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We present a new analysis of the inferred growth rate of cosmic structure measured around voids, using
the LOWZ and the CMASS samples in the 12th data release (DR12) of SDSS. Using a simple multipole
analysis we recover a value consistent with ΛCDM for the inferred linear growth rate normalized by the
linear bias: the β parameter. We find β ¼ 0.33� 0.11 for the LOWZ sample and β ¼ 0.36� 0.05 for the
CMASS sample. This work demonstrates that we can expect redshift-space distortions around voids to
provide unbiased and accurate constraints on the growth rate, complementary to galaxy clustering, using
simple linear modeling.
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I. INTRODUCTION

The growth rate of cosmic structure f tells us how fast
density fluctuations Δ grow with respect to the scale factor
of the Universe a:

f ≡ d lnΔ
d ln a

; ð1Þ

where ΔðrÞ≡ 3=r3
R
r
0 δDMðr0Þr02dr0 and δDM is the

underlying dark matter density contrast. Its measurement
as a function of time and scale is a key cosmological
probe, very sensitive to the nature of gravity (e.g., [1,2]).
To infer the growth rate, we can measure redshift-
space distortions (RSD) in the galaxy clustering signal.
These distortions are due to the peculiar motions of
galaxies, which on large scales have a coherent motion
sourced by the gravitational potential of cosmic struc-
tures. This gravitational potential is itself proportional to
the growth rate, in the linear regime. For standard
general relativity and isotropic cosmologies, the linear
growth rate does not depend on the comoving spatial
scale [3] and can be approximated by f ∼ΩmðzÞγ, where
Ωm is the matter density parameter at redshift z, and γ is
a constant. For a ΛCDM Universe γ ∼ 0.55 [1,2],
independently of the environment. Constraints on the
linear growth rate made with galaxy-galaxy correlation
function measurements in redshift space are well known,
e.g., [4–9]. These measurements have shown a general
consistency with the ΛCDM cosmological model, up to
a 2.5% precision, albeit in some cases showing tension
with the predictions of the latest cosmic microwave
background measurements [10].

On the other hand, it was only recently that the growth
rate has been inferred using the RSD pattern around cosmic
voids. There are at least two reasons to perform this
consistency test of the linear growth rate. First, certain
models of modified gravity, such as fðRÞ [11], rely on the
chameleon screening mechanism [12] which suppresses the
fifth force in high density regions, while in underdense
regions the total gravitational force is enhanced (due to the
presence of the fifth force), resulting in specific imprints on
void abundance and density profiles around underdense
regions (e.g., [13–18]). These theories would naturally lead
to an environmentally dependent growth rate. In fact, in the
nonlinear regime, the linear growth rate is also sensitive to
the underlying density, as shown in [19]. For very large
underdense regions, the effective cosmological parameters
are expected to be different to the globally averaged
parameters, but the quantification of this critical scale
can also serve as an interesting test for departures from
Einstein gravity. Second, the formation and evolution of
cosmic voids is nonlinear but reduced compared to the
dynamics of dark matter halos where overdense regions
reach ΔðrÞ ≫ 1. This is why we can expect that quasilinear
or linear models can describe the RSD around voids
relatively well, although recent works have shown the
limitation of this assumption [19–22]. The first studies that
have tested the growth rate measurements using RSD
around cosmic voids in galaxy surveys, have used a
Gaussian streaming model (GSM) [3,21,23–25] to model
the 2D galaxy-void correlation function in redshift space.
The analyses that first constrain the growth rate around

voids from galaxy surveys are [26], where the authors used
the CMASS sample of the Sloan Digital Sky Survey
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(SDSS), [27], where we used the low redshift 6-degree
Field Galaxy Survey (6dFGS) [28] and [29], where the
authors used the high redshift VIPERS survey datasets.
While these analyses have shown an overall consistency
with the ΛCDM expectation of the linear growth rate, the
GSM does assume a knowledge of the real space density
profiles around voids, which may induce a bias in the
analysis.1 In [30] the authors took advantage of the
approximated linear behavior of cosmic void evolution
to perform a multipole analysis of the RSD around voids
using both the CMASS and the LOWZ galaxy samples of
SDSS DR12. Such a multipole analysis allows to derive
the growth rate purely from the data measurement, assum-
ing a linear relationship between the monopole and the
quadrupole (see also the recent work of [31] for a
complementary approach). With this assumption they have
derived a linear growth rate consistent with ΛCDM in the
CMASS sample, but at a ∼2–3σ deviation from it in the
LOWZ sample.
In this work we perform an independent analysis from

[30] using a different void finder and a different treatment of
the errors which enter into the likelihood analysis. Using the
500mocks from the publicly availablemock galaxy catalogs
produced with the quick particle mesh (QPM) method [32],
we test the validity of the multipole decomposition and use
them to compute the covariance matrix that enters into the
likelihood. We will show that in our case, we observe no
deviation from ΛCDM when we disregard the multipole
measurements at small scales (<10h−1 Mpc).
We should also point out that in this work, similar to

[27,29,30,33], we will neglect the Alcock-Paczynski effect
[34]. This effect can be seen as geometrical distortions in
the 2D void profiles that arise when transforming galaxy
coordinates into comoving distances, using an underlying
cosmological model that is incorrect. As it was also
discussed in [35] the dominant contribution to the void-
galaxy quadrupole in redshift space comes from RSD rather
than the Alcock-Paczynski effect. In what follows, we will
indeed assume a ΛCDM cosmology to measure the galaxy-
void cross-correlation function. Hence we can see our final
constraints on β as a consistency test for the ΛCDM
cosmology. Including the Alcock-Paczynski effect is
beyond the scope of this work but we hope to take this
effect into account in a future analysis.
This paper is organized as follows: in Sec. II we describe

the data and the mocks we use to perform our analysis, in
Sec. III we explain how we obtain our void catalogs, in
Sec. IV we introduce the model we use to derive the linear
growth rate, in Secs. V and VI we test our approach using
the QPM mock catalogs and in the CMASS and LOWZ
dataset. In Sec. VII we present our conclusion.

II. DATA AND MOCK CATALOGS

We use the publicly available data of SDSS-III [36] data
release 12 (DR12) which contains two datasets of galaxy
catalogs from the Baryon Oscillation Spectroscopic Survey
(BOSS):2 the LOWZ and the CMASS samples. Both map
the southern and the northern hemispheres. The LOWZ
north/south sample contains ∼248=114 × 103 galaxies in
redshift range 0.15 < z < 0.43 and amedian z̄ ¼ 0.32while
the CMASS north/south sample contains ∼569=208 × 103

galaxies in redshift range 0.43 < z < 0.70 with z̄ ¼ 0.54.
To identify the voids in the galaxy samples and to

compute the multipoles, we use the two random catalogs
generated by the BOSS collaboration (for each sample e.g.,
LOWZ north/south and CMASS north/south), featuring the
redshift distribution. Each of these catalogs is referred to as
RAN and RAN2. These random catalogs are also publicly
available and contain about 50 times more points than the
observed galaxies.
To compute the covariance matrix and to test our analysis,

we use the publicly available SDSS-III DR12 mocks,
generated with the quick particle mesh (QPM) algorithm
[32]. They were generated assuming a flat ΛCDM cosmol-
ogy ðΩΛ ¼ 0.71;Ωm ¼ 0.29;Ωb ¼ 0.0458; σ8 ¼ 0.80; h ¼
0.7; ns ¼ 0.97Þ [37]. We note that in these mocks, the linear
galaxy bias is b ¼ 2.2 while in both CMASS and LOWZ it
was estimated to be b ¼ 1.85 [37].

III. VOID CATALOG

To identify the cosmic voids in both the galaxy dataset
and the QPM mocks, we use the void finder developed by
[13], which was used in the 6dF Galaxy Survey analysis
[27] to infer the growth rate. This void finder allows us
flexibility in identifying the voids based on their density
profiles δðrÞ [13]. It uses a sample of RAN2 to identify
candidate voids with an effective radius rv that satisfies the
following density constraints: δðr0Þ < −0.9; δðr0 þ drÞ <
−0.8; δðr0 þ 2drÞ < −0.3; δðrvÞ > 0.15; δðrv þ drÞ >
δðrvÞ; δðrv þ drÞ < 0.4, where the binning is given in
steps of dr ¼ 3h−1 Mpc, r0 ¼ 1.5h−1 Mpc and δðrÞ is
approximated by counting the number of galaxies around
each random position we select from RAN2 (DT

vDg),
divided by the number of randoms we compute from the
RAN catalogs (RR) such that δðrÞ≡DT

vDg=RR − 1. The T

index is to highlight that it is a test or candidate position for
the voids and it is only marked as a void if the previous
density conditions are satisfied. The first three conditions
ensure that the center of the voids is underdense while the
conditions around r ¼ rv ensure that the selected voids
have a ridge. We then perform two loops over these void
candidates that satisfy the density conditions: the first loop
to smooth the individual void profiles by requiring that

1However, one can marginalize over the void profiles fitted
parameters [26]. 2http://www.sdss3.org/science/boss_publications.php.
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δðr0 þ 3dr < r < rv=2Þ < −0.3, the second to remove
overlapping voids, keeping the largest.
We use 5 to 8 times more values than the galaxies/mock

galaxies from the RAN2 catalog to identify the potential
void candidates which is a good compromise between
numerical computing power and having a convergence in
the number of identified voids. Indeed, given that we
remove overlapping voids, increasing the number of
candidates can increase the number of identified voids
up to a limited number. Keeping the same criteria for the
data samples and the mocks, we end up with a selection of
voids distributed in redshift as displayed in Fig. 1.
We repeat the same procedure using 500 QPMmocks for

LOWZ North/South and CMASS North/South. Finally, we
introduce a cut in the minimum size of the voids for the
RSD analysis rmin

v ¼ 25h−1 Mpc. The motivation for this
cut is that (i) small voids identified with galaxy tracers do
not necessarily correspond to underdensities in the matter
density field. They also show a stronger deviation from
linear evolution, and the galaxy bias around small voids
can be amplified compared to the large-scale average bias
[38–40]. (ii) We found that the overall void size distribution
matches the mean value of the QPM mock distribution
when r > rmin

v . Although we are not interested in testing
for void abundance in this work, having a mismatch in the
void size distribution could introduce an offset between
the mean void density profiles measured in the data and in
the mocks, which could possibly introduce a bias in the
derivation of our cosmological parameters. After applying
this threshold, we found a total of 5986 voids identified
in the LOWZ sample and 6373 in the CMASS sample.

The normalized number of voids as a function of radius is
displayed in Fig. 2. The blue/red histograms correspond to
the LOWZ/CMASS samples while the blue/red dashed
curves correspond to five randomly selected samples from
LOWZ/CMASS mocks, respectively. The mean void radius
in the LOWZ/CMASS samples is, respectively, rv ¼ 38.5
and 38h−1 Mpc.
Finally we want to point out that, similar to our void

finder, other void finders such as ZOBOV [41], have
different criteria to select the voids depending on the
“core-density threshold” (e.g., see discussion in Sec. III. 1
in [15]). A different choice of the parameters that identify
the voids can result in different void catalogs which could
have very different void density profiles. Therefore if one
wants to change the void definition, a prior analysis on
mock catalogs should ensure the pertinence of the void
catalog by finding unbiased results of the cosmological
parameters with respect to the fiducial cosmology of the
mocks.

IV. METHODOLOGY

A. Multipole decomposition

The peculiar velocities of galaxies, v, which are due to
the local gravitational potential result, on small scales, in
random motions of galaxies within virialized halos. In
principle this effect is not present within voids, which are
generally empty of galaxies in their center. On large scales
however, the coherent bulk flow pointing outwards from
centers of voids is responsible for an overall coherent

FIG. 1. Number of voids (blue histogram) and galaxies (red
squares) in the LOWZ/CMASS samples, as a function of redshift
normalized by the total number of voids/galaxies in each sample.
Both overlap with one another as expected from the void finder.

FIG. 2. Normalized number of voids as a function of the void
radius in the LOWZ/CMASS samples (histograms) and in five
randomly selected mocks (dashed curves). These probability
density functions (PDFs) are qualitatively similar as a result of the
void finder criteria, which remain unchanged in both samples.
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distortion known as the “Kaiser effect” [42]. It is this
coherent outflow that carries information of the linear
growth rate. Indeed, the galaxy peculiar velocities sourced
by the underlying mass distribution of a void can be
expressed in the linear regime as ([3,21,24,30])

vðrÞ ¼ −1
3

fðzÞHðzÞ
1þ z

rΔðrÞ; ð2Þ

where fðzÞ is the linear growth rate, HðzÞ is the Hubble
rate, r≡ x −X is the separation between the comoving
coordinate of the void center X, and a galaxy at position x.
We also assume that on average the void density profiles are
spherical and can be described by the density contrast ΔðrÞ
where r≡ jrj. To relate the averaged galaxy density
contract, ξ̄ðrÞ, to the matter density contrast, we generally
assume a linear bias b such that ξ̄ðrÞ ¼ bΔðrÞ and

ξ̄ðrÞ≡ 3

r3

Z
r

0

ξðyÞy2dy; ð3Þ

where ξðrÞ is equivalent to the galaxy density contrast at a
scale r (i.e., the galaxy-void cross-correlation function).
The peculiar velocity of a galaxy gives a contribution to

the redshift space separation between the galaxy and the
void center, and in the limit where jrj ≪ X,

s ¼ rþ ð1þ zÞX̂:v
HðzÞ X̂; ð4Þ

where X̂ is the unitary vector along the line of sight to our
void center.
Performing a Jacobian transformation between the coor-

dinate s and r, at linear order, the redshift-space 2D
correlation function can be described by ([21,30,42,43])

ξsðr; μÞ ¼ ξ0ðrÞ þ
3μ2 − 1

2
ξ2ðrÞ; ð5Þ

where μ≡ cosðθÞ ¼ X̂:r̂ is the cosine of the angle between
the line-of-sight direction and the separation vector while
ξ0, ξ2 are the monopole and the quadrupole respectively,
computed using the Legendre polynomials PlðμÞ via

ξlðrÞ ¼
Z

1

0

ξsðr; μÞð1þ 2lÞPlðμÞdμ: ð6Þ

In the linear regime [42],

ξ0ðrÞ ¼
�
1þ β

3

�
ξðrÞ

ξ2ðrÞ ¼
2β

3
ðξðrÞ − ξ̄ðrÞÞ;

where β ¼ f=b and ξðrÞ is the real-space galaxy-void
correlation function. These expressions lead to a simple
relationship between monopole and quadrupole:

ξ0ðrÞ − ξ̄0ðrÞ − ξ2ðrÞ
3þ β

2β
¼ 0: ð7Þ

This is the key equation that the authors of [30] have
used to probe β solely by measuring the monopole and the
quadrupole. We will also use this equation in what follows,
but we will introduce a cut at the scale rcut below which this
approximation is no longer valid.

B. Measurement of the galaxy-void
correlation function

To perform the multipole decomposition we start by
measuring the void-tracer cross-correlation functions using
the Landy-Szalay estimator:

ξsvgðr; μÞ ¼
NrgNrv

RvRg

�
DvDg

NgNv
−

DgRv

NgNrv
−

DvRg

NvNrg

�
þ 1; ð8Þ

where DvDg is the number of data void-galaxy pairs, RvRg
the random void-galaxy pairs and Dg=vRg=v the number of
galaxy/void data-random pairs, in bins at separation r and
μ. The total number of galaxies, voids, galaxy randoms and
void randoms are Ng, Nv, Nrg and Nrv, respectively. In all
cases we use a sample of the first random catalogs provided
by the BOSS collaboration, having 10 times the number of
galaxies/voids than our data samples.
We measure Eq. (8) in bins of dμ ¼ 0.045 and

dr ¼ 4h−1 Mpc. Then we perform the multipole decom-
position using the Riemann integral.

C. The likelihood analysis

To infer the linear growth rate from the measurement of
the monopole and quadrupole, we solve for the value of β
which satisfies Eq. (7), performing a Gaussian likelihood

Lðξ0;ξ2jβÞ¼
1

ð2πÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detC

p exp

�
−
1

2

XN
i;j¼lmin

εiC−1
ij εj

�
; ð9Þ

where the sum is in radial bins ri ¼ ½rcut; rmax�, εi ≡
ξ0ðriÞ − ξ̄0ðriÞ − ξ2ðriÞ 3þβ

2β is the left-hand side of
Eq. (7) and C is the covariance matrix Cij ¼ hεiεji which
depends explicitly on β. Hence the normalization of the
likelihood needs to be taken into account. Unlike the
analysis performed in [30], which uses a jackknife method
to estimate the covariance matrix, in what follows we
compute the covariance matrix using 500 QPM mocks.
In Fig. 3 we show the correlation matrix (covariance

matrix of the residuals after normalization by its diagonal)
which can be compared to Fig. 4 in [30]. The correlations
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between our bins follow the same qualitative trend as [30]
for our voids of size rv ∼ 38h−1 Mpc: in the inner part of
the voids, r < rv, the bins seem less correlated while for
r > rv we see some off diagonal correlations. We also note
that in order to compute the galaxy-void correlation
function we employ the Landy-Szalay estimator, while
[30] uses the approximation ξlðrÞ ≃ hDvDgi − hDvRgi.

V. ANALYSIS

We start by using Eq. (8) to measure the galaxy-void
correlation function in the data and the mocks, and then we
apply Eq. (6) to compute the monopole (l ¼ 0), quadrupole
(l ¼ 2) and hexadecapole (l ¼ 4).The resulting multipoles
are shown in Fig. 4, where the grey curves correspond to
the mock measurements (1000 in total for CMASS and
LOWZ) and the blue curves to the data. First we observe

that the multipoles computed from the data and the mocks
are qualitatively in good agreement with one another.
Second we observe that for r=rv ≤ 0.3, which corresponds
to a radius below r ∼ 10h−1 Mpc, the slope of the monop-
ole changes, and ξ0 → −1 while jξ4j > 0. These behaviors
could indicate a breakdown of the linear assumptions and/
or ill-defined regions due to the lack of particle counts at the
core of the voids. In any case, these low scales cannot be
used within our current linear model hypothesis. Hence in
what follows we define a cutoff scale rcut below which we
disregard our measurements when performing the like-
lihood analysis.
Finally, we also show the measurement of the 2D galaxy-

void correlation function in both LOWZ/CMASS samples
in Fig. 5, which we have measured parallel (π) and

FIG. 3. Correlation matrix for the residuals [left-hand side of
Eq. (7)], in the CMASS (top) and LOWZ (bottom) mocks using
the best fit values of β we obtained from the data (see Sec. VI).

FIG. 4. Multipole measurements in the mocks (grey curves) and
in the data (blue curves) we obtained from Eq. (6). The data
multipoles are qualitatively in good agreement with the ones we
obtain in the mocks.
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perpendicular (σ) to the line of sight, using a binning of
4h−1 Mpc. This is just to illustrate the asymmetry due to
the peculiar velocities of galaxies that have a coherent
outflow due to the gravitational potential of the void. This
measurement could be used to extract the growth rate using
a quasilinear modeling (e.g., Gaussian streaming model), as
it was done in [26,27,29]. However it would require
assumptions on the real space density profiles around
the voids, which we know are sensitive to the underlying
cosmology and to the void finder algorithm. Hence we do
not explore further these 2D measurements.

VI. RESULTS

In what follows, we set rcut ¼ 10h−1 Mpc and we
use our measurement in bins of dr ¼ 4h−1 Mpc up to
rmax ¼ 78h−1 Mpc. We have verified that the results we

present in this section remain unchanged via the trans-
formation rcut → rcut � dr or rmax → rmax � dr. We also
tested that the inferred value of β is not sensitive to the
fiducial size of our voids rv nor to the hemisphere (splitting
voids in large vs small, separating north vs south datasets).
Thus for this analysis, we combined all the void sizes to
obtain better statistical errors.
To obtain the best fit value for β, we use a large prior

of β ¼ ½−0.1; 1.2� in steps of dβ ¼ 0.0024. We have
verified that our results remain unchanged by increasing
the prior range.

A. Mocks

We start our analysis by inferring the value of β on each
individual mock catalog, using the likelihood computation
given in Eq. (9) in order to evaluate the uncertainties on the
β measurement. In Fig. 6 we show the histogram of the best
fit values we have found in the CMASS, LOWZ mocks as
well as the mean values and the standard deviation: β̄ ¼
0.36� 0.06 for the CMASS mocks and β̄ ¼ 0.21� 0.05
for the LOWZ mocks. It is not trivial to compare these
values to the mock expectations. Indeed, given the fiducial
cosmology of the QPM mocks [32] we can easily compute
the expected value for the growth rate but the linear bias is
not explicitly given at the mean redshift of the mocks. At
z ¼ 0.5 the linear bias is expected to be b ¼ 2.2 for the
QPM mocks [36]. In such a case, we can extrapolate the
value βðz ¼ 0.5Þ ¼ 0.34. This value can be compared to

FIG. 5. The mean measurement of the 2D void-galaxy corre-
lation function in CMASS (upper panel) and in LOWZ sample
(lower panel). The dotted lines show isocontours of the data. Both
measurements show apparent asymmetries that are characteristics
of the coherent outflow of galaxies, sourced by the gravitational
potential of the voids.

FIG. 6. Histogram of the inferred values of β using the galaxy-
void multipole analysis in the QPM mocks. The solid lines
correspond to the mean value β̄ ¼ 0.36, 0.21 and the dashed lines
to the 1-σ deviation 0.06,0.05 for the CMASS, LOWZ samples,
respectively.
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the CMASS mocks because in these mocks the redshift is
z ∼ 0.54. If we neglect the redshift dependence of the
linear bias and keep b ¼ 2.2 but use the growth rate at
the redshift of the LOWZmocks then we can expect a value
of β ¼ 0.30. Both theoretical values are within 2-σ
deviation from the mean of β we obtain. However, the
errors on the mock mean give us β̄ ¼ 0.36� 0.003 and
β̄ ¼ 0.21� 0.002. Hence we can argue that systematic
errors are about 2% and 9% in the CMASS and LOWZ
data. These differences are in agreement with the nonlinear
evolution of the underlying matter density field: at low
redshift, the linear model is more likely to have a higher
systematic error compared to earlier times. On the other
hand, we should make a few critical remarks:

(i) Galaxies around voids may be more biased com-
pared to the average galaxies in the full simulation,
in which case we can expect the fiducial value of β to
be lower than the one computed from b ¼ 2.2. We
note however that in [27] the values of the linear bias
we have inferred in mocks using the galaxy-void and
the galaxy-galaxy correlation functions were con-
sistent with one another. This must depend on the
fiducial void size and the characteristics of the void
profiles (e.g., amplitude at the void ridge).

(ii) We also point out the limitation of using QPM
mocks [32] to test for the validity of the growth rate
at low redshift. Indeed, unlike in full N-body
simulations, efficient algorithms such as [32] have
not yet fully investigated the validity of their
approach to reproduce the statistical description of
the underdense matter density field.

Keeping these remarks inmind,we should adopt themore
conservative approach: while 2% is below the statistical
errors, 9% is on the other hand higher. Hence a priori if we
trust the QPM mocks then we should add quadratic
systematic errors to the statistical errors when probing
the data. We follow this approach in the next section with
σsys ¼ 2%; 9% for the CMASS, LOWZ data, respectively.

B. Data

Following the same procedure but for the data sample
and adding up systematic errors in quadrature to the
statistical errors, we find a best fit β ¼ 0.33� 0.11 with
σstat ¼ 0.06 and β ¼ 0.36� 0.05 with σstat ¼ 0.05 for the
LOWZ and CMASS samples, respectively, with a reduced
χ2=d:o:f: of 22.6=16 ¼ 1.41 and 21.8=16 ¼ 1.36. The
probability Q that these χ2 values are due to chance are
0.1248 and 0.1497, respectively. The posterior distribution
is shown in Fig. 7. We note that our statistical errors on β
(σstat) are consistent with what we found using the standard
deviation of the best fit values from the mocks and that the
best fit values correspond to the mean value of the like-
lihood PDF.
Once again we can compare these results with the

expected values of β in the case of a ΛCDM cosmology

(see Sec. II for cosmological parameter values). With a
linear bias b ¼ 1.85 (as inferred in [37]), the theoretical
values for LOWZ/CMASS are β ¼ 0.37, 0.41 respectively.
These are the same reference values that [30] have used to
compare with their results. In Fig. 7 they correspond to the
long dashed lines. Unlike what the authors in [30] have
found, we obtain a 1-σ agreement with respect to ΛCDM,
both for the LOWZ and the CMASS samples. We also
show in Fig. 7 the fiducial values of β for b ¼ 2.2
(motivated by the discussion in Sec. VI A). The latter is
also consistent at 1-σ with our best fitting values (this is true
even without including systematics errors).

VII. CONCLUSION

In this work we have probed the parameter β ¼ f=b,
using the public galaxy catalogs released by the BOSS
collaboration and an RSD multipole analysis of the galaxy-
void cross-correlation function. The model we used to infer
the growth rate is derived from linear theory and was
initially used in [30] to perform a similar analysis.
However, in this work we find that our derived values
for the growth rate are consistent with a ΛCDM cosmology
within 1-σ in the data. Nevertheless, we introduce addi-
tional systematic errors that contribute significantly only
for the LOWZ analysis. This errors is motivated by the
analysis we realized upon the QPM mocks, showing a
systematic error of 9% compared to the expected value of β

FIG. 7. Posterior distribution for β in the CMASS and LOWZ
data. The long-dashed line corresponds to the expected ΛCDM
cosmology with a linear bias b ¼ 1.85 as it was inferred in [37]
while the dotted line corresponds to the ΛCDM cosmology
with b ¼ 2.2 (i.e., the value of the linear bias in the QPM
mocks at z ¼ 0.5).
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on the mock mean. Whether this systematic error is a result
of the inappropriate linear multipole decomposition at low
redshift or a failure of the QPM mocks to accurately match
the nonlinear evolution of the underline matter density field
is an open question which will require further investigation
using full N-body simulations. In this work we adopt the
conservative approach and enhance our error measurement
by adding up the systematic and statistical errors in
quadrature. Overall, the main differences in this analysis
compared to the one presented in [30] are

(i) Our void catalogs are completely independent and
based on different criteria (density criteria [13] vs
watershed transform [44]). While the peak of the
void size distribution is relatively similar in both
studies, we have better statistics on the number of
voids in the LOWZ sample. As a result, our
statistical errors on β are similar in both the LOWZ
Δβ ¼ 0.06 and CMASS sample Δβ ¼ 0.05.

(ii) Motivated by our analysis with the mocks, we
introduce a cut in scale to disregard our measurement
at the center of the voids where jδj → −1, which
corresponds to the nonlinear regime where Eq. (7)
does not hold in principle, as we discuss in Sec. V.

(iii) The treatment of the covariance matrix is different:
in this work we used the mocks to compute the
covariance while in [30] they used a jackknife
method. We also provide in this work a complete
study of the inferred values of β within the mocks in
order to check the validity of our model (Sec. VI A).

Overall, this work has provided some interesting results:
(i) Using mock catalogs, we have shown that β can be

extracted using no theoretical modeling of the void-
galaxy correlation function in real space. This is
particularly interesting to avoid assuming a fiducial
cosmology in order to predict the void density

profiles, which could lead to potential bias of the
growth rate value (the void density profiles carry the
imprints of the cosmology e.g., [14,45–48]), or to
avoid parametrizing the real space density profile
and/or marginalizing over the profile parameters,
which would introduce potentially weaker con-
straints on the growth rate.

(ii) The values of β that we obtain in the LOWZ/
CMASS datasets are consistent with the value
probed in [37]. However in [37] the scale range
used to derive β is ½40 − 180�h−1 Mpc, while we
used the information contained within ranges
½10 − 78�h−1 Mpc. This illustrates again the com-
plementarity of using cosmic voids to perform
cosmological analysis: we have access to additional
information, and the systematic errors are different.

Finally we can emphasize the fact that the value of β we
obtained in this analysis is in good agreement with the
ΛCDM linear prediction. It would be interesting to probe
the information contained in smaller scales (e.g., below
10h−1 Mpc) where the nonlinearities can carry more
information. For instance, in [19] we have shown how
the growth rate of cosmic structure can vary considerably
when the underlying matter density jΔj ≥ 1. We hope to
perform such an analysis in future work.

ACKNOWLEDGMENTS

I am very grateful to Nico Hamaus and Cai Yanchuan for
their useful discussions and for carefully proofreading this
manuscript, giving me pertinent feedback. The research
leading to these results has received funding from the
European Research Council under the European
Community Seventh Framework Programme (FP7/2007-
2013 Grant Agreement No. 279954) RC-StG EDECS.

[1] D. Huterer et al., Growth of cosmic structure: Probing
dark energy beyond expansion, Astropart. Phys. 63, 23
(2015).

[2] E. V. Linder, Cosmic growth history and expansion history,
Phys. Rev. D 72, 043529 (2005).

[3] P. J. E. Peebles, Principles of Physical Cosmology (Prince-
ton University Press, Princeton, 1993).

[4] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, G. B. Poole, L. Campbell, Q. Parker, W. Saunders,
and F. Watson, The 6dF galaxy survey: z ≈ 0 measurements
of the growth rate and σ8, Mon. Not. R. Astron. Soc. 423,
3430 (2012).

[5] C. Blake et al., The WiggleZ dark energy survey: Joint
measurements of the expansion and growth history at z < 1,
Mon. Not. R. Astron. Soc. 425, 405 (2012).

[6] S. de la Torre et al., The VIMOS public extragalactic redshift
survey (VIPERS). Galaxy clustering and redshift-space
distortions at z ∼ 0.8 in the first data release, Astron.
Astrophys. 557, A54 (2013).

[7] J. A. Peacock, A measurement of the cosmological mass
density from clustering in the 2dF galaxy redshift survey,
Nature (London) 410, 169 (2001).

[8] B. A. Reid et al., The clustering of galaxies in the SDSS-III
baryon oscillation spectroscopic survey: Measurements of
the growth of structure and expansion rate at z ¼ 0.57 from
anisotropic clustering, Mon. Not. R. Astron. Soc. 426, 2719
(2012).

[9] M. Tegmark et al., Cosmological constraints from the
SDSS luminous red galaxies, Phys. Rev. D 74, 123507
(2006).

I. ACHITOUV PHYS. REV. D 100, 123513 (2019)

123513-8

https://doi.org/10.1016/j.astropartphys.2014.07.004
https://doi.org/10.1016/j.astropartphys.2014.07.004
https://doi.org/10.1103/PhysRevD.72.043529
https://doi.org/10.1111/j.1365-2966.2012.21136.x
https://doi.org/10.1111/j.1365-2966.2012.21136.x
https://doi.org/10.1111/j.1365-2966.2012.21473.x
https://doi.org/10.1051/0004-6361/201321463
https://doi.org/10.1051/0004-6361/201321463
https://doi.org/10.1038/35065528
https://doi.org/10.1111/j.1365-2966.2012.21779.x
https://doi.org/10.1111/j.1365-2966.2012.21779.x
https://doi.org/10.1103/PhysRevD.74.123507
https://doi.org/10.1103/PhysRevD.74.123507


[10] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[11] W. Hu and I. Sawicki, Models of f(R) cosmic acceleration
that evade solar system tests, Phys. Rev. D 76, 064004
(2007).

[12] J. Khoury and A. Weltman, Chameleon cosmology, Phys.
Rev. D 69, 044026 (2004).

[13] I. Achitouv, Testing the imprint of nonstandard cosmologies
on void profiles using Monte Carlo random walks, Phys.
Rev. D 94, 103524 (2016).

[14] I. Achitouv, M. Baldi, E. Puchwein, and J. Weller, Imprint
of f (R) gravity on nonlinear structure formation, Phys. Rev.
D 93, 103522 (2016).

[15] I. Achitouv, M. Neyrinck, and A. Paranjape, Testing
spherical evolution for modelling void abundances, Mon.
Not. R. Astron. Soc. 451, 3964 (2015).

[16] Y.-C. Cai, N. Padilla, and B. Li, Testing gravity using
cosmic voids, Mon. Not. R. Astron. Soc. 451, 1036 (2015).

[17] J. Clampitt, Y.-C. Cai, and B. Li, Voids in modified gravity:
Excursion set predictions, Mon. Not. R. Astron. Soc. 431,
749 (2013).

[18] P. Zivick, P. M. Sutter, B. D. Wandelt, B. Li, and T. Y. Lam,
Using cosmic voids to distinguish f(R) gravity in future
galaxy surveys, Mon. Not. R. Astron. Soc. 451, 4215
(2015).

[19] I. Achitouv and Y.-C. Cai, Modeling the environmental
dependence of the growth rate of cosmic structure, Phys.
Rev. D 98, 103502 (2018).

[20] I. Achitouv, Improved model of redshift-space distortions
around voids: Application to quintessence dark energy,
Phys. Rev. D 96, 083506 (2017).

[21] Y.-C. Cai, A. Taylor, J. A. Peacock, and N. Padilla, Redshift-
space distortions around voids, Mon. Not. R. Astron. Soc.
462, 2465 (2016).

[22] S. Nadathur and W. J. Percival, An accurate linear model for
redshift space distortions in the void-galaxy correlation
function, Mon. Not. R. Astron. Soc. 483, 3472 (2004).

[23] K. B. Fisher, On the validity of the streaming model for the
redshift-space correlation function in the linear regime,
Astrophys. J. 448, 494 (1995).

[24] N. Hamaus, P. M. Sutter, G. Lavaux, and B. D. Wandelt,
Probing cosmology and gravity with redshift-space distor-
tions around voids, J. Cosmol. Astropart. Phys. 11 (2015)
036.

[25] M. Kopp, C. Uhlemann, and I. Achitouv, Choose to smooth:
Gaussian streaming with the truncated Zel’dovich approxi-
mation, Phys. Rev. D 94, 123522 (2016).

[26] N. Hamaus, A. Pisani, P. M. Sutter, G. Lavaux, S. Escoffier,
B. D. Wandelt, and J. Weller, Constraints on Cosmology and
Gravity from the Dynamics of Voids, Phys. Rev. Lett. 117,
091302 (2016).

[27] I. Achitouv, C. Blake, P. Carter, J. Koda, and F. Beutler,
Consistency of the growth rate in different environments
with the 6-degree field galaxy survey: Measurement of the
void-galaxy and galaxy-galaxy correlation functions, Phys.
Rev. D 95, 083502 (2017).

[28] D. H. Jones et al., The 6dF galaxy survey: Samples,
observational techniques and the first data release, Mon.
Not. R. Astron. Soc. 355, 747 (2004).

[29] A. J. Hawken et al., The VIMOS public extragalactic
redshift survey: Measuring the growth rate of structure
around cosmic voids, Astron. Astrophys. 607, A54 (2017).

[30] N. Hamaus, M.-C. Cousinou, A. Pisani, M. Aubert, S.
Escoffier, and J. Weller, Multipole analysis of redshift-space
distortions around cosmic voids, J. High Energy Phys. 07
(2017) 014

[31] C. M. Correa, D. J. Paz, N. D. Padilla, A. N. Ruiz, R. E.
Angulo, and A. G. Sánchez, Non-fiducial cosmological test
from geometrical and dynamical distortions around voids,
Mon. Not. R. Astron. Soc. 485, 5761 (2019).

[32] M. White, J. L. Tinker, and C. K. McBride, Mock galaxy
catalogues using the quick particle mesh method, Mon. Not.
R. Astron. Soc. 437, 2594 (2014).

[33] A. J. Hawken, M. Aubert, A. Pisani, M.-C. Cousinou, S.
Escoffier, S. Nadathur, G. Rossi, and D. P. Schneider,
Constraints on the growth of structure around cosmic voids
in eBOSS DR14, arXiv:1909.04394.

[34] C. Alcock and B. Paczynski, An evolution free test for non-
zero cosmological constant, Nature (London) 281, 358
(1979).

[35] S. Nadathur, P. M. Carter, W. J. Percival, H. A. Winther,
and J. E. Bautista, Beyond BAO: Improving cosmological
constraints from BOSS data with measurement of the
void-galaxy cross-correlation, Phys. Rev. D 100, 023504
(2019).

[36] S. Alam et al., The clustering of galaxies in the completed
SDSS-III baryon oscillation spectroscopic survey: Cosmo-
logical analysis of the DR12 galaxy sample, Mon. Not. R.
Astron. Soc. 470, 2617 (2017).

[37] C.-H. Chuang et al., The clustering of galaxies in the
completed SDSS-III Baryon Oscillation Spectroscopic
Survey: Single-probe measurements from DR12 galaxy
clustering—towards an accurate model, Mon. Not. R.
Astron. Soc. 471, 2370 (2017).

[38] G. Pollina, N. Hamaus, K. Dolag, J. Weller, M. Baldi, and L.
Moscardini, On the linearity of tracer bias around voids,
Mon. Not. R. Astron. Soc. 469, 787 (2017).

[39] G. Pollina et al., On the relative bias of void tracers in the
dark energy survey, Mon. Not. R. Astron. Soc. 487, 2836
(2019).

[40] P. M. Sutter, G. Lavaux, N. Hamaus, B. D. Wandelt,
D. H. Weinberg, and M. S. Warren, Sparse sampling,
galaxy bias, and voids, Mon. Not. R. Astron. Soc. 442,
462 (2014).

[41] M. C. Neyrinck, ZOBOV: A parameter-free void-finding
algorithm, Mon. Not. R. Astron. Soc. 386, 2101 (2008).

[42] N. Kaiser, Clustering in real space and in redshift space,
Mon. Not. R. Astron. Soc. 227, 1 (1987).

[43] A. J. S. Hamilton, Introduction and Preface, in The Evolv-
ing Universe, edited by D. Hamilton, Astrophysics and
Space Science Library, Vol. 231 (Springer, Dordrecht,
1998), pp. 1–10.

[44] P. M. Sutter, G. Lavaux, N. Hamaus, A. Pisani, B. D.
Wandelt, M. Warren, F. Villaescusa-Navarro, P. Zivick,
Q. Mao, and B. B. Thompson, VIDE: The void identifica-
tion and examination toolkit, Astron. Comput. 9, 1 (2015).

[45] E. Adermann, P. J. Elahi, G. F. Lewis, and C. Power, Cosmic
voids in evolving dark sector cosmologies: The high-redshift
universe, Mon. Not. R. Astron. Soc. 479, 4861 (2018).

NEW CONSTRAINTS ON THE LINEAR GROWTH RATE USING … PHYS. REV. D 100, 123513 (2019)

123513-9

https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.94.103524
https://doi.org/10.1103/PhysRevD.94.103524
https://doi.org/10.1103/PhysRevD.93.103522
https://doi.org/10.1103/PhysRevD.93.103522
https://doi.org/10.1093/mnras/stv1228
https://doi.org/10.1093/mnras/stv1228
https://doi.org/10.1093/mnras/stv777
https://doi.org/10.1093/mnras/stt219
https://doi.org/10.1093/mnras/stt219
https://doi.org/10.1093/mnras/stv1209
https://doi.org/10.1093/mnras/stv1209
https://doi.org/10.1103/PhysRevD.98.103502
https://doi.org/10.1103/PhysRevD.98.103502
https://doi.org/10.1103/PhysRevD.96.083506
https://doi.org/10.1093/mnras/stw1809
https://doi.org/10.1093/mnras/stw1809
https://doi.org/10.1093/mnras/sty3372
https://doi.org/10.1086/175980
https://doi.org/10.1088/1475-7516/2015/11/036
https://doi.org/10.1088/1475-7516/2015/11/036
https://doi.org/10.1103/PhysRevD.94.123522
https://doi.org/10.1103/PhysRevLett.117.091302
https://doi.org/10.1103/PhysRevLett.117.091302
https://doi.org/10.1103/PhysRevD.95.083502
https://doi.org/10.1103/PhysRevD.95.083502
https://doi.org/10.1111/j.1365-2966.2004.08353.x
https://doi.org/10.1111/j.1365-2966.2004.08353.x
https://doi.org/10.1051/0004-6361/201629678
https://doi.org/10.1088/1475-7516/2017/07/014
https://doi.org/10.1088/1475-7516/2017/07/014
https://doi.org/10.1093/mnras/stz821
https://doi.org/10.1093/mnras/stt2071
https://doi.org/10.1093/mnras/stt2071
https://arXiv.org/abs/1909.04394
https://doi.org/10.1038/281358a0
https://doi.org/10.1038/281358a0
https://doi.org/10.1103/PhysRevD.100.023504
https://doi.org/10.1103/PhysRevD.100.023504
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx1641
https://doi.org/10.1093/mnras/stx1641
https://doi.org/10.1093/mnras/stx785
https://doi.org/10.1093/mnras/stz1470
https://doi.org/10.1093/mnras/stz1470
https://doi.org/10.1093/mnras/stu893
https://doi.org/10.1093/mnras/stu893
https://doi.org/10.1111/j.1365-2966.2008.13180.x
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1016/j.ascom.2014.10.002
https://doi.org/10.1093/mnras/sty1824


[46] M. Cautun, E. Paillas, Y.-C. Cai, S. Bose, J. Armijo, B. Li,
and N. Padilla, The Santiago-Harvard-Edinburgh-
Durham void comparison—I. Shedding light on chameleon
gravity tests, Mon. Not. R. Astron. Soc. 476, 3195
(2018).

[47] C. D. Kreisch, A. Pisani, C. Carbone, J. Liu, A. J. Hawken,
E. Massara, D. N. Spergel, and B. D. Wandelt, Massive

neutrinos leave fingerprints on cosmic voids, Mon. Not. R.
Astron. Soc. 488, 4413 (2019).

[48] E. Paillas, M. Cautun, B. Li, Y.-C. Cai, N. Padilla, J. Armijo,
and S. Bose, The Santiago-Harvard-Edinburgh-Durham
void comparison II: Unveiling the Vainshtein screening
using weak lensing, Mon. Not. R. AstrHVon. Soc. 484,
1149 (2019).

I. ACHITOUV PHYS. REV. D 100, 123513 (2019)

123513-10

https://doi.org/10.1093/mnras/sty463
https://doi.org/10.1093/mnras/sty463
https://doi.org/10.1093/mnras/stz1944
https://doi.org/10.1093/mnras/stz1944
https://doi.org/10.1093/mnras/stz022
https://doi.org/10.1093/mnras/stz022

