ITG-Fachbericht,
pages 264–268, Paderborn, Germany, 2016. ITG/VDE, IEEE/VDE.

[29] M. Schmi�, F. Ringeval, and B. Schuller. At the border of acoustics and linguistics:

Bag-of-audio-words for the recognition of emotions in speech. In Proceedings of
INTERSPEECH, pages 495–499, San Francisco, CA, U. S., 2016. ISCA.

[30] B. Schuller and F. Burkhardt. Learning with synthesized speech for automatic

emotion recognition. In Proceedings 35th IEEE International Conference on Acous-
tics, Speech, and Signal Processing, pages 5150–515, Dallas, TX, U. S., 2010.

[31] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers, C. Müller, and

S. Narayanan. Paralinguistics in speech and language – state-of-the-art and the

challenge. Computer Speech and Language, Special Issue on Paralinguistics in
Naturalistic Speech and Language, 27(1):4–39, 2013.

[32] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval,

M. Chetouani, F. Weninger, F. Eyben, E. Marchi, H. Salamin, A. Polychroniou,

F. Valente, and S. Kim. �e INTERSPEECH 2013 computational paralinguistics

challenge: Social signals, con�ict, emotion, autism. In Proceedings of INTER-
SPEECH, pages 148–152, Lyon, France, 2013. ISCA.

[33] D. Serdyuk, K. Audhkhasi, P. Brakel, B. Ramabhadran, S. �omas, and Y. Bengio.

Invariant representations for noisy speech recognition. CoRR, abs/1612.01928,

2016.

[34] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of recti�ed activations

in convolutional network. CoRR, abs/1505.00853, 2015.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Generative Adversarial Networks
	2.2 Generative Adversarial Networks based Automatic Diagnosis System

	3 Experiments
	3.1 ASC Corpus
	3.2 Key Experimental Settings
	3.3 Results

	4 Conclusions and Outlook
	5 Competing Interests
	6 Acknowledgements
	References

