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MCTS-based Automated Negotiation Agent (Extended abstract)

Cédric L R Buron∗ Zahia Guessoum† Sylvain Ductor‡

Abstract

This paper introduces a new Negotiating Agent for
automated negotiation on continuous domains and
without considering a specified deadline. The agent
bidding strategy relies on Monte Carlo Tree Search,
which is a trendy method since it has been used with
success on games with high branching factor such as
Go. It uses two opponent modeling techniques for
its bidding strategy and its utility: Gaussian process
regression and Bayesian learning. Evaluation is done
by confronting the existing agents that are able to
negotiate in such context: Random Walker, Tit-for-
tat and Nice Tit-for-Tat. None of those agents suc-
ceeds in beating our agent; moreover the modular and
adaptive nature of our approach is a huge advantage
when it comes to optimize it in specific applicative
contexts.
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agent-to-agent interactions (negotiation, trust, coor-
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1 Introduction

Negotiation is a form of interaction in which a group
of agents with conflicting interests and a desire to
cooperate try to reach a mutually acceptable agree-
ment on an object of negotiation [2]. The agents
explore solutions according to a predetermined pro-
tocol in order to find an acceptable agreement. Being
widely used in economic domains and with the rise of
e-commerce applications, the question of automating
negotiation has gained a lot of interest in the field of
artificial intelligence and multi-agent systems.

Many negotiation frameworks have been proposed
[12] and encompass different aspects: the set of par-
ticipants, the agent preferences and the number of
issues. One of the major issues in automated negoti-
ation is considering the time pressure to be well de-
fined over the negotiation, and materialized through
a deadline. However, some potential applications of
automated negotiation, typically in industrial con-
text, may require an varying time pressure. Factor-
ing is a good example: when a company sells goods or
services to another company, it produces an invoice
which may be paid after several weeks. This delay
of payment may have a negative impact on the com-
pany activity, as it may not have sufficient liquidity
to fulfill other contracts. Factoring is an interesting
answer to this issue. A funding company – called a
factor – accepts to fund the invoices of the supplier,
by paying them immediately less than their nominal
amount and assuming the delay of payment of the
principal. From the factor perspective, it can be seen
as a short term investment. This setting may include
issues of various kinds: continuous (discount rate),
numeric (nominal amount of invoices), and categor-
ical (prinicpal).In this application, time pressure is
not constant over the negotiation. For the factor,
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the time pressure depends both on the money it has
to invest and on the investment opportunities. For
the supplier, the negotiation may be suddenly inter-
rupted at some point if the payment of an invoice
makes it useless for the supplier.

In this paper, we introduce a loosely constrained
adaptive strategy for automated negotiation that can
negotiate with nonlinear preferences, over discrete
and continuous issues and without predefined time
pressure. We represent bargaining as an extensive
game with each proposal considered as a move in the
game [17, 19]. We state that our opponent is adap-
tive, which implies that negotiation history is impor-
tant. We therefore propose to combine Monte Carlo
Tree Search (MCTS) and opponent modeling. MCTS
has proved to be a very adaptable game heuristics, in
General Game Playing [9]. It has also proved efficient
for large branching factor games [5, 20].

2 Related works

In this section, we introduce the domains related to
our agent: automated negotiation and Monte Carlo
methods applied to games.

Automated negotiation To review automated
negotiation strategies, we rely on the “BOA” (Bid-
ding strategy, Opponent modeling, Acceptance strat-
egy) paradigm [1]:

Bidding strategies may depend on the history, i.e.
the concessions made by the opponent, a negotiation
deadline, the utility function of the agent, and the op-
ponent model. In particular, Tit-for-tat [8] only relies
on the opponent proposals. Nice Tit-For-Tat agent
[4] uses learning techniques in order to improve it.
The other methods rely on time pressure and cannot
be applied in our context.

Acceptance strategies can be divided into two main
categories [3]. The first category is called “myopic
strategies” as they only consider the last bid of the
opponent, the agent’s own last proposal or its bidding
strategy. The second category consists of “optimal
strategies” [3] and rely on the deadline.

Most of the opponent modeling techniques related
to automated negotiation have been reviewed by [2].

In our context, they can be used to model: the op-
ponent bidding strategy, its utility and the accep-
tance strategy. There are two main methods to model
adaptive bidding strategies which do not rely on
the deadline: neural networks and time series-based
techniques. Among time series techniques, the Gaus-
sian process regression is a stochastic technique which
has been used with success by [21]. The opponent
utility is generally modeled through either frequency
based techniques or Bayesian learning. Frequency
methods are relevant in the cases where the negotia-
tion domain only consists of discrete issues. Bayesian
Learning [14] is well suited for the continuous case
and can easily be extended to categorical domains.
The opponent acceptance strategy can be learned
in two ways, either by assuming that the opponent
has a myopic strategy or by using neural networks
[7]. The latter is computationally expensive though.

Monte Carlo Tree Search Monte Carlo meth-
ods are often used as heuristics for games. Kocsis
and Szepevsvári [15] propose a method to combine
the construction of a game tree with Monte Carlo
techniques. This method is called Monte Carlo Tree
Search (MCTS). It consists of 4 steps: selection ex-
plores the already built part of the tree, expansion
generates a new node, simulation plays a game until
a final state is reached and the utility of the agents is
computed and backpropagation propagated it over
all the selected nodes.

3 Our MCTS-based agent

Our agent follows the BOA paradigm. It consists of a
bidding strategy that implements MCTS and an op-
ponent modeling module divided into two submod-
ules: one for the opponent utility, the other for its
bidding strategy. The last module is the acceptance
strategy, it accepts the opponent proposal if it is bet-
ter than the bid generated by the bidding strategy.

Opponent modeling To model the opponent bid-
ding strategy, we use Gaussian Process Regression
[18, 21]. One of the capital aspects of this method is
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the choice of its kernel. In order to choose the best
one, we compared them using an automated negoti-
ation setting similar to the one of our experiments.
The table 1 shows the results of GPR for each of the
most common ones over 50 negotiation sessions. This
method can also be used on the categorical issues as
explained in chapter 3 of [18].

Bayesian learning [14] considers that an agent
makes concessions at roughly constant rate. It relies
on triangular functions. It first generates a prede-
termined number of hypotheses on the utility func-
tions and the estimate of their probability based on
received proposals. The estimated utility of the op-
ponent is the sum of these hypotheses weighted by
their probability. This method can be naturally ex-
tended to the categorical issues by using traditional
Bayesian inference.

A simulated agent accepts the proposal from its
opponent if its utility is better than the utility gen-
erated by its bidding strategy.

MCTS-based bidding strategy As explained in
introduction, negotiation can be considered as a 2
players extensive game [17, 19]. However, we must
adapt the heuristics traditionally used for games to
its peculiarities: Selection is based on progressive
widening [6]: a new node is expanded if nαp ≥ nc, with
np the number of simulations of the parent, nc its
number of children and α a parameter of the model.
If there is no expansion, the selected node i maxi-

mizes Wi = si
ni+1 +C×nα

√
ln(n)
ni+1 with n the number

of simulations of the tree, si the score of the node
i and C a parameter of the model. Expansion is
chosen randomly among possible bids. Simulation
is made according to the opponent models. Back-
propagation is made both on the agent score and
the opponent modeled score.

We use the agent knowledge on the game to prune
the less promising branches of the tree: i.e. all the
branches of the tree with lower utility than the best
proposal of the opponent (from our agent’s point of
view).

4 Results

Our agent is evaluated using the Genius [16] frame-
work against Tit-for-tat [8], Nice Tit-for-Tat and
RandomWalker [4] in the ANAC 2014 setting [10]
except that there is no deadline. Figure 1 displays
the utility of the agents when negotiating with each
other. The utility of the agents is displayed as an his-
togram. The results are averaged over 20 negotiation
sessions with each profile, with error bars represent-
ing the standard deviation from the average.

Our agent is able to beat the Random Walker in
every situation and get a significantly better result
whatever the profile. Our agent gets a lower utility
with Tit-for-Tat but is still able to beat it signifi-
cantly. The negotiations with Nice Tit-for-Tat never
end: the agents keep negotiating forever. We pro-
pose instead an indirect evaluation by confronting
Nice Tit-for-Tat with Random Walker, in the same
setting. The performances of both agents are equal,
considering the standard deviation of the series.

5 Conclusion

In this paper, we presented a negotiating agent
able to negotiate in a context where agents do not
have predetermined deadline, with both continuous
and categorical issues. The experimental results are
promising: against all the agents that can negoti-
ate in this domain, our agent outperformed Random
Walker and Tit-for-Tat and draws with Nice Tit-for-
Tat. Among the perspectives of this work, we pro-
pose to adapt it to the multilateral context and try
improvements as AMAF and RAVE [13, 11]
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