
HAL Id: hal-02080577
https://hal.science/hal-02080577v1

Submitted on 26 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Formal Concepts using Implications between
Items

Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

To cite this version:
Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue. Mining Formal Concepts using Implications be-
tween Items. International Conference on Formal Concept Analysis (ICFCA 2019), 2019, Frankfurt,
Germany. �10.1007/978-3-030-21462-3_12�. �hal-02080577�

https://hal.science/hal-02080577v1
https://hal.archives-ouvertes.fr

Mining Formal Concepts using Implications
between Items

Aimene Belfodil1,2 �, Adnene Belfodil1 �, and Mehdi Kaytoue1,3

1 Univ Lyon, INSA Lyon, CNRS, LIRIS UMR 5205, F-69621, LYON, France
2 Mobile Devices Ingénierie, 100 Avenue Stalingrad, 94800, Villejuif, France

3 Infologic, 99 avenue de Lyon, 26500 Bourg-Lès-Valence, France
firstname.surname@insa-lyon.fr

Abstract. Formal Concept Analysis (FCA) provides a mathematical
tool to analyze and discover concepts in Boolean datasets (i.e. Formal
contexts). It does also provide a tool to analyze complex attributes by
transforming them into Boolean ones (i.e. items) thanks to conceptual
scaling. For instance, a numerical attribute whose values are {1, 2, 3}
can be transformed to the set of items {≤ 1,≤ 2,≤ 3,≥ 3,≥ 2,≥ 1}
thanks to interordinal scaling. Such transformations allow us to use stan-
dard algorithms like Close-by-One (CbO) to look for concepts in complex
datasets by leveraging a closure operator. However, these standard al-
gorithms do not use the relationships between attributes to enumerate
the concepts as for example the fact that ≤ 1 implies ≤ 2 and so on.
For such, they can perform additional closure computations which sub-
stantially degrade their performance. We propose in this paper a generic
algorithm, named CbOI for Close-by-One using Implications, to enumer-
ate concepts in a formal context using the inherent implications between
items provided as an input. We show that using the implications between
items can reduce significantly the number of closure computations and
hence the time effort spent to enumerate the whole set of concepts.

1 Introduction

Formal Concept Analysis (FCA) [8, 25] provides a mathematical tool to ana-
lyze and discover concepts in Boolean datasets (i.e. Formal contexts). It does
also provide a tool to analyze complex attributes by transforming them to
Boolean ones (i.e. items) thanks to conceptual scaling [11]. For instance, a nu-
merical attribute whose values are {1, 2, 3} can be transformed to a set of items
{≤ 1,≤ 2,≤ 3,≥ 3,≥ 2,≥ 1} thanks to interordinal scaling (see Figure 1).
Such transformations allow to use standard algorithms for enumerating all for-
mal concepts in a formal context [5, 9, 17, 18] by leveraging a closure operator.
However, these standard algorithms do not take advantage of the relationships
between attributes to enumerate the concepts as for example the fact that “≤ 1
implies ≤ 2” and so on. For such, they perform additional closure computations
which substantially degrade their performance. Some algorithms [2, 6, 14] have
been proposed in the literature to handle some particular instances of contexts

2 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

with implications. For instance, interordinal scaled contexts are directly linked
to interval patterns as investigated by [14]. On the other hand, ordinal scaled
contexts are linked to datasets augmented with a taxonomy (i.e hierarchy) be-
tween items (e.g. cats are animals) [2,6]. Yet, to the best of our knowledge, when
a formal context is provided with an arbitrary set of implications (i.e. forming
some directed graph between items), no generic algorithm is provided.

In this paper, we propose a generic algorithm, named CbOI for Close-by-One
using Implications, to enumerate formal concepts using the inherent implications
between items provided as an input. In other words, provided a pair (formal
context, directed graph of implications between attributes), CbOI uses at its
best the provided implications between items to enumerate exhaustively and
non-redundantly formal concepts. The proposed algorithm relies on a Divide &
Conquer scheme to enumerate closed sets in a strongly accessible set system
[4,12,17]. In fact, we show that closed sets are upsets (i.e. upward closed) in an
equivalent poset of the input directed graph. We use then the fact that the set of
these upsets forms a strongly accessible set system since it is an anti-matroid [7].
Building on these notions, we elaborate algorithm CbOI.

This paper is organized as follow: Section 2 recalls basic definitions about
binary relations and partially ordered sets as well as definitions from Formal
Concept Analysis. Section 3 introduces the Divide & Conquer Algorithm fol-
lowing [4] and explain the drawbacks of not using the implications to enumerate
concepts. Next, Section 4 presents the formalization of the problem as well as the
newly proposed algorithm dubbed CbOI. Details about implementation4 of CbOI
as well as its experimental evaluation are presented and discussed in Section 5.

2 Preliminary Definitions

In this paper, given an arbitrary set E, ℘(E) denotes the powerset of E (i.e.
℘(E) = {A | A ⊆ E}). Moreover, for any application f : E → F , and for any
subset A ⊆ E, f [A] denotes the image of A by f (i.e. f [A] = {f(a) | a ∈ A}).

2.1 Binary Relations, Pre-Orders and Partial Orders

This section recalls basic definitions on binary relations, pre-ordered sets and
partially ordered sets. More details can be found in [22]. Let E be an arbitrary
set. A binary relation R over a set E is an arbitrary subset of E × E. For any
element (a, b) in R we denote aRb. A binary relation R is said to be: (1) reflexive:
(∀a ∈ E) a R a. (2) transitive: (∀a, b, c ∈ E) if a R b and b R c then a R c. (3)
symmetric: (∀a, b ∈ E) if a R b then b R a. and (4) anti-symmetric: (∀a, b ∈ E)
if a R b and b R a then a = b.

A binary relation → on E is said to be a pre-order on E if it is reflexive and
transitive. The pair (E,→) is said to be a preordered-set or a proset for short.

A binary relation ↔ on E is said to be an equivalence relation on E if it is a
symmetric preorder on E. The equivalence class of a ∈ E the set of its equivalent

4Source Code. https://github.com/BelfodilAimene/CbOImplications

https://github.com/BelfodilAimene/CbOImplications

Mining Formal Concepts using Implications between Items 3

element {b ∈ E | b ↔ a}. The quotient set is the partition of E on equivalent
classes and we denote it E/↔.

Partially Ordered Sets. A binary relation ≤ on E is said to be a partial order
on E if it is an anti-symmetric preorder on E. The pair (E,≤) is said to be a
partially ordered set or a poset for short.

A mapping σ : E → E is said to be a closure operator on a poset (E,≤)
iff it is: (1) extensive: (∀a ∈ E) a ≤ σ(a), (2) monotonous: (∀a, b ∈ E) if
a ≤ b then σ(a) ≤ σ(b) and (3) idempotent: (∀a ∈ E) σ(σ(a)) = σ(a). The set
σ[E] = {σ(e) | e ∈ E} is then called the set of fixpoints of σ.

Up-sets and Up-closure. Given a poset (E,≤), a subset S ⊆ E is said to be
an up-set (or upper-ideal) iff : (∀x ∈ S,∀y ∈ E) x ≤ y ⇒ y ∈ S. There is an
operator ↑ on ℘(E) that associates to any subset S ⊆ E, the smallest up-set
enclosing it. It is given by: ↑ S = {e ∈ E | (∃s ∈ S) s ≤ e}. Operator ↑ is
called up closure and is a closure operator on (℘(E),⊆). The set of all up-sets,
denoted U(E), is given by the set of all fix-points of ↑. It is closed under arbitrary
intersection and arbitrary union (i.e. (U(E),⊆) does form a complete sublattice
of (℘(E),⊆)). Down-sets and down closure ↓ can be defined analogically. Please
note that for s ∈ S, we denote ↑ s and ↓ s rather than ↑ {s} and ↓ {s}. Sets
↑ s and ↓ s are called principal filter and principal ideal respectively. In fact, we
have ↑ S =

⋃
s∈S ↑ s and ↓ S =

⋃
s∈S ↓ s.

For a subset S ⊆ E, the set of minimal elements min(S) and max(S) are
given respectively by the lower and the upper borders of S. Formally:

min(S) = {s ∈ S |↓ s ∩ S = {s}} and max(S) = {s ∈ S |↑ s ∩ S = {s}}

One important remark for a finite posets (E,≤) is that for any up-set S ∈
U(E) we have S =↑ min(S). Moreover, min(S) represents the smallest subset
C in S (w.r.t. ⊆) such that S =↑ C.

Last but not least, any finite poset (E,≤) can be represented by its Hasse
Diagram [22]: the transitive reduction [1] of directed acyclic graph (dag) (E,≤).
It does represent for each element e ∈ E the set of its direct lower (resp. upper)
neighbors lowers(E) (resp. uppers(E)). For e ∈ E, we have:

lowers(e) = {l ∈ E | e covers l} = max(↓ e\{e})
uppers(e) = {u ∈ E | u covers e} = min(↑ e\{e})

For e1, e2 ∈ E, we say that e2 covers e1 iff e1 6= e2, e1 ≤ e2 and there is no element
e lying strictly between e1 and e2: i.e. (∀e ∈ E) e1 ≤ e ≤ e2 ⇒ e = e1 or e = e2.

2.2 Formal Concept Analysis

Formal Concept Analysis (FCA) was introduced in [25] as a mathematical frame-
work to analyze and manipulate concepts in (binary) databases. FCA starts by a
formal context [8]. A (formal) context is a triple K = (G,M, I) consisting of two
sets G andM and an incidence relation I between G andM. Elements of G are

4 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

G Any Hotel Restaurant Chinese Restaurant Italian Restaurant

place1 × ×
place2 × × × ×
place3 × × ×

Table 1: A Formal Context.

called objects and elements of M are called attributes or items. In order to ex-
press that an object g ∈ G has an attribute m ∈M, we write gIm or (g,m) ∈ I.
A formal context K is said to be finite if G and M are both finites. Note that
subsets of items B ⊆M are called patterns or itemsets. Table 1 depicts a formal
context (G,M, I) where objects in G are places while attributes in M are place
tags. The incidence relation I is represented by the crosses in the table and it
represents the fact that a place is tagged by a tag. For instance, we have place3
I Restaurant that can be read as: “place3 is tagged as a Restaurant”.

Two fundamental operators, namely extent and intent, are defined on a for-
mal context K = (G,M, I). The extent operator, denoted ext, associates to each
itemset B ⊆ M the set of objects g ∈ G having all items in B. Formally, it is
given by: ext : ℘(M)→ ℘(G), B 7→ {g ∈ G | (∀m ∈ B)g Im}. The set of all pos-
sible extents of a context K is denoted Kext and is given by Kext = ext[℘(M)].
Dually, the intent operator, denoted int, associates to each subset of objects
A ⊆ G the set of items m ∈M common to the objects in A. Formally, it is given
by: int : ℘(G)→ ℘(M), A 7→ {m ∈ M | (∀g ∈ A) g Im}. The set of all possible
intents of a context K is denoted Kint and is given by Kint = int[℘(G)].

For ease of notations, for g ∈ G and m ∈ M, we denote respectively int(g)
and ext(m) rather than int({g}) and ext({m}). Note that, for B ⊆ M and
A ⊆ G, we have: ext(B) =

⋂
m∈B ext(m) and int(A) =

⋂
g∈A int(g). A key

theorem in FCA (Proposition 10 in [8]) is given below:

Theorem 1. The pair of functions (ext, int) form a Galois connection between
the powerset lattices (℘(G),⊆) and (℘(M),⊆). That is ext ◦ int and int ◦ ext
are closure operators on (℘(G),⊆) and (℘(M),⊆) respectively. Hence, Kext and
Kint are Moore Families (i.e. closed under arbitrary intersection).

This theorem allows one to build what is called a concept lattice (B(K),≤)
which is a complete lattice. Elements of B(K) are called (formal) concepts and
are of the form (A,B) ∈ ℘(G)×℘(M) such that A = ext(B) and B = int(A). In
other words: B(K) = {(ext(B), B) | B ∈ Kint} = {(A, int(A)) | A ∈ Kext}. For
two concepts (A1, B1) and (A2, B2) in B(K), we say that (A1, B1) is a subconcept
of (A2, B2) and we denote (A1, B1) ≤ (A2, B2) if A1 ⊆ A2 (or equivalently
B2 ⊆ B1). From now on, elements of Kint are called closed patterns since they
are the fixpoints of the closure operator int ◦ ext.

As a matter of example, consider again the formal context depicted in Fig-
ure 2, we have ext({hotel, restaurant}) = {place2}, meaning that the only place
that is both tagged hotel and restaurant is place2. Dually int({place2, place3}) =
{Any,Restaurant}, that is what is common to place2 and place3 is that they
are both tagged as Any and as Restaurant. Since ext({Any,Restaurant}) =
{place2, place3}, the pair ({place2, place3}, {Any,Restaurant}) is a concept.

Mining Formal Concepts using Implications between Items 5

G x y

g1 1 4
g2 2 2
g3 2 2
g4 3 2

G x ≥ 1 x ≥ 2 x ≥ 3 x ≤ 3 x ≤ 2 x ≤ 1 y ≥ 2 y ≥ 4 y ≤ 4 y ≤ 2

g1 × × × × × × ×
g2 × × × × × × ×
g3 × × × × × × ×
g4 × × × × × × ×

Fig. 1: (left) A numerical dataset with 2 numerical attributes. (right) A formal con-
text that is the result of an interordinal scaling of the numerical dataset.

Another important notion in FCA tightly linked to formal concepts and
closed sets are implications (see Definition 1). For example, we have in the con-
text depicted in Table 1 that Italian Restaurant→ Restaurant. Indeed, all Italian
Restaurant are Restaurant.

Definition 1 (Item-Implications). Let A,B ⊆ M be two itemsets. We say
that A implies B and we denote A→ B iff: ext(A) ⊆ ext(B). In other words, if
an object has all items in the set of attributes A then it has all items in itemset
B. For two items a, b ∈ M, we call an implication {a} → {b} item-implication
and we denote it a→ b for ease of notation.

Handling Complex Data in Formal Concept Analysis. While basic FCA
provides a tool to analyze (formal) contexts (i.e. Boolean datasets), several tech-
niques are proposed in FCA literature to handle more complex datasets like nu-
merical ones. The most straightforward way, is called (conceptual) scaling [8,11].
It is the action of transforming a dataset to a formal context w.r.t. the nature
of patterns we are looking for.

For instance, if we want to look for (closed) interval patterns in numerical
datasets [14] (i.e. (closed) n-dimensional hyper-rectangle in the euclidean space),
we use interordinal scaling. Figure 1 depicts such a transformation. It can be
shown that the set of closed patterns (i.e. intents) with a non-empty extent in
the interordinal scaled context encoding a numerical dataset represents the set
of non-empty extent closed interval patterns [14].

Other example of datasets are those augmented by a taxonomy (i.e. hierarchy
of items) [6]. For instance Figure 2 depicts such a dataset. In general, patterns
we are looking for in such datasets are (closed) itemsets using antichains of the
taxonomy. Ordinal scaling can be used to handle such a type of datasets. The
ordinal scaling of the dataset presented in Figure 2 is presented in Table 1. Note
that FCA offers other more sophisticated tools to handle complex data, we can
cite among other techniques pattern structures [10,19] and pattern setups [3,21].

G tags

place1 {Hotel}
place2 {Chinese Restaurant, Hotel}
place3 {Italian Restaurant}

Any

Hotel Restaurant

Chinese Restaurant Italian Restaurant

Fig. 2: (left) Point-of-interests annotated with tags and (right) a taxonomy of tags.

6 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

3 Formal Concepts Enumeration

The enumeration of formal concepts is an equivalent task to the enumeration
of closed patterns in a formal context. Indeed, for a formal context K, we have
B(K) = {(ext(C), C) | C ∈ Kint} where Kint is no more than the set of fixpoints
of the closure operator int ◦ ext. Many algorithms are proposed in the litera-
ture [5,9,17,18] (among others) to enumerate exhaustively and non-redundantly
closed sets of some closure operator σ on (℘(E),⊆) with E an arbitrary finite
set. A. Gély showed that many of those algorithms can be seen as an instance
of a more general divide-&-conquer algorithm proposed in [12]. Later, Boley et
al. [4] proved that such a generalization can be used to enumerate exhaustively
and non-redundantly closed sets (i.e. fix-points) of a closure operator σ : F → F
in a finite strongly accessible set system (E,F) rather than only for the case
F = ℘(E). We recall below some definitions about set systems.

A set system on an arbitrary finite set E is a pair (E,F) where F is a set
of subsets of E (i.e. F ⊆ ℘(E)) called the set of feasible sets. For a set system
(E,F), we present below some properties:

– [P0] ∅ ∈ F .
– [P1] ∀S ∈ F\{∅} ∃e ∈ E s.t. S\{e} ∈ F .
– [P2] ∀S, T ∈ F s.t. S (T we have (∃e ∈ T\S) S ∪ {e} ∈ F .
– [P3] ∀S, T ∈ F s.t. |S| < |T | we have (∃e ∈ T\S) S ∪ {e} ∈ F .
– [P4] ∀S, T ∈ F s.t. T 6⊆ S we have (∃e ∈ T\S) S ∪ {e} ∈ F .
– [P5] ∀S, T ∈ F , S ∪ T ∈ F (i.e. F is closed under set union).

Implications between properties are depicted in Figure 3. A set system (E,F)
is said to be accessible if it has property [P1] and strongly accessible [4] if it has
both [P1] and [P2] properties. It is said to be a greedoid [15] if it has both
[P1] and [P3] and an anti-matroid [7] if it has properties [P0] and [P4] (or
equivalently [P1] and [P5]). Note that anti-matroids have the 6 aforementioned
properties. Anti-matroids are greedoids and greedoids are strongly accessibles.

Given a finite strongly accessible set system (E,F) and a closure operator
σ : F → F . Boley et al. [4] showed that Algorithm 1, dubbed Divide & Conquer
Closed Set Listing (D&C for short), enumerates exhaustively and non-redundantly
fixpoints of σ (i.e. σ[F]). Algorithm 1 starts from the smallest element σ(∅)
in σ[F] (Line 8) then enumerates in depth-first fashion concepts in σ[F] by
performing closure computations (Line 3) then checking, thanks to canonicity
test (Line 4), if the closed set is already generated making D&C non-redundant.

Concepts enumeration and eventual problems. Algorithm D&C can be
instantiated easily for instance to enumerate closed patterns (or concepts) of
a formal context K = (G,M, I) in a top-down fashion. Indeed, the considered

[P0]

[P1]

[P2] [P3]

[P4]

[P5] Fig. 3: Implications between set system
properties (in finite set systems). Note
that [P0] and [P2] together imply [P1] ;
and [P1] and [P5] together imply [P4] .

Mining Formal Concepts using Implications between Items 7

Algorithm 1: D&C (Divide & Conquer Closed Set Listing) Algorithm

Input: Finite strongly accessible set system (E,F) and
a closure operator σ on (F ,⊆).

Output: Elements of σ[F]
1 procedure D&C(C,B)
2 for e ∈ E\(B ∪ C) s.t. C ∪ {e} ∈ F do
3 Cnew ← σ(C ∪ {e}) // Compute the new closed element Cnew

4 if Cnew ∩B = ∅ then
5 D&C(Cnew, B)

6 B ← B ∪ {e} // Update the set of banned elements B

7 Print(C) // Output the closed element C ∈ σ[F]

8 D&C(σ(∅), ∅)

set system can be the general one (M, ℘(M)) and the closure operator is int ◦
ext. Rather than outputting only closed patterns C ∈ Kint (Line 7), one can
print the concept (ext(C), C). Such an algorithm is in fact Close-by-One (CbO)
[17,18]. Algorithm CbO has a delay time complexity5 of O(|G||M|2), a total time
complexity of O(|G||M|2|Kint|). Please note that the time complexity of the
closure computation is given by O(|G||M|).

However, such an enumeration does not use the inherent implications between
items. For instance, let us reconsider the interordinal scaled context presented in
Figure 1, we present below some steps of execution of CbO:

1. Begins: C0 = {x ≥ 1, x ≤ 3, y ≥ 2, y ≤ 4} and B = ∅.
2. Add item x ≥ 2 to C0: Cnew = {x ≥ 1,x ≥ 2, x ≤ 3, y ≥ 2, y ≤ 4} at

Line 3. The canonicity test does not fail since B = ∅ and algorithm continues
by enumerating all subconcepts of (ext(Cnew), Cnew). Further, at line 6, we
have B = {x ≥ 2}.

3. Add item x ≥ 3 to C0: Cnew = {x ≥ 1, x ≥ 2,x ≥ 3, x ≤ 3, y ≥ 2, y ≥
4, y ≤ 4} at Line 3. Since B = {x ≥ 2}, canonicity test fails since Cnew∩B =
{x ≥ 2}. The enumeration continues until the end.

The problem shown beforehand after adding x ≥ 3 is the fact that there
was a useless closure computation that led to a certain failure. One could avoid
this closure computation if the inherent implication x ≥ 3 → x ≥ 2 is used.
Indeed, since x ≥ 3 → x ≥ 2, any closed itemset containing x ≥ 3 contains
x ≥ 2. This shows that one can avoid some closure computations if implica-
tions are used properly, or in other words, avoid visiting some non valid closed
itemsets. Moreover, such implications are sometime known from the user since
they are inherent to the attributes and not derived from the incidence relation
of the context. This is the case of interordinal and ordinal scaled datasets for
example. While some state-of-the-art algorithms try to use this knowledge (i.e.
implications between some items of the context) in some particular datasets as

5Delay time: maximum time between two outputs, between the beginning and the
first output and between the last output and the ending of an enum. algo. (cf. [13])

8 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

it is the case of numerical datasets (interordinal scaled contexts) [14] or datasets
augmented with a taxonomy of items (ordinal scaled contexts) [2,6]; no general
algorithm has been proposed to enumerate concepts in a context while taking
benefit from an arbitrary provided set of item-implications (cf. Definition 1).

4 Using Item-Implications to Enumerate Concepts

In this section, we start by formalizing the user inputs, that is: the formal context
and the implications between items provided by the user. Next, we show how to
transform this pair of inputs to an equivalent pair with a poset between (sets
of) items. We show then that the closed patterns of the input context are, up to
the aforementioned transformation, in the anti-matroid of up-sets of the poset
(cf. Proposition 2 and 4). The proposed algorithm is then a straightforward
implementation of D&C since anti-matroids are strongly accessibles.

Let K = (G,M, I) be a finite formal context.

Definition 2. The item-implication basis associated to a context K, denoted
→, is given below:

→ := {(a, b) ∈M×M | a→ b} = {(a, b) ∈M×M | ext(a) ⊆ ext(b)}

The definition given beforehand regroups all item-implications existing in
the context. Moreover, pair (M,→) forms a pre-ordered set. We model now
the item-implication basis known/provided by the user. We can say informally
that such a set of implications are those that are inherent to the attributes (not
necessarily derived) from the incidence relation.

Definition 3. A valid Item-Implication basis for K is any sub relation I of →.

User Inputs. The input is then a pair (K, I) where K is a finite formal context
and I is a valid item-implication basis for K. Figure 4 (left) depicts an example
of the input pair (K, I). It is clear that I provides a partial information about a
pre-order. Relation I can be augmented to a sub pre-order →I of → thanks to
reflexive closure (i.e. adding (m,m) to I for all m ∈ M) and transitive closure
(i.e. the smallest transitive relation containing I). Thus we will be dealing from
now on with an equivalent pair (K,→I) where (M,→I) is a pre-ordered set.

4.1 Building a Partial Order

Pre-order→I could contain some cycles (i.e. not anti-symmetric). One can define
an equivalence relation ↔I on M such that (∀a, b ∈ M) a↔I b iff a→I b and
b →I a. Please note that if a ↔I b then ext(a) = ext(b). With M′ = M/ ↔I

the quotient set of M on ↔I and the following relation ≤I:

(∀S1, S2 ∈M′) S1 ≤I S2 iff (∃a ∈ S1,∃b ∈ S2) a→I b

One can show that (M′,≤I) does form a partially ordered set (poset). Accord-
ingly, context K = (G,M, I) is also transformed to K′ = (G,M′, I ′) where:

(∀g ∈ G,∀S ∈M′) g I ′ S iff (∀m ∈ S) g Im

Mining Formal Concepts using Implications between Items 9

G a b c d e f

g1 × × × ×
g2 × × × × ×
g3 × ×
g4 × a b

c d

e

f G {a,b} {c} {d} {e} {f}
g1 × × ×
g2 × × × ×
g3 × ×
g4 × {a,b}

{c} {d}

{e}

{f}

Fig. 4: (left) Input context K = (G,M, I), the input-item implications I (continuous
arrows) and the item-implications of the context that are valid but not provided (dashed
arrows). (right) The result of transformation to the context K′ = (G,M′, I′) and the
Hasse diagram of the poset (M′,≤I) (continuous arrows).

Figure 4 gives an example of such a transformation from K to K′ and
from (M,→I) to (M,≤I). Note that this transformation is a partial column-
clarification (see [8]) in the sense that it does concern only the item-implication
basis →I provided by the user since we want to use only the user inputs. If the
total item-implication basis → associated with the context is used, the before-
hand transformation will be equivalent to a column clarification. Proposition 1
provides that looking for concepts (or extents) in K is equivalent to look for con-
cepts in the partially clarified context K′. As such, from now on, we will consider
the pair (K,≤I) such that (M,≤I) is a partial order. If not so, the context and
the item-implication basis are transformed as shown beforehand (cf. Figure 4).

Proposition 1. We have Kext = K′
ext.

Proof. Recalling that Kext and K′
ext are closed under arbitrary intersection. We

prove the double inclusion:

– K′
ext ⊆ Kext: Let A ∈ K′

ext, that is ∃S ⊆ M′ such that extK′(S) = A, that
is: A =

⋂
S∈S extK′({S}). However, it is clear that: extK′({S}) = {g ∈ G |

g I ′ S} = {g ∈ G | (∀m ∈ S)g Im} = extK(S). Hence, A =
⋂

S∈S extK(S). In
other words, A ∈ Kext since it is the intersection of some elements in Kext.

– Kext ⊆ K′
ext: Let A ∈ Kext, that is: ∃B ⊆M such that extK(B) = A, that is:

A =
⋂

m∈B extK({m}). For m ∈ B, let Sm ∈M′ be the unique set containing
m. We have extK′({Sm}) = extK({m}). Hence, A =

⋂
m∈B extK′({Sm}); that

is A ∈ K′
ext since it is an intersection of some elements in K′

ext. ut

4.2 Closed Patterns Are Up-Sets

Consider now the obtained pair (K,≤I) where K = (G,M, I) is a context and
(M,≤I) is a poset s.t. ∀a, b ∈M, we have if a ≤I b then ext(a) ⊆ ext(b).

Lemma 1. ∀C ⊆M :↑ C ⊆ int ◦ ext(C)

Proof. Let m ∈↑ C, thus ∃c ∈ C such that c →I m or in other words, ext(c) ⊆
ext(m). Since int is order-reversing ((ext, int) is a Galois connection (see The-
orem 1)), int ◦ ext(m) ⊆ int ◦ ext(c). Since int ◦ ext is monotonous then int ◦
ext(c) ⊆ int ◦ ext(C). Hence, int ◦ ext(m) ⊆ int ◦ ext(C). By extensivity of
int ◦ ext we conclude that m ∈ int ◦ ext(C); that is ↑ C ⊆ int ◦ ext(C). ut

10 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

A straightforward corollary of Lemma 1 is given below:

Proposition 2. Closed patterns are up-sets on (M,≤I) that is Kint ⊆ U(M)
where U(M) = {S ⊆M |↑ S = S} is the set of upsets on (M,≤I).

Proof. Let C ∈ Kint, we have C ⊆↑ C by extensivity of ↑. In the other hand,
we have ↑ C ⊆ int ◦ ext(C) = C according to Proposition 1 and by using the
impotence of int ◦ ext. Hence, C =↑ C or in other words C ∈ U(M). ut

Proposition 2 shows that all closed patterns are up-sets. It should be noticed
that if the provided item-implication basis I is equal to the complete item-
implication basis → associated to context (see Definition 2), then all principal
filters in poset (M,≤I) are in Kint (i.e. (∀m ∈M) int ◦ ext(m) =↑ m).

We conclude that: rather than enumerating elements of ℘(M) to look for
closed itemsets, as for instance Close-by-One does, one can consider only ele-
ments of U(M). For that, one can use Algorithm D&C (see Algorithm 1) to enu-
merate concepts of K if the set system (M,U(M)) is strongly accessible which
is fortunately the case according to Proposition 4. We state in Proposition 3 a
characterization of the upper neighbors of S ∈ U(M) in the poset (U(M),⊆).
This proposition is crucial to build the algorithm and to prove Proposition 4.

Proposition 3. Let (M,≤) be a finite poset, we have:

(∀S ∈ U(M),∀a ∈M\S) S ∪ {a} ∈ U(M) iff a ∈ max(M\S)

Proof. Let S ∈ U(M) and let a ∈M\S. We show below both implications:

– (⇐) Let a ∈ max(M\S), that is: (↑ a)∩(M\S) = {a}. Hence, ↑ a ⊆ S∪{a}.
We have ↑ (S ∪ {a}) =↑ S∪ ↑ {a} = S∪ ↑ {a}. Since, ↑ {a} ⊆ S ∪ {a}, then
S∪ ↑ {a} ⊆ S ∪ {a}. By extensivity of ↑ we have S ∪ {a} ⊆ S∪ ↑ {a}. Thus,
↑ (S ∪ {a}) = S ∪ {a} or in other words S ∪ {a} ∈ U(M).

– (⇒) Let a 6∈ max(M\S), that is ∃b ∈ M\S such that a ≤ b and a 6= b.
Hence, b ∈↑ (S ∪ {a}) (since b ∈↑ a) but in the same time b 6∈ S ∪ {a}. In
other words ↑ (S ∪ {a}) 6= S ∪ {a}. Hence, S ∪ {a} 6∈ U(M). ut
Figure 5 depicts for C ∈ U(M) the set max(M\C). Hence, the only direct

upper neighbors of C = {a, c,d} in (U(M),⊆) according to Proposition 3 are
{a, c,d, b}, {a, c,d, e} and {a, c,d, f} since max(M\C) = {b, e, f}.
Proposition 4. For (M,≤) a finite poset, (M,U(M)) is an anti-matroid [7].

Proof. We have ∅ ∈ U(M). It remains to show now that (M,U(M)) has prop-
erty [P4] (see Section 3). Let be two upsets A,C ∈ U(M) s.t. C 6(A, we need
to show that: ∃a ∈ C\A s.t. A ∪ {a} ∈ U(M).

Let us show before that max(C\A) ⊆ max(M\A). Let e ∈ max(C\A),
hence e ∈ M\A. Let f ∈ M s.t. e ≤ f and e 6= f . In one hand, since e ∈ C
we have f ∈ C since C ∈ U(M). In the other hand, since e ∈ max(C\A) then
f 6∈ C\A. Therefore, f ∈ A or in other words f 6∈ M\A. We conclude that
e ∈ max(M\A). Thus max(C\A) ⊆ max(M\A).

According to Proposition 3, ∀a ∈ max(M\A), we have A ∪ {a} ∈ U(M).
Moreover, we have max(C\A) 6= ∅ sinceM is finite and C\A 6= ∅ (since C 6⊆ A).
Since ∅ 6= max(C\A) ⊆ max(M\A) then ∃a ∈ C\A s.t. A ∪ {a} ∈ U(M). ut

Mining Formal Concepts using Implications between Items 11

a b

c d

e f

g
h

Fig. 5: Poset (M,≤I) with M = {a, b, c, d, e, f, g, h}. The set
contoured with two lines C = {a, c,d} ∈ U(M) is an upset and
min(C) = {c, d}. The set contoured with one line addables(C) =
max(M\C) = {b, e, f} regroups addable items. Indeed, all up-
per neighbors of items b, e and f are in C (note that item b
has no upper-neighbor). The set contoured with one dashed line
potential addables(C) = {g} contains potential addable items.
Indeed, uppers(g) = {b,d} contains at least one element in C.

4.3 Close-by-One using Implications (CbOI) Algorithm

We have shown in Proposition 2 that, for a (K,≤I) with K = (G,M, I) s.t.
(M,≤I) is a poset, all closed patterns in Kint are upsets in U(M). Since
(M,U(M)) is strongly accessible (Proposition 4), we can use Algorithm 1 (D&C)
to enumerate concepts in K using closure operator int ◦ ext on (M,U(M)).
Algorithm 2 dubbed Close-by-One using Implications (CbOI for short) is then
a straightforward implementation of Algorithm 1 where somehow only line 2 is
modified according to Proposition 3: For C ∈ Kint, the set addables(C) denotes
the set of items to add to build the next closed itemsets. It is given by:

addables(C) = max(M\C) = {a ∈M\C | uppers(a) ⊆ C}

In the next section, we show that some optimizations can be made to compute
and maintain efficiently the set of addable items for each generated closed sets
(Line 2). Moreover, one can partially compute the closure (Line 3-4) in order to
perform canonicity test (Line 5).

Algorithm 2: Algorithm Close-by-One using Implications (CbOI)

Input: Pair (K,≤I) with K = (G,M, I) a formal context and
(M,≤I) is a poset s.t. if m1 ≤I m2 then ext(m1) ⊆ ext(m2).

Output: Elements of B(K)
1 procedure CbOI(A,C,B)
2 for m ∈ addables(C)\B do
3 Anew ← A ∩ ext(m) // Compute the new extent Anew

4 Cnew ← int(Anew) // Compute the new intent Cnew

5 if Cnew ∩B = ∅ then
6 CbOI(Anew, Cnew, B)

7 B ← B ∪ {m} // Update the set of banned attributes B

8 Print(A, C) // Output the extent A and the intent C

9 CbOI(G, int(G), ∅)

5 Empirical Evaluation and Technical Details

We start by explaining some technical details around CbOI implementation pro-
vided in https://github.com/BelfodilAimene/CbOImplications.

https://github.com/BelfodilAimene/CbOImplications

12 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

5.1 Implementation Details

Computing the Partial Order from the Input Item-Implications. As
explained in Section 4.1, the user input is a pair (K(0), I(0)) where context K(0) =
(G,M(0), I(0)) a finite context and I ⊆M(0)×M(0) such that for all (m1,m2) ∈
I we have ext(m1) ⊆ ext(m2) (i.e. valid item-implication basis). One can model
this provided item-implication basis as a directed graph (M(0), I(0)). The aim
at the beginning, is to compute the associated partial order and the partial
scaling of the context w.r.t. to the item implication basis. To do so we start
by computing the set of strongly connected components M on the directed
graph (M(0), I(0)). This can be done for instance using Tarjan’s Algorithm [24]
whose complexity is O(|M(0)|+ |I(0)|). Once done, we can build the associated
directed acyclic graph (DAG) (M, I(1)) where there is an arc (S1, S2) in I(1) iff
∃m1 ∈ S1 and m2 ∈ S2 such that (m1,m2) ∈ I(0). Such an operation is called
graph condensation. Once M computed, the context K(0) is transformed to an

equivalent context K = (G,M, I) (i.e. Kext = K(0)
ext according to Proposition 1).

The DAG (M, I(1)) represents the partial order ≤I (i.e. a reflexive and tran-
sitive closure of I creates ≤I). A more usual and efficient way to store ≤I is to
compute the transitive reduction of (M, I(1)) [1] to obtain the Hasse Diagram of
≤I. We obtain then (M, I) where we store for each m ∈M both sets of its direct
lower and upper neighbors (i.e. lowers(m) and uppers(m)) w.r.t. (M,≤I).

Computing and Maintaining Addable Items. Now that the partial order
≤I is encoded by the list of lower and upper neighbors for each item m ∈ M
(i.e. the Hasse Diagram). One solution is that at each step of the algorithm,
for a closed itemset C, we computed the set addables(C) = {a ∈ M\C |
uppers(a) ⊆ C} whose complexity is O(G2). This computation of addable items
could lessen the performances of the implementation. To address this drawback,
we propose to keep for each generated itemset C ∈ U(M), the set of its addable
items addables(C), the set of potential addable items potential addables(C)
and its minimal elements min(C) (only if we want to output them). An item
p ∈ M is said to be potentially addable if p ∈ M\ (C ∪ addables(C)) and it
has at least one element of its direct upper neighbors uppers(p) in C. Formally:
potential addables(C) = (

⋃
c∈min(C) lowers(c))\addables(C). Figure 5 gives

an example about addable and potential addable items for a closed itemset C.

These three aforementioned sets of addable items, potential addable items
and minimal items can be maintained incrementally as follow. Given an up-set
C ∈ U(M) and an item a ∈ addables(C), the following steps are performed to
compute the three sets associated to the up-set C ∪ {a}:
1. min(C ∪ {a}) := (min(C)\uppers(a)) ∪ {a}.
2. potential addables(C ∪ {a}) := potential addables(C) ∪ lowers(a)
3. Initialize addable items addables(C ∪ {a}) by addables(C)\{a}.
4. For each item p in the computed potential addables(C ∪ {a}), if we have
uppers(p) ⊆ min(C ∪ {a}) then remove it from potential addables(C ∪
{a}) and add it to addables(C ∪ {a}). This can be further optimized by
maintaining for each potentially addable item the number of direct upper

Mining Formal Concepts using Implications between Items 13

neighbors that are not already in C. Whenever, element a is add, we subtract
1 from the values associated to elements in lowers(a). Once a potentially
addable element sees its value become 0, he is considered as addable item
and no longer potentially addable.

Going back to Figure 5, adding the addable item b updates the different
sets as follow: Cnew = {a, c,d, b}, min(Cnew) = {c,d, b}, addables(Cnew) =
{e, f, g} and potential addables(Cnew) = ∅.

Computing Next Closure and Performing Canonicity Test. Line 3-5 in
Algorithm 2 are dedicated to closure computation of the newly generated set and
checking if such a closed pattern is already generated. Some optimizations can be
made here. For instance, vertical representation of the context (i.e. keeping for
each item, its extent) can be held in memory in order to compute efficiently the
new pattern extent (Line 3). For closure computation (Line 4) and canonicity
test (Line 5), one can use the optimizations explained below:

1. We have a canonicity test fail (i.e. int ◦ ext(C ∪ {m}) ∩ B 6= ∅) iff ∃b ∈
B ∩ addables(C) such that ext(C ∪ {m}) ⊆ ext(b). Hence, we do not need
to compute the closure int ◦ ext(C ∪ {m}) to perform the canonicity test.
Note that to ensure a fair comparison between CbOI and CbO, this same
optimization has been used for CbO implementation.

2. To maintain both sets of addable and potential addable items as explained
beforehand, closure computation is computed incrementally by adding item
per item until there is no addable item a s.t. ext(C ∪ {m}) ⊆ ext(a).

Outputting Minimal Elements. If the item-implications in ≤I are well-
known by the user, one should output only minimal element of a closed pattern
C w.r.t. ≤I (i.e. min(C)) since C contains some redundant information [6, 14].

5.2 Experimental Evaluation

Experiment Settings. Experiments were conducted in a machine with an Intel
Core i7-7700HQ 2.80GHz CPU and 7.7 GiB memory space and the implementa-
tion was done using Python 2.7.12. Table 2 reports the benchmark input contexts
and their associated item-implications basis. Europarl6 and Yelp7 are datasets
augmented with a taxonomy. Hence, their corresponding contexts K1 and K2

are obtained via an ordinal scaling and their associated implication basis are de-
rived from the hierarchy of items induced by the provided taxonomy. Basketball8,
Airport8 and Iris9 are numerical datasets. Analogously, their corresponding con-
texts K3, K4 and K5 are the result of an interordinal scaling and the associated
implication basis are constituted with two chains of implications per attribute
(i.e. if the domain of the numerical attribute is {1, 2, 3} then the item implica-
tions basis associated to the inter-ordinal scaling is given by ≤ 1 →≤ 2 →≤ 3

6EPD8 (last accessed on 04 Octobre 2018): http://parltrack.euwiki.org/
7Yelp (last accessed on 25 April 2017): www.yelp.com/dataset/challenge
8Bilkent repository: http://funapp.cs.bilkent.edu.tr/
9UCI repository: https://archive.ics.uci.edu/ml/index.php

http://parltrack.euwiki.org/
www.yelp.com/dataset/challenge
http://funapp.cs.bilkent.edu.tr/
https://archive.ics.uci.edu/ml/index.php

14 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

context K = (G,M, I) implications I
(K, I) Name |G| |M| |Kint| | →∗I | | →∗ | density

(K1, I1) Europarl 4 742 357 1 307 709 1 034 68.57%
(K2, I2) Yelp 127 162 1 174 63 300 1 514 2 111 71.72%

(K3, I3) Basketball 40 272 272 223 4 716 13 724 34.36%
(K4, I4) Iris 150 246 6 516 292 3 964 11 704 33.87%
(K5, I5) Airport 135 1 348 82 467 125 90 182 313 432 28.77%

(K6, I6) Mushrooms 8 124 119 238 710 0 949 0.00%

Table 2: Benchmark Inputs and their characteristics: the number of objects |G|, the
number of attributes |M|, the size of the concept lattice |Kint| of the context K, the
number of strict (irreflexive) item-implications | →∗I | in the pre-order associated to
the corresponding input implication basis, the number of strict item-implications in
the context | →∗ | (see Definition 2) and the density given by | →∗I |/| →∗ |.

and ≥ 3→≥ 2→≥ 1). Mushroom9 features only nominal attributes. Hence, its
associated context K6 represents the result of nominal scaling of all attributes.
Note that the set of implications I6 is empty, yet there are some implications
between items that are context-dependent (i.e. → is not empty).

Evaluation Results. Table 3 reports the number of closures and the perfor-
mance of CbO and CbOI on the different benchmark inputs. For each benchmark
context Ki, we run both algorithms on the provided implication basis (i.e. in-
put (Ki, Ii)) as well as on the total one that is associated to the context (i.e.
(Ki,→)). For a fair comparison, we report the context load/preparation time
into the memory for CbO as well as the load/preparation time of the pair (con-
text, implication basis) for CbOI. When → implication basis is used, the load
time includes the time spent to compute it.

It is clear that the number of closures performed by CbOI is much less than
the ones performed by CbO in all tests excepts when no implications are provided.
This corresponds to the case (K6, I6) where the number of closures performed
by CbOI is supposed to be equivalent to the number of closures performed by
CbO if the same order of choice of items to add is followed.

Concerning the execution time, it is clear that the load time for CbO is lesser
than the load/compute time for CbOI since CbOI does load and prepare addition-
ally the item-implication basis. However, even if CbOI has this drawback, one can
see that the enumeration time is much faster than CbO (i.e. up to 15× faster for
input (K3, I3) or even more for input (K4, I4)). This compensates the overhead
induced by the implication-basis load time in CbOI. One could notice that CbO

perform better than CbOI when no implication is provided as it is the case in
test (K6, I6). This is due to the fact that CbOI manages more structures than
CbO during enumeration. It is worth noting that even if the implication basis is
computed then used to enumerate concepts (see tests (Ki,→)), CbOI performs
faster than CbO (up to 6× faster for input (K3, I3)). Still, we can observe that
CbOI is less efficient when the underlying implication basis is huge (case (K3,→),
(K4,→) and (K5,→)). This can be explained by the fact that CbOI spends more
time to handle a huge and complex system of item-implications but the gain
obtained from these base of implications does not compensate this effort.

Mining Formal Concepts using Implications between Items 15

CbO CbOI

(K, I) nb closure load (ms) enum (ms) total (ms) nb closure load (ms) enum (ms) total (ms)

(K1, I1) 185 418 86 184 270 17 020 220 48 268
(K1,→) 13 409 191 46 237

(K2, I2) 24 437 659 8 715 30 360 39 075 3 317 590 18 084 16 107 34 191
(K2,→) 2 974 130 19 976 15 030 35 006

(K3, I3) 13 340 233 3 57 286 57 289 703 999 20 3 628 3 648
(K3,→) 445 735 39 9 114 9 153

(K4, I4) 170 615 166 10 709 517 709 527 9 618 493 26 77 586 77 612
(K4,→) 8 383 741 73 141 016 141 089

(K5, I5) NA 53 > 12h > 12h 122 717 962 268 1 496 175 1 496 443
(K5,→) 106 409 230 1 400 8 221 648 8 223 048

(K6, I6) 4 363 487 155 13 800 13 955 4 363 511 184 15 985 16 169
(K6,→) 4 363 487 155 13 800 13 955 1 338 245 244 10 003 10 247

Table 3: CbO and CbOI performance comparison on the benchmark inputs

6 Conclusion

In this paper, we have investigated how to incorporate and leverage the inher-
ent implications between items in some given context so as to enumerate more
efficiently its formal concepts. Experimental studies demonstrated that the pro-
posed algorithm dubbed CbOI for Close-by-One using Implications is far more
efficient than its concurrent CbO in most configurations. Indeed, many aspects
of the devised algorithm can be considerably improved. For instance, including
FCbO optimizations [16] during the enumeration process can significantly reduce
the number of falsely generated closed patterns. Moreover, the load/preparation
time of CbOI can be more enhanced by, for example, computing more efficiently
the transitive reduction of the implication basis [20]. Another important re-
mark is that the same notions here can be used to look for minimal generators.
In fact, Kaytoue et al. [14] showed that there is no one-to-one correspondence
between the minimal generators in the interval pattern structure and the min-
imal generators in the interordinal scaled contexts conversely to closed interval
patterns. However, if we consider only up-sets w.r.t. the poset induced by the
implications, there is a one-to-one correspondence between interval patterns and
up-sets. Hence, minimal generators for interval patterns can be mined efficiently
by algorithm DeFMe [23] since it considers strongly accessible set systems.

Aknowledgement. This work has been partially supported by the project
ContentCheck ANR-15-CE23-0025 funded by the French National Research
Agency, the ANRt French program and the APRC Conf Pap-CNRS project.
The authors would like to thank the reviewers for their valuable remarks. They
also warmly thank Anes Bendimerad for interesting discussions.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

16 Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

2. Belfodil, A., Cazalens, S., Lamarre, P., Plantevit, M.: Flash points: Discovering
exceptional pairwise behaviors in vote or rating data. In: ECML/PKDD (2). pp.
442–458 (2017)

3. Belfodil, A., Kuznetsov, S.O., Kaytoue, M.: Pattern setups and their completions.
In: CLA. pp. 243–253 (2018)

4. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly ac-
cessible set systems with applications to data mining. Theor. Comput. Sci. 411(3),
691–700 (2010)

5. Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance.
Mathématiques et Sciences humaines 96, 31–47 (1986)

6. Cellier, P., Ferré, S., Ridoux, O., Ducassé, M.: An algorithm to find frequent con-
cepts of a formal context with taxonomy. In: CLA. pp. 226–231 (2006)

7. Dietrich, B.L.: Matroids and antimatroidsa survey. Discrete Mathematics 78(3),
223–237 (1989)

8. Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
9. Ganter, B.: Two basic algorithms in concept analysis. Technical report, Technische

Hoschule Darmstadt (1984)
10. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: ICCS.

pp. 129–142 (2001)
11. Ganter, B., Wille, R.: Conceptual scaling. In: Applications of combinatorics and

graph theory to the biological and social sciences, pp. 139–167. Springer (1989)
12. Gély, A.: A generic algorithm for generating closed sets of a binary relation. In:

ICFCA. pp. 223–234 (2005)
13. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal

independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)
14. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting Numerical Pattern Mining

with Formal Concept Analysis. In: IJCAI. pp. 1342–1347 (2011)
15. Korte, B., Lovász, L.: Mathematical structures underlying greedy algorithms. In:

International Conference on Fundamentals of Computation Theory. pp. 205–209
(1981)

16. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on cbo. In:
CLA. pp. 325–337 (2010)

17. Kuznetsov, S.O.: A Fast Algorithm for Computing All Intersections of Objects in a
Finite Semi-lattice. Nauchno-Tekhnicheskaya Informatsiya ser. 2(1), 17–20 (1993)

18. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative
examples. In: PKDD. pp. 384–391 (1999)

19. Kuznetsov, S.O.: Pattern structures for analyzing complex data. In: RSFDGrC
2009. pp. 33–44 (2009)

20. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th international symposium on symbolic and algebraic computation. pp.
296–303. ACM (2014)

21. Lumpe, L., Schmidt, S.E.: Pattern structures and their morphisms. In: CLA.
vol. 1466, pp. 171–179 (2015)

22. Roman, S.: Lattices and Ordered Sets. Springer New York (2008)
23. Soulet, A., Rioult, F.: Efficiently depth-first minimal pattern mining. In: PAKDD

2014. pp. 28–39. Springer (2014)
24. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
25. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. In: Ordered Sets. pp. 445–470 (1982)

	Mining Formal Concepts using Implications between Items

