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We develop a new technique for finding black hole solutions in modified gravity that have “stealth” hair,
i.e., hair of which the only gravitational effect is to tune the cosmological constant. We consider scalar-
tensor theories in which gravitational waves propagate at the speed of light and show that, subject to a
parametric constraint we specify, Einstein metrics can be painted with stealth hair, provided there exists a
family of geodesics always normal to spacelike surfaces. We also present a novel scalar-dressed rotating
black hole that has finite scalar field at both the black hole and cosmological event horizons.
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Black holes are a cornerstone in the study of General
Relativity (GR), be it theoretical or practical. From the
theoretical perspective, we have several exact solutions
corresponding to black holes in GR, with charges such as
mass, angular momentum, and even acceleration or Taub
Newman-Unti-Tamburino parameters. Of these, the most
important is the Kerr solution that describes the rotating
black hole; most astrophysical black holes are believed to be
rotating, and, indeed, the first detection of gravitational waves
was from the merger of two spinning Kerr black holes [1].

Another key objective in gravity is to explain our
Universe. One of the main challenges in cosmology is to
explain late time acceleration; is it due to dark energy,
modified gravity, or a very small cosmological constant A,
finely tuned by some as yet undiscovered mechanism? One
fruitful means of explaining the small late time acceleration
is to modify gravity in such a way as to induce (or tune) a
cosmological constant, but if gravity is modified, then it is
vital to understand how these modifications affect black
holes. If it is not possible to construct astrophysically
realistic black hole solutions, then the theory cannot be
considered viable.

In GR, the Kerr solution (see Refs. [2,3] for the inclusion
of a cosmological constant) describes the most general
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axisymmetric stationary rotating black hole; moreover, it is
hoped that the event horizon telescope [4] will soon to be
able to directly image the shadow of the black hole at the
center of our Galaxy, possibly setting constraints on
deviations from Kerr [5]. It is important therefore to
investigate whether spinning black hole solutions exist in
modified gravity and, if so, whether or not they carry
nontrivial extra degrees of freedom.

In this paper, we focus on a particular family of modified
scalar-tensor theories of gravity, developing a new technique
to find, for the first time, astrophysically realistic rotating
black hole solutions with a nontrivial scalar field, or stealth
hair. Our method is based on the Hamilton-Jacobi approach
to finding geodesics. In brief, we prove that a GR solution
can also be a solution to modified gravity if the scalar field is
the Hamilton-Jacobi potential for a geodesic congruence in
the spacetime in question. This allows for a wide range of
physically interesting stealth solutions; in particular, we
present examples of rotating black holes with stealth hair.

We focus for definiteness on shift-symmetric scalar-
tensor theories of gravity in the family of degenerate higher
order scalar-tensor (DHOST) theories [6-8], although the
technique can be generalized to other modifications of
gravity. In particular, we will focus on the subset of theories
where gravitational waves propagate at the speed of light,
cr = 1, in accord with the recent multimessenger neutron
star binary merger observation [9].

The most general shift-symmetric scalar-tensor theory of
gravity in which gravitational waves propagate with the
speed of light is

Published by the American Physical Society
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L = K(X)+ G(X)R + As¢"¢,,¢*Oep
+ A4¢ﬂ¢ﬂp¢py¢v + AS (¢M¢yv¢v)2’ (1)

where K, G, and A; are all functions of X = (9¢)?, and we
abbreviate 0,¢ as ¢, and V,V,¢$ as ¢,,. In order to
propagate a single scalar degree of freedom and avoid
Ostrogradski instabilities, A4 5 are constrained by

1
Ay = —As + G (48G% + 8A;GxX — A2X?),

A
As =35 (4Gx + AsX), 2)

where Gy = 0G/0X. These constraints reduce the number
of free functions to 3 (K, G, and A3), and for simplicity,
we do not consider the cubic Horndeski term in our
Lagrangian (1), though this can easily be reinstated if
required.

A family of exact static spherically symmetric solutions,
with the scalar field playing the role of dark energy, was
initially found in a class of shift-symmetric Horndeski
theories [10]. It has the nice feature of locally describing a
Schwarzschild geometry while asymptotically approaching
a self-tuned accelerating cosmology. Since these solutions
acquire a metric similar to that of GR while having a
nontrivial scalar field, they have been widely called stealth
solutions.' They can be mapped via disformal transforma-
tions to stealth solutions of DHOST theories with unitary
speed of gravitational waves [16] and are free of ghost and
gradient instabilities [17]. For spherically symmetric stealth
solutions in DHOST theories, see Refs. [18-20].

Known stealth solutions are spherically symmetric and
all feature the same characteristic: a constant kinetic term
for the scalar field that does not deform an underlying
Einstein geometry. We suspect that it is this feature of a
constant magnitude of scalar gradient that allows stealth
hair; thus, we look for an Einstein manifold, R,, = Ag,,,
with a scalar field satisfying (9¢)> = X, = const, under
which assumptions the equations of motion become

[A3(X0)(E3 — AXo) — 2(Kx + 4AGx)|x, b,
+ (K + 2AG)|X09W =0 (3)

for the metric and

A3 (XO)(54 + 2R;wp0¢yo¢”¢p - 3A-XO|:|¢)
—Z(KX+4AGX)\XOD¢ =0 (4)

for the scalar, where for compactness we have defined

'"These solutions were extended and generalized in different
modified gravity theories with similar properties; see, for exam-
ple, Refs. [11-15].

&= (0¢)° - (du).
&y = (00¢)° = 30¢(d)* +2(du)’. (5)

Although we are taking ¢, to have constant magnitude, ¢,
is not itself necessarily constant; thus, &5 4 and [J¢ can be
spatially dependent, as, of course, is the Riemann tensor.
Therefore, in order to satisfy Eq. (4), both the first and
second terms must vanish. In other words, the magnitude of
the gradient of ¢, X, must correspond to a zero of A3, and
the combination

(Kx +4AGx)y, =0 (6)

evaluated at X, must vanish. This is the required parametric
constraint for the existence of our stealth hair. Equation (3) is
then satisfied, provided we set A = —K/(2G)l, ; in other
words, the cosmological constant appearing in the Einstein
manifold is no longer the bare cosmological constant
included in the constant part of the K function but has been
modified. This is the self-tuning property of these gravity
theories. We emphasize that the above conditions need to be
satisfied at the specific value of X = X,), the magnitude of
the constant gradient of ¢.

To sum up, given a general Lagrangian (1), we first look
for zeros of A5 that determine the value(s) of X, then ask
that the derivatives of G and K are related at that specific
value, X, according to (6). The effective cosmological
constant is then fixed by the ratio of K to G.

Having established the conditions under which Einstein-
like metrics could be solutions to modified gravity, we
now make a key observation that allows us to explicitly
construct a scalar field solution with the required property
that its gradient has constant magnitude: given sufficient
symmetry in a spacetime, the geodesic equation

d?xt

Y dx” dx° B
di?

Ay dh ()

can be solved using a Hamilton-Jacobi potential S, such
that the gradient of the potential gives the tangent vector of
the geodesic

oS dx?
%—Pﬂ—g,wﬁ- (8)

Typically, this method is used to simplify the solution of a
particular geodesic (such as the orbit of a planet); how-
ever, the form of the potential can be used over a wider
range of coordinate values that in the case of a hyper-
surface orthogonal geodesic congruence becomes effec-
tively the whole of the spacetime. Thus, given that ¢, has
constant magnitude, as does the tangent vector of an
affinely parametrized geodesic, it is natural to make the
identification
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¢ < S; 9)

the properties of the geodesic congruence then will ensure
that ¢ has the requisite properties to be a stealth solution to
the extended gravity equations of motion. Moreover, this
provides a nice physical interpretation of the constants
appearing in the solution.

Conversely, given that (0¢)? is a constant, for conven-
ience, rescale ¢ so that X, = 1, and then for clarity define a
time coordinate ¢ = ¢ (if O¢ is spacelike, then swap ¢ for x
in the following argument). The metric must therefore have
the form

dsz :dtz—y,](dx’—Nldt)(dxj —de[) (10)
Now, consider the “geodesic” equation for ¢,:

PVt = *[0atpy, = T500c) = =T, (8¢ + N75Y)

1 ) . .
= —5[—(1\”1\’;'),17 +2N/N;, = N'NVy;; ]

1 o . )
=75 [=(N'Nyij) » + 2N/ (y;;N') ,

Thus, taking a constant gradient for ¢, and a 3+ 1
coordinate system adapted to the scalar field, we can prove
that ¢ indeed satisfies the geodesic equation. Thus all
stealth scalar solutions correspond to these geodesic
congruences.

We will now illustrate this technique and find a rotating
black hole with stealth hair. Consider the Kerr—(anti-)de
Sitter [(A)dS] geometry [3]

A, ) dr’*  do*
ds* = — =, [dt — asin®*0dg)* + p? (A_r + A_9>
Aysin’6
% [adt — (r* + a*)dg]?, (12)
E%p
where

2
Ar:<1—%>(r2—l—a2)—2Mr, E:“Lﬁ’

2

Ap=1+ %00529, p* = r? + a*cos?0, (13)

M 1is the black hole mass, a is the angular momentum
parameter, and £ = /3/A is the de Sitter radius, related to
the effective cosmological constant (for AdS, reverse the
sign of £?).

Applying the Hamilton-Jacobi technique, we note that
the components of the metric (12) are independent of ¢

and ¢; thus, E = —p, and L, = p, are two constants of
the motion, identified with the energy and the azimuthal

angular momentum, respectively. A third constant of
motion is the magnitude of the tangent vector ¢“p,p, =
X, = —m?, associated with the rest mass of the test
particle.2 Most importantly, however, a fourth constant
was discovered by Carter [21] (here generalized to
include A),

Q = Ayp3 + m*a’cos’d

in20 L. \2
Y (aE—LZ)z—SIZ (aE z ) } (14)

0 sin2(9

who demonstrated that the geodesic equation was sepa-
rable. We can therefore write

S=—Et+Lg+S,()+50). (15
where
R (C]
S, = j:/\/_dr, Sy = :t/\/—_dﬁ, (16)
A, Ay
with
R =E2[E(r* + da®) — aL.)?
- A [Q +E%(aE - L.,)* + m*r?], (17)
L 2
O = —E2sin? 9| aF — —=
s (a sin? 9)

+ Ag|Q + E?(aE — L,)? — m*a*cos? §].  (18)

Now, let us look for explicit solutions for the scalar field
¢ = S. This places further constraints on the potential, as
we require ¢, to be regular throughout the spacetime.
Checking regularity on the axes requires 0S/00 — 0 as
6 — 0,7, i.e., ® « sin? 0. This in turn requires L, = 0 and
Q + E?a’E? = m*a?, and writing EE = ym, we get

0 = a’m?sin’0(Ag — 1?),
R =m*(r’ + &) (r* + a*) = A,). (19)

This has now reduced the parameter space to an overall
scaling, m, and a “relative energy” 7, constrained to lie in
n € [, 1]; the upper limit comes from © >0, and the
lower limit comes from R > 0 in (19).

At first sight, it appears we have four distinct solutions
coming from the choice of signs in (16); however, an
interesting restriction occurs when n = 1 or 7. In this case,
©® (or R) vanishes for some value of @ (or r), and the branch
choice changes. This is most easily seen for n = 1; here,

2.4 . . .
0, =24 sin? 6 cos? 0, and the natural root is cos @, which

Note that for illustration we take timelike geodesics and,

should a spacelike congruence be required, substitute m> — —m

in the derivation.
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changes sign across the hemisphere. The same phenome-
non occurs for R, but this leads to an important conse-
quence as we now discuss.

Inspection of (16) shows that S, ~ m#nr* near the event
horizons, where r* = [dr(r* 4+ a®)/A, is the tortoise
coordinate; therefore, if we interpret \/1—3 as being the
positive root, our scalar field will be divergent at one or the
other horizon (dependent on the branch choice). Note,
however, that for 7., R has a quadratic zero at some r,
R ~ R"(ry)(r — ry)?/2; thus, the true root, VR ~ (r — ry),
changes sign at r,. This means that for ¢ to be differentiable
we must change the sign of VR across ro and set

|VR|dr
A,

S, = (Hlr - ro] — Hlro — 1)) / TIVRIAT )

where H is the Heaviside step function. This now renders ¢
finite at both future event horizons and infinitely differ-
entiable between the horizons as shown in Fig. 1.

It is worth emphasizing this last point: all black hole
solutions in the literature for higher order scalar-tensor
gravity are spherically symmetric and have scalar fields that
diverge either on the black hole or cosmological event
horizon. While this is not a physical problem when ¢
interacts with gravity only through its gradient, it is
nonetheless a less appealing feature of these solutions.
Here, we have constructed a rotating black hole with finite
stealth scalar hair. This scalar will be manifestly continuous
across each horizon and be straightforward to analyze in
perturbation theory. Finally, the integral for the #-potential

Sy gives
/ 2 @2
1 —n" + % cos™0 + cos 0

(1 —’72)Aa

\/1=n? —l—%coszﬁ—i-%cosﬁ
, (21)
v 1 —112

+Sy = nlog

— log

SINGULARITY

FUTURE INFINITY

FIG. 1. Contours of constant ¢ for a = GM = 0.1¢, n, =
0.612 in local Kruskal coordinates for the future event horizons,

_pli=rt) )

kU =—e"" 7 ,k.V=—e 2z (k; being the absolute values

of the surface gravities of each horizon).

V

FIG.2. Contours of ¢ at constant v = ¢ + r* in the {r, 0} plane
near the black hole horizon with the same parameter values as in
Fig. 1, taking m = 100.

leading to an “off-center” behavior in the scalar as shown
in Fig. 2.

For 5 > 5., the radial function R has no zero, and the
scalar field diverges on one horizon, in common with the
known solutions in the literature. The field also demon-
strates a similar asymmetry in 6, except for = 1, when

¢
Sy = ﬂ:mTlog A,, (22)

rendering the angular variation symmetric about the equa-
tor as shown in Fig. 3.

Our solution for ¢ shows a clear dependence on both 0
and r as well as the time dependence in common with
known stealth solutions having spherical symmetry [10].
The key difference is that we can construct a scalar that is
finite on both the black hole and cosmological horizon. To
compare to solutions in the literature, we take spherical
symmetry (¢ — 0) and find general solutions of the form
¢ = —mnt £ S,. Once again, we have a finite-¢p solution
for 2 = 1-3(M/¢)*?,

¢__m[w+/r<r—ro>¢md

ZA,

@ ;

FIG. 3. Contours of ¢ for n =1 at constant v = t + r* in the
{r,0} plane (a = GM = 0.22¢, m = 100).

rl, (23)
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where ry = M'/3/%/3_ 1t is interesting to compare this to
the time-dependent solution of a black hole in slow-roll
inflation [22,23]. There, the scalar profile ¢pgr x T (for a
suitable time coordinate) is also finite at both horizons,
but (23) has constant gradient, whereas ¢gp solves a wave
equation, resulting in a slightly different radial profile
between the horizons.

Also, note that in the case of spherical symmetry we can
relax our constraint A;(X,) = 0. In this case, &, &, and
the Riemann tensor term appearing in (3,4) have a simple
form and combine to require

3
(KX +4AGy + —AXA3> =0, (24)

2

Xo

with the same self-tuning condition for the cosmological
constant’; however, note that A;(X,) # 0 requires n = 1,
and thus we no longer have the # degree of freedom. What
now happens is that spacetime becomes foliated by surfaces
of constant ¢ that are flat (for A = 0).

Another interesting possibility for spherical symmetry is
a static solution, found by setting E = 0; hence, X, > 0,
and ¢ corresponds to a congruence of spacelike geodesics,

b, = 5,(r) = VX, / e (25)

agreeing with a solution reported in Ref. [20].

It is also worth noting a side result of our analysis: a
search for solutions with X = X, and spherical symmetry
in ¢y = 1 theories (1) allows only for Einstein geometries.
This is unlike Horndeski theories (with ¢y # 1) where
solutions of black holes and solitons that have X = X, but
are not Einstein spaces were found (for a concise up-to-date
review, see Ref. [25]). This is an interesting feature, hinting
that solutions of ¢y = 1 theories, where X is not constant,
belong to branches that eventually flow toward X constant
solutions with an Einstein space metric.

3See Ref. [24] for a precise analysis of self-tuning conditions
in spherical symmetry.

To sum up, we have presented the first exact solutions for
a rotating black hole with scalar hair in shift-symmetric
scalar-tensor theories with unitary speed for gravitational
waves. Our method was based on an interesting corre-
spondence between families of black hole geodesics and
stealth solutions in modified gravity. The geodesic corre-
spondence can be used to find other stealth solutions, for
instance, for more general type D spacetimes, or even
nonstealth solutions that do not exist in GR—one only
needs to compute the Hamilton-Jacobi potential for a
geodesic in the relevant spacetime. It is also plausible that
this technique can be extended to other modifications of
gravity, such as vector-tensor theories where we know
that certain stealth solutions exist. Although we did not
consider charged black holes, clearly one can also use this
method to find stealth Kerr-Newman solutions. Perhaps
most importantly, we have presented a scalar solution that
is finite at both the cosmological and event horizons, thus
manifestly extendible beyond the cosmological horizon.
The angular asymmetry of this solution could provide a
distinctive signature of this hair, although this would
require a full perturbation analysis beyond the scope of
this investigation.
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