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Renormalization of Feynman amplitudes on manifolds by

spectral zeta regularization and blow-ups.

Nguyen Viet Dang∗

Bin Zhang†

Abstract

Our goal in this paper is to present a generalization of the spectral zeta regularization for gen-
eral Feynman amplitudes on Riemannian manifolds. Our method uses complex powers of elliptic
operators but involves several complex parameters in the spirit of the analytic renormalization
by Speer, to build mathematical foundations for the renormalization of perturbative interacting
quantum field theories. Our main result shows that spectrally regularized Feynman amplitudes
admit an analytic continuation as meromorphic germs with linear poles in the sense of the works
of Guo–Paycha and the second author. We also give an explicit determination of the affine hyper-
planes supporting the poles. Our proof relies on suitable resolution of singularities of products of
heat kernels to make them smooth.

As an application of the analytic continuation result, we use a universal projection from mero-
morphic germs with linear poles on holomorphic germs to construct renormalization maps which
subtract singularities of Feynman amplitudes of Euclidean fields. Our renormalization maps are
shown to satisfy consistency conditions previously introduced in the work of Nikolov–Todorov–
Stora in the case of flat space–times.
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1 Introduction.

Zeta regularization. Let M be a smooth, compact, connected manifold without boundary and
P be a symmetric, positive, elliptic pseudodifferential operator on M . Later on, we will specialize
to Schrödinger operators of the form P = −∆g + V where −∆g is a Laplace operator and V is a
smooth nonnegative potential. But the present discussion applies to any symmetric, positive, elliptic
pseudodifferential operator P . Then P admits a discrete spectral resolution [36, Lemma 1.6.3 p. 51]
which means there is an increasing sequence of eigenvalues

σ(P ) = {0 6 λ0 6 λ1 6 λ2 6 · · · 6 λn → +∞}

and corresponding L2-basis of eigenfunctions (eλ)λ∈σ(P ) so that Peλ = λeλ. In his seminal work [72],
Seeley constructed the complex powers (P−s)s∈C of P as a holomorphic family of linear continuous
operators acting on suitable scales of Sobolev spaces on the manifold M . In particular for Re(s) > 0,
P−s is bounded in L2(M). Now let us consider the spectral zeta function ζP (s) which is defined as the
trace TR (P−s) and coincides with the series :

ζP (s) = TR
(
P−s

)
=

∑
λ∈σ(P )\{0}

λ−s. (1)

By Weyl’s law on the growth of eigenvalues of P [36, Lemma 1.12.6 p. 113], the operator P−s is
trace class and the series ζP (s) =

∑
λ>0 λ

−s converges as a holomorphic function in s on the half–

plane Re(s) > dim(M)
deg(P ) . Then Seeley showed that ζP (s) admits an analytic continuation on the

complex plane as a meromorphic function [36, Thm 1.12.2 p. 108] with simple poles. In case P is
a differential operator, ζP (s) is holomorphic at s = 0. This result shows one of the first instances
of the power of zeta regularization, where we can regularize the divergent series

∑
λ∈σ(P ) 1 and obtain

the value ζP (0) of the spectral zeta function ζP at s = 0. More importantly, the residues of ζP (s) at
its poles can be expressed as multiple of integrals over M of local invariants of the operator P [6,
p. 299-303] and are intimately related to the heat invariants of P [36, Thm 1.12.2 p. 108].
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From zeta regularization to regularized traces. In the same spirit, zeta regularization tech-
niques were also used in global analysis to construct regularized traces for certain algebras of pseu-
dodifferential operators. The above result of Seeley on the analytic continuation of TR(P−s) has been
generalized to canonical traces on pseudodifferential operators by Kontsevich-Vishik [49], to study
anomalies of regularized zeta determinants with related works by Lesch [53] among many authors.
Then general types of tracial anomalies were discussed in [55, 18, 61], sometimes in relation with
quantum field theory, and finally a general notion of trace for holomorphic families of pseudodiffer-
ential operators appears in the work of Paycha–Scott [62]. An important object underlying all these
constructions is the notion of noncommutative residue for any pseudodifferential operator A. This non-
commutative residue can be defined by zeta regularization using complex powers of elliptic operators
as follows. Choose any symmetric, positive, elliptic differential operator P , then the noncommutative
residue of A is defined as the residue at s = 0 of the meromorphic continuation of the trace TR (AP−s),
and is given by a local formula in the symbol of A. In his seminal works, Wodzicki [78, 79] proved
that up to some constant factor, this residue is the unique trace on the algebra of pseudodifferential
operators. It plays a central role in global analysis and noncommutative geometry. We refer the reader
to the monographs [60, 71] for further details on these topics.

Zeta regularization for partition functions. Already in the simple case of spectral zeta functions
of the Laplace–Beltrami operator, these regularization methods turn out to be extremely useful to
study Euclidean quantum fields on Riemannian manifolds. In the mathematical physics literature,
zeta regularization was first applied to quantum field theory on curved spaces by Hawking [43] to give
a definition of the partition function of Euclidean QFT. It can also be used to give a mathematical
model of the Casimir effect [31]. For topological quantum field theories, following the seminal work of
Ray–Singer [66] on analytic torsion, it was soon realized by Schwarz that one can define and calculate
the partition function of some abelian BF theories [70] using zeta regularized determinants. Formally,
for some flat bundle (E,∇) over some smooth compact manifold M of dimension d, his formula for
the partition function of the BF theory reads∫

(A,B)∈Ωk(M,E)×Ωn−k−1(M,E)

exp

(
−
∫
M

B ∧ d∇A
)

=

d∏
k=0

det
(

∆(k)
)(−1)kk/2

where d∇ is the twisted differential acting on Ω•(M,E) and the right hand side is the Ray–Singer
analytic torsion of the flat bundle (E,∇) 7→ M which is a topological invariant [56, (10) p. 9]. Then
Witten generalized the above work of Schwarz by showing that the perturbative partition function of
Chern–Simons theory involved the Ray–Singer analytic torsion and also the eta invariant of Atiyah–
Patodi–Singer. Since the formula looks quite complicated, we refer the reader to [56, (12) p. 9]. But the
important point is that the formula involves zeta regularized determinants. The main idea underlying
the above results is that partition functions are formally expressed as functional integrals on some
space of fields, these partition functions are then identified with regularized determinants of elliptic
operators. For instance, in the case of the Dirichlet action functional S(ϕ) = 1

2

∫
M
ϕ(−∆g)ϕdv(x)

where −∆g is the Laplace–Beltrami operator and dv the Riemannian volume, the partition function
Z reads :

Z =

∫
dϕ exp

(
−1

2

∫
M

ϕ(−∆g)ϕdv

)
= det(−∆g)

− 1
2

where det(−∆g) may be defined as exp(−ζ ′(0)) where ζ is the regularized zeta function of the elliptic
operator (−∆g) appearing in the definition of the partition function.

For applications in mathematical physics and in the present work, a particular role will be played
by complex powers of generalized Laplacians (more generally elliptic, positive, self–adjoint operators
of order 2) and their relation with the heat kernel asymptotics. These methods based on the local
asymptotic expansion of the heat kernel are crucial in the local index theory [15] and are also used in the
works [8, 4] to give a purely spectral definition of the Einstein–Hilbert action functional following [47,
1, 48].
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Another interesting physical property of zeta regularization is its natural covariance which is why
it was used in the first place by Hawking. Indeed, for any diffeomorphism Φ : M 7→M , the spectrum
σ (−∆Φ∗g) of −∆Φ∗g on (M,Φ∗g) coincides with the spectrum of −∆g on (M, g) and σ(−∆g) is thus
an invariant of the Riemannian structure (M, g)1. Therefore zeta regularization is a coordinate
independent regularization scheme which depends only on the spectral properties of the Laplacian
which in turns is entirely specified by the Riemannian structure (M, g).

Renormalization in quantum field theory. The present paper is written for analysts and does
not require any background in physics or quantum field theory. We present our results in a purely
mathematical form. However, we felt that for readers with some interest in QFT, it would be preferable
to present some physical motivations and the uninterested reader can skip the present paragraph.
QFT is a general framework aimed at describing the fundamental forces and particles. In QFT,
we are given some graphs called Feynman graphs which pictorially represent complicated interaction
process between various particles and we associate to every graph G some number cG, called Feynman
amplitude, which is often given by some divergent integral as soon as the graph G contains any loops.
The issue is that the above zeta regularization methods can only be used to renormalize one loop
graphs as discussed in [17, 1.4 p. 10]. For interacting QFT’s, it is not enough to regularize only the
partition function and one loop graphs, one must renormalize amplitudes whose corresponding graphs
contain an arbitrary number of loops. For instance in quantum electrodynamics (QED) which is the
QFT describing the interaction of light and matter, the computation of the probability amplitude of
some scattering process for two incoming and two outgoing electrons is represented by the following
Feynman diagram :

where the electrons are denoted by e−, positrons by e+ and photons by γ. The corresponding Feynman
amplitude is given by some product of electron propagators, represented by the straight lines, and
photon propagators represented by the wiggly lines. These propagators are distributions on R4 × R4

valued in 4× 4 matrices.
For the sake of simplicity, we limit ourselves to scalar theories in the present paper. In these

theories, unlike in gauge theories, there is only one scalar valued propagator which is denoted by G
in the sequel. The topology of the Feynman graphs that we encounter is dictated by the interaction
of the theory. For instance in the massless φ4 theory, the only Feynman graphs that we encounter
have vertices of degree 4. Our goal is to use spectral zeta regularization to renormalize multiple loop
amplitudes for Euclidean QFT on Riemannian manifolds with the aim to relate them to geometric
invariants of Riemannian manifolds which is the subject of future work of the authors. Our starting
point is the work of Eugene Speer on analytic renormalization in QFT [73, 74, 75] who found an
alternative formulation of the usual BPHZ renormalization algorithm, based on analytic regularization
with several complex parameters. The analytic structure of the regularized amplitude in these variables
encodes rich algebraic structure so that a renormalized amplitude may be defined by the application of a
universal projector, independent of the graph in question, to the regularized amplitude. Indeed, we will
show that regularized amplitudes are meromorphic germs with linear poles and in subsection 6.3,

1The space of Riemannian structure if the set of pairs (M, g) quotiented by isometries
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we will describe a straightforward way of subtracting the divergent part of the regularized amplitudes
while keeping only the holomorphic part. Then renormalization will be reformulated in definition 6.4
as the evaluation at some poles of the holomorphic part of the regularized amplitude. This projection
is a useful substitute to the BPHZ algorithm and the method pioneered by Connes–Kreimer based on
Hopf algebras and Birkhoff factorizations. In our work, a common point with the BPHZ algorithm
and Speer’s work, is that we rely on Hepp sectors and resolution of singularities arguments.

Let us show how the idea of analytic renormalization works in an example on flat space. On
Euclidean space R4, the Green function of the Laplace operator reads G(x, y) = CQ−1(x − y) where

C is some constant and Q is the quadratic form Q(v) =
∑4
i=1 v

2
i . On configuration space (R4)6, the

Feynman rules assign to the graph

the corresponding amplitude

T (x1, x2, x3, x4) =

∫
(y1,y2)∈(R4)2

G(x1, y1)G(x2, y1)G2(y1, y2)G(y2, x3)G(y2, x4)d4y1d
4y2,

which is given by some formal product of Green functions. To get rid of the infrared divergence due
to the fact that we integrate in some infinite volume (R4)2, one may either introduce a sharp cut–off
by replacing R4 by a finite box, or we may as well insert some smooth compactly supported cut–off
function g ∈ C∞c (R4) for each variable (yi)i∈{1,2} corresponding to the internal vertices of the Feynman
graph as follows :

T (x1, x2, x3, x4) =

∫
(R4)2

G(x1, y1)G(x2, y1)G2(y1, y2)G(y2, x3)G(y2, x4)g(y1)g(y2)d4y1d
4y2.

In fact, it is natural to view the full amplitude G(x1, y1)G(x2, y1)G2(y1, y2)G(y2, x3)G(y2, x4) as a

distribution in D′
((

R4
)6)

, so we may think that we insert some smooth compactly supported

cut–off function g(y1)g(y2) on (R4)2 so that T (x1, x2, x3, x4) is well–defined as the pushforward of
the product G(x1, y1)G(x2, y1)G2(y1, y2)G(y2, x3)G(y2, x4)g(y1)g(y2)d4y1d

4y2 along the fibers of the
projection (R4)6 7→ (R4)4.

In terms of the quadratic function Q, the above amplitude reads :∫
(y1,y2)∈(R4)2

Q−1(x1, y1)Q−1(x2, y1)Q−1(y1, y2)Q−1(y1, y2)

×Q−1(y2, x3)Q−1(y2, x4)g(y1)g(y2)d4y1d
4y2.

Now for each Q−1 in factor in the amplitude, we shall introduce a complex power s as follows :

T (s) =

∫
(y1,y2)∈(R4)2

Q−s1(x1, y1)Q−s2(x2, y1)Q−s3(y1, y2)Q−s4(y1, y2)

×Q−s5(y2, x3)Q−s6(y2, x4)g(y1)g(y2)d4y1d
4y2

where the new amplitude depends on s = (s1, . . . , s6) ∈ C6. For Re(si)16i66 large enough, one can
easily see that the amplitude defining T is integrable. The main result of Speer is the fact that T (s)
admits an analytic continuation in s ∈ C6 as a meromorphic function with linear poles. Then he shows
that T (s) decomposes as the sum of a singular part and a holomorphic part at s = (1, . . . , 1) ∈ C6 and
renormalization consists in subtracting the singular part and evaluating at (1, . . . , 1) ∈ C6.
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The main goal of the present paper is to combine the methods from zeta regularization to present
a generalization of analytic renormalization to general Riemannian manifolds. Then we will show that
the renormalization defined satisfies the consistency axioms of Nikolov–Todorov–Stora in [59] inspired
by the seminal works of Epstein–Glaser [30].

2 Main results.

In the present section, we introduce the main objects of study and state the main results of our
work. We define first Feynman amplitudes, next we explain how to implement a zeta regularization
with several complex parameters then we state the first main analytic continuation Theorem and we
finally give a simplified version of our second main theorem concerning applications of the analytic
continuation result to renormalization in QFT.

2.1 Feynman amplitudes

We work on a compact, connected Riemannian manifold (M, g) without boundary, the Laplace–
Beltrami operator is denoted by ∆g and C∞>0(M) denotes smooth, nonnegative functions on M . For
a potential V ∈ C∞>0(M), it is well–known that the Schrödinger operator P = −∆g + V is a second
order, symmetric, positive, elliptic differential operator which defines a unique unbounded, self–adjoint
operator acting on L2(M) [76, p. 34-35]. We now generalize the Feynman rules to this case. That is,
to every graph we associate a formal product of Green kernels of the operator P . Since on a general
manifold, there is no Fourier transform, our Feynman rules are just the Riemannian versions of the
Euclidean Feynman rules in position space of [19, definition 2.1] (see also [24]).

Definition 2.1 (Feynman rules) Let G(x, y) denote the Green kernel of the operator P , then for a
graph G with the set of vertices V (G) and the set of edges E(G), if for any edge e ∈ E(G), the vertices
incident to e are i(e) and j(e) and G has no self–loops, then the Feynman amplitude associated to G
is defined as

tG =
∏

e∈E(G)

G(xi(e), xj(e)) (2)

as a C∞ function on MV (G) \ {all diagonals}.

Remark 2.1 Since the Green kernel G is symmetric in its variables, tG is well-defined. The graphs
are not allowed to have self–loops since the Green function G is not well–defined on the diagonal
hence cannot be evaluated at coinciding points. The above Feynman rules correspond to a perturbative
Euclidean QFT where the Lagrangian is already Wick renormalized which explains why self–loops (also
called tadpoles in the physics literature) are excluded. In the physics literature, the amplitude reads

tG =
1

|Aut(G)|
∏

e∈E(G)

G(xi(e), xj(e))

where the combinatorial factor |Aut(G)| ∈ N counts the number of automorphisms of G. We drop this
combinatorial factor for simplicity since this does not affect our discussion.

2.2 Multiple spectral zeta regularization.

The operator P−s is defined as a spectral function of the operator P in a very simple way following [36,
equation (1.12.13) p. 107] :
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Definition 2.2 (Complex powers) For Re(s) > 0, for every u ∈ L2(M), decompose u in the or-
thonormal basis (eλ)λ of L2(M) given by the eigenfunctions of P . Then

P−su =
∑

λ∈σ(P )\{0}

λ−s〈u, eλ〉eλ

where the sum on the right hand side converges absolutely in L2(M) since the eigenvalue λi −→
i→+∞

+∞

hence the sequence (λ−si )i remains bounded.

The Schwartz kernel of P−s is then by definition :

Gs(x, y) =
∑

λ∈σ(P )\{0}

λ−seλ(x)eλ(y) (3)

where we abusively denoted by Gs(x, y) an actual distribution Gs ∈ D′(M ×M) and the series on
the r.h.s. converges in D′(M ×M). We will later see that Gs is actually a function on M ×M for
Re(s) > d

2 where d = dim(M). We shall generalize this regularization to the case M = Rd with flat
Euclidean metric g and P = −∆g + m2,m ∈ R>0. Our definition of Gs in the flat case is similar to
the compact case since we define Gs with complex powers of the Laplace operator :

Definition 2.3 (Complex powers for flat space.) If M = Rd, g is a constant quadratic form and
m ∈ R>0 is a mass, then we set :

Gs(x, y) =
1

(2π)d

∫
Rd

ei〈(x−y),ξ〉

(gµνξµξν +m2)s
ddξ =

1

Γ(s)

∫ +∞

0

1

(4πt)
d
2

e−
〈x−y,x−y〉g

4t e−tm
2

ts−1dt.

It is immediate from the above formulas that Gs is the Schwartz kernel of (−∆g +m2)−s and that
when s = 1, we recover the Green function of the operator (−∆g +m2).

Definition 2.4 (Regularized Feynman rules) Under the above assumptions, we denote by P−s

the complex powers of P and by Gs(x, y) ∈ D′(M ×M) the corresponding Schwartz kernel. Then for
a graph G with vertex set V (G) and edge set E(G), the regularized Feynman amplitude reads

tG(s) =
∏

e∈E(G)

Gse(xi(e), xj(e)) (4)

which is in C∞(MV (G) \ {all diagonals}).

Remark 2.2 We will see later in Lemma 4.1 that Gs is actually in Ck(M×M) for Re(s) large enough
hence it follows that the above Feynman rules also make sense for graphs G with self–loops when Re(s)
is large enough which was not true for s = 1 since G would be a distribution singular on the diagonal.

Let us state our first main Theorem :

Theorem 2.1 Let (M, g) be a smooth, compact, connected Riemannian manifold without bound-
ary of dimension d, dv(x) the Riemannian volume and P = −∆g +V , V ∈ C∞>0(M) or M = Rd

with a constant metric g and P = −∆g +m2,m ∈ R>0. Then for every graph G, on the config-
uration space (MV (G), gV (G)) endowed with the product metric gV (G), and product volume form

dvMV (G) , for any test function ϕ ∈ C∞(MV (G)),

s 7→
∫
MV (G)

tG(s)ϕdvMV (G) (5)

can be analytically continued near (se = 1)e∈E(G) as a meromorphic germ with possible
linear poles on the hyperplanes of equation

∑
e∈G′ se − |E(G′)| = 0 where G′ is a subgraph of

G such that 2|E(G′)| − b1(G′)d 6 0, |E(G′)| is the number of edges in G′ and b1(G′) the first
Betti number of G′.
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To recover renormalized Feynman amplitudes, we follow the strategy of [25, 2.2]. We cannot eval-
uate tG(s) at (se = 1)e∈E(G) since it might belong to the polar set of tG. However, applying the
machinery from [40] allows us to subtract the polar part of tG(s) at (se = 1)e∈E(G) while keeping a
holomorphic part. This is based on an extension of the framework of [40] to distributions valued in
meromorphic germs with linear poles constructed in paragraph 6.2. Then to recover the renormal-
ized Feynman amplitude, it suffices to evaluate the holomorphic part at (se = 1)e∈E(G). Following
Speer [74, section 3], analytic renormalization will be reformulated in definition 6.4 as the evaluation at
some poles of the holomorphic part of the regularized amplitude. This idea was recently abstracted in
the works [20, 41] in a purely algebraic way where the composition of a projection on the holomorphic
part and the evaluation at (se = 1)e∈E(G) is called evaluator [41, 1.3 p. 6]. The renormalization R(tG)
of some amplitude tG is the composition of the operations summarized in the following diagram :

tG
regularization−→ tG(s)

projection on holomorphic part−→ π(tG(s))
evaluation at s=s0−→ ev|s0 (π(tG(s))) = R(tG),

where s0 = (se = 1)e∈E(G).
In section 6, we apply the above ideas to the renormalization of quantum field theories on Rieman-

nian manifolds and show the existence of a collection of renormalization maps (RMI )I⊂N that roughly
assign to each graph G a renormalized amplitude in D′(MV (G)) such that the renormalization maps
satisfy the consistency axioms 6.2 which come from the work of Nikolov–Todorov–Stora [59]. Let us
state a simplified version of our second main Theorem 6.2 :

Theorem 2.2 Let (M, g) be a smooth, compact, connected Riemannian manifold without bound-
ary of dimension d, dv(x) the Riemannian volume and P = −∆g +V , V ∈ C∞>0(M) or M = Rd

with a constant metric g and P = −∆g + m2,m ∈ R>0. Then for every graph G, on the
configuration space MV (G) endowed with the product volume form dvMV (G) :

• there exists distributions π(tG(s)), (1 − π)(tG(s)) such that for any test function ϕ ∈
C∞(MV (G)), we have a decomposition∫
MV (G)

tG(s)ϕdvMV (G) =

∫
MV (G)

(1− π)(tG(s))ϕdvMV (G)︸ ︷︷ ︸
meromorphic germ

+

∫
MV (G)

π(tG(s))ϕdvMV (G)

where s 7→
∫
MV (G) π(tG(s))ϕdvMV (G) is a holomorphic germ at s0 = (se = 1)e∈E(G) ∈

C|E(G)|.

• If ϕ ∈ C∞c (MV (G) \ all diagonals) then

lim
s→s0

∫
MV (G)

π(tG(s))ϕdvMV (G) =

∫
MV (G)

tGϕdvMV (G) (6)

which means lims→s0 π(tG(s)) is a distributional extension of tG ∈ C∞(MV (G) \
all diagonals).

Then the reader is referred to Theorem 6.2 where we prove many important properties enjoyed by
the renormalized amplitudes lims→s0 π(tG(s)). The most important being a factorization equation
appearing in definition 6.2 which translates in mathematical terms the essential property of locality in
Euclidean QFT.

Related works. In recent works of Hairer [42] and Pottel [64, 65], the authors give analytic treat-
ments of the BPHZ algorithm. Like in the present paper, they also start from Feynman amplitudes
in position space but Hairer works on Rd with abstract kernels K with specific singularity along
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diagonals, whereas we work on Riemannian manifolds but we limit our discussion to Green kernels
of Laplace type operators. He also uses Hepp sectors to perform some kind of multiscale analysis to
analyze the divergences of the Feynman amplitudes. It would be interesting to compare the renormal-
ization maps defined in the present paper with the valuations in Hairer’s paper [42] and definition 6.2
with the consistency axioms of [42].

Our treatment of renormalization bears a strong inspiration from the seminal work of Epstein–
Glaser [30] who were among the first to understand the central role of causality (this is replaced
in the current work by locality) in perturbative renormalization. Their work was generalized by
Brunetti–Fredenhagen [16] to curved space times while the crucial physical notions of covariance of
the renormalization were adressed in the works of Hollands–Wald [45, 46]. A recent investigation
of the Epstein–Glaser renormalization using resolution of singularities can be found in the thesis of
Berghoff [12, 13] clarifying some previous attempts [10, 11]. Our results seem to be more general since
we work in the manifold case and we resolve singularities by hand instead of using the compactifications
of configuration space of Fulton–McPherson and de Concini–Procesi.

There is a famous interpretation of the BPHZ renormalization in terms of Hopf algebras pioneered
by Connes–Kreimer [21, 22, 23]. This approach using dimensional regularization works essentially
in momentum space and does not generalize in a straightforward way to curved spaces. Motivated
by problems from number theory, Marcolli–Ceyhan [19] managed to reformulate the Hopf–algebraic
approach on configuration space.

Other sources of inspiration for us are the recent works [29, 58], where renormalization is discussed
from the point of view of distributional extensions in position à la Epstein–Glaser, using also several
complex parameters to perform some analytic continuation of the Feynman amplitude. In particular
the paper [58] relates Epstein–Glaser renormalization with the analytic renormalization by Speer.

Renormalization in the Riemannian setting was recently discussed in the book by Costello [24],
however it seems his proof of subtraction of counterterms contains some gaps that were fixed by
Albert who also extended Costello’s work to manifolds with boundary [2, 3].

Perspectives. A natural extension of our results would be to prove an analytic continuation result
for Feynman amplitudes made from Schwartz kernels of holomorphic families of pseudodifferential
operators in the sense of Paycha–Scott [62] generalizing the Schwartz kernels of complex powers of
Laplace operators. For the sake of simplicity, we limited ourselves to complex powers of Laplace
operators because of their explicit relation with heat kernels and leave it to another work for the
investigation of the more general case. Another interesting situation is when the manifold M is
noncompact with specific asymptotic structure as in scattering theory. Probably in this case, we
would need to use resolvents to define complex powers.

It would also be very interesting to test our proof in the Lorentz case with the Feynman propagator
instead of the Green’s function of the Laplacian. Then a natural question would be what is the sub-
stitute in the Lorentz case for the complex powers of the Laplace operators ? The first author defined
complex regularization of Feynman propagators in some previous work [25] on analytic Lorentzian
space–times under some very restrictive assumptions of geodesic convexity. This was based on the
Hadamard parametrix for the Feynman propagator. From our point of view, it would be preferable to
define some complex regularization scheme on smooth Lorentzian space–times which are not neces-
sarily geodesically convex. The scheme should be manifestly covariant as spectral regularization on
Riemannian manifolds. Probably, this would be based on the recent results of [9, 32, 33, 35, 26, 27, 77]
on the analytic structure of Feynman propagators. It is a reasonable idea to replace the heat kernel
asymptotic expansion by the Hadamard parametrix for the Feynman propagator as in [7].

Another interesting direction is to investigate if it is possible to renormalize the amplitudes in
Euclidean theory then perform a geometric Wick rotation as in Gérard–Wrochna [34] to build renor-
malized amplitudes of the corresponding Lorentzian QFT.
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3 Preliminaries.

The goal of the present section is to introduce the language of meromorphic germs with linear poles
and give the main definitions since meromorphic germs appear in the formulation of Theorem 2.1.
We also introduce their distributional counterpart which we call meromorphic germs of distributions
which is the fundamental object needed for the proof of Theorem 2.1. The meromorphic germs of
distributions are essentially distributions depending on some parameter s ∈ Cp, p ∈ N, such that when
they are paired with some test function ϕ, they give meromorphic germs in s.

3.1 Meromorphic functions with linear poles.

In this paper, all meromorphic functions of several variables s = (s1, . . . , sp) ∈ Cp have singularities
along unions of affine hyperplanes. In fact, we will work with meromorphic germs with linear
poles in the terminology of [40]. We work in the space Rp, and with the standard complex structure
on Cp = Rp ⊗C, let (Rp)∗ be the dual. In the sequel, holomorphic functions on some domain Ω ⊂ Cp
and holomorphic germs at s0 ∈ Cp are denoted by O(Ω) and Os0(Cp) respectively.

Definition 3.1 (meromorphic germs) Let s0 ∈ Rp, then f is a meromorphic germ with (real)
linear poles at s0 if there are vectors (Li)16i6m in (Rp)∗, such that

(

m∏
i=1

Li(.− s0))f ∈ Os0(Cp). (7)

Meromorphic germs with linear poles at s0 ∈ Cp are denoted by Ms0(Cp).

Geometrically such a meromorphic germ f is singular along some arrangement of affine hyperplanes
{s ∈ Cp s.t. Li(s− s0) = 0}16i6m, intersecting at the point s0.

3.2 Meromorphic germs of distributions.

In this paper, we deal with families of distributions t(s) on some smooth second countable manifold
X without boundary, depending meromorphically on some parameter s and whose poles are linear.
We will also call them distributions valued in meromorphic germs with linear poles and will denote
the space of such families by D′(X,M). We devote this subsection to their proper definition. Our
plan is to give the definition gradually starting from holomorphic objects. For a smooth manifold X
with given smooth density dv, we will use D′(X) to denote the space of distributions on X and D′(X)
is defined in the present paper as the topological dual of C∞c (X) ⊗ dv which is the space of smooth,
compactly supported densities. But in many situations where the density is explicitly given by the
geometric problem, we may equivalently think of distributions as the dual of C∞c (X).

Holomorphic families of distributions. Before we discuss meromorphic germs of distributions ,
let us start smoothly by defining distributions depending holomorphically on some extra parameter.

Definition 3.2 (holomorphic families) Let Ω ⊂ Cp be a complex domain, and X be a smooth
manifold, a holomorphic family of distributions on X parametrized by Ω is a family (t(s))s∈Ω of
distributions on X, such that for every test function ϕ ∈ C∞c (X), s 7→ 〈t(s), ϕ〉 defines a holomorphic
function on Ω. Such set of holomorphic families of distributions will be denoted by D′(X,O(Ω)).
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Then we next introduce a variant of the above definition involving distributions whose distributional
order is bounded by some integer m.

Definition 3.3 (holomorphic families with bounded order) Let m be an integer and X a smooth
manifold, then a distribution t is of order bounded above by m on X if t defines a continuous linear
function on Cmc (X). For a complex domain Ω, a holomorphic family of distributions (t(s))s∈Ω of order
bounded above by m on X, is a family (t(s))s∈Ω of distributions of order bounded above by m such that
for every test function ϕ ∈ Cmc (X), s 7→ 〈t(s), ϕ〉 defines a holomorphic function on Ω. This set is
denoted by D′,m(X,O(Ω)).

Once we defined holomorphic families of distributions where the complex parameter lives on some
domain Ω containing some element s0, it is natural to give a definition where we want to forget the
information about Ω and localize around s0. We thus work at the level of holomorphic germs near s0.

Definition 3.4 (holomorphic germs) A holomorphic germ at a point s0 ∈ Cp of distributions on
X is an equivalence class of holomorphic families of distributions on X w.r.t. the natural equivalence
relation: (t(s))s∈Ω1 ∼ (u(s))s∈Ω2 if there exists Ω3 ⊂ Ω1 ∩ Ω2 such that s0 ∈ Ω3 and t(s) = u(s) for
all s ∈ Ω3. This set is denoted by D′(X,Os0(Cp)).

Example 3.1 The family of distributions t(s) : ϕ ∈ C∞c (R) 7→
∫
R e

sxϕ(x)dx defines a holomorphic
germ of distributions at s = 0 with real coefficients.

Meromorphic germs of distributions. Once we have a proper definition for holomorphic families
of distributions, we can give a very natural definition of meromorphic families of distributions as
follows :

Definition 3.5 (meromorphic family of distributions with linear poles) For a complex domain
Ω ⊂ Cp, a meromorphic family of distributions on Ω is a holomorphic family (t(s))s∈Ω\{s;L1=···=Lk(s)=0}
of distributions, where L1, . . . , Lk are linear functions on Cp, such that

t(s) = (L1(s) . . . Lk(s))−1h(s),∀s ∈ Ω \ {s;L1 = · · · = Lk(s) = 0} (8)

where (h(s))s∈Ω ∈ D′(X,O(Ω)).

Now we localize the above definition to germs at s0 ∈ Cp :

Definition 3.6 (meromorphic germs of distributions) A meromorphic germ of distributions at
s0 with linear poles is an equivalence class of meromorphic families of distributions on some neigh-
borhood Ω of s0 with linear poles under the equivalence relation: t(s)s∈Ω1\Y1

∼ t′(s)s∈Ω2\Y2
, where

Yi = {s;Li1 = · · · = Liki(s) = 0}, i = 1, 2 with linear functions Lij j = 1, · · · , ki, i = 1, 2, if there exist

a complex domain Ω3 ⊂ Ω1 ∩ Ω2, and linear functions L3
1, · · ·L3

k3
such that s0 ∈ Ω3, s0 ∈ Y1 ∩ Y2,

Y3 = {s;L3
1 = · · · = L3

k3
(s) = 0} ⊂ Y1, Y3 ⊂ Y2, and t(s)s∈Ω3\Y3

= t′(s)s∈Ω3\Y3
. The set of meromor-

phic germs of distribution with real coefficients will be denoted by D′(X,Ms0(Cp)).

It is simple to show that :

Proposition 3.1 The set D′(X,Os0(Cp)) is a vector subspace of D′(X,Ms0(Cp)).

3.3 Power expansions of holomorphic germs

Let us state a convenient proposition about power series expansion of holomorphic families of distri-
butions whose proof is given in the appendix.
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Proposition 3.2 Let X be some smooth manifold, Ω ⊂ Cp and (t(s))s∈Ω ∈ D′(X,O(Ω)) be some
holomorphic family of distributions. Then near every s0 ∈ Ω, ts admits a power series expansion

t(s) =
∑
α

(s− s0)α

α!
tα

where α = (α1, . . . , αn) ∈ Nn and tα is a distribution in D′(X) such that for all test functions ϕ,∑
α

(s−s0)α

α! tα(ϕ) converges as power series near s0.

This classical result is just a multivariable version of [37, Theorem 1] which is stated for general locally
convex spaces E, we include a proof in the appendix to make our text self–contained.

3.4 From Green functions to the heat kernel.

The fundamental tool we use to investigate the singularities of Feynman amplitudes is the heat kernel.
In this section, we recall its main properties and explain how one can express the regularized Green
functions and the Feynman amplitudes in terms of the heat kernel.

3.4.1 Heat kernels

The complex powers of P = −∆g + V are related to the heat kernel e−tP in the following way (see
also [36, paragraph 1.12.14 p. 112]):

Proposition 3.3 Let (M, g) be a smooth compact, connected Riemannian manifold without boundary
and let P = −∆g +V , V ∈ C∞>0(M) or M = Rd with constant metric g and P = −∆g +m2,m ∈ R>0.
Set Π to be the spectral projector on ker(P ), and s ∈ C with Re(s) > 0 then

P−s =
1

Γ(s)

∫ ∞
0

(
e−tP −Π

)
ts
dt

t
(9)

in the sense of bounded operator from L2(M,C) 7→ L2(M,C) where Γ is the Euler Gamma function.
In the sense of Schwartz kernels :

Gs(x, y) =
1

Γ(s)

∫ ∞
0

(Kt(x, y)−Π(x, y)) ts
dt

t

where Kt ∈ C∞((0,∞)×M ×M) is the heat kernel.

Note that when 0 /∈ σ(P ) and M compact or when M = Rd, then we can set Π = 0.
Proof — The proposition is clear when M = Rd hence we just discuss the compact case. As a
consequence of the compactness of M and the fact that P is an elliptic, positive, self-adjoint operator, P
has discrete spectrum denoted by σ(P ), the eigenfunctions (eλ)λ∈σ(P ) of P form an orthonormal basis of
L2(M,C), so for any u ∈ L2(M,C), u =

∑
〈u, eλ〉eλ. By definition, P−su =

∑
λ∈σ(P ),λ 6=0 λ

−s〈u, eλ〉eλ
where the sum on the right hand side converges absolutely in L2(M,C). And the spectral projector Π
on ker(P ) is simply Π(u) =

∑
λ=0〈u, eλ〉eλ.

The heat operator e−tP is a strongly continuous semigroup acting on L2(M,C). For every u ∈
L2(M,C) :

(e−tP −Π)u =
∑

λ∈σ(P )\0

e−tλ〈u, eλ〉eλ

where the sum on the r.h.s converges in L2(M,C).
Therefore for λ > 0, by a change of variable in the Γ function λ−s = 1

Γ(s)

∫∞
0
e−tλts dtt , it follows

that the identity P−s = 1
Γ(s)

∫∞
0

(
e−tP −Π

)
ts dtt holds true in operator sense where the integral on

the r.h.s converges in operator norm. Hence the same identity should hold true for the corresponding
Schwartz kernels. �
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3.5 Local asymptotic expansions of heat kernels

We will use the following property of the heat kernel asymptotics [15, Thm 2.30] (see also [69, Thm
7.15]) :

Theorem 3.1 ( Minakshisundaram–Pleijel) Let (M, g) be a compact Riemannian manifold with-
out boundary, ε is the injectivity radius of M and P = −∆g + V , V ∈ C∞>0(M). Choose some

cut–off function ψ : R+ 7→ [0, 1] such that ψ(s) = 1 if s 6 ε2/4 and ψ(s) = 0 if s > 4ε2/9. Let
Kt(x, y) ∈ C∞((0,∞)×M ×M) denote the heat kernel, then there exist smooth real valued functions
ak(x, y) ∈ C∞(M ×M), k = 0, 1, · · · , with a0(x, y) = 1, such that for all (n, p) ∈ N2, and differential
operator P (x,Dx) of degree m, there exists a constant C > 0 such that for all t ∈ (0, 1] :

sup
(x,y)∈M2

|P (x,Dx)∂pt

(
Kt(x, y)−

n∑
k=0

ψ(d2)
e−

d2(x,y)
4t

(4πt)
d
2

ak(x, y)tk

)
| 6 Ctn− d2−m2 −p (10)

where d(., .) : M ×M 7→ R>0 is the Riemannian distance function.

Note that our statement differs from the statement in [69] from the fact that we use a cut–off
function ψ since outside some neighborhood of the diagonal ∆ ⊂M ×M , Kt vanishes at infinite order
in t when t→ 0 (see the proof of [69, Thm 7.15 p. 102]). In case M = Rd with constant metric g and
P = −∆g +m2,m ∈ R>0, we have the well known exact formula :

Kt(x, y) =
1

(4πt)
d
2

exp

(
−
|x− y|2g

4t
− tm2

)
=

exp
(
− |x−y|

2
g

4t

)
(4πt)

d
2

∞∑
k=0

(−1)ktkm2k

k!

which already appeared in definition 2.3.

4 Reduction of regularized Feynman amplitudes

Recall our aim was to prove analytic continuation of the regularized amplitude

tG =
∏

e∈E(G)

Gse(xi(e), xj(e))

in D′(MV (G),Ms0(CE(G))) where s0 = (se = 1)e∈E(G) and Gs is the Schwartz kernel of the complex
power P−s. The main goal of this section is to prove a technical Theorem 4.1 which allows us to
reduce our main Theorem 2.1 to the proof of an analytic continuation Theorem for simpler analytic
objects. These are some kind of Feynman amplitudes introduced in definition 4.3 corresponding
to labelled Feynman graphs defined in definition 4.2 which are graphs whose edges are decorated
by some integer. Intuitively, the amplitude of the labelled graph is obtained from the regularized
amplitude tG(s) where we replace the heat kernels appearing in the formula for the Green function
Gs = 1

Γ(s)

∫∞
0
ts−1

(
e−tP −Π

)
dt, by the heat kernel asymptotic expansion. The integers decorating

the edges exactly correspond to the heat coefficients in the heat kernel asymptotic expansion.

4.1 Holomorphicity of Green’s function

The next Lemma discusses analytical properties of the regularized Green function of the Schrödinger
operator P which is elliptic since its leading part coincides with the Laplace operator, it is therefore
automatically self-adjoint by the symmetry assumption [76, p. 35].

Lemma 4.1 Let (M, g) be a smooth compact, connected Riemannian manifold without boundary and
let P = −∆g + V , V ∈ C∞>0(M) or M = Rd with constant metric g and P = −∆g + m2,m ∈ R>0.
Denote by Kt the corresponding heat kernel. Then :
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1. For all k ∈ N, if Re(s) > d
2 + k, Gs is a Ck function on M ×M .

2. For all k ∈ N, a compact subset K ⊂M ×M \Diagonal, the kernel Gs is holomorphic in s and
valued in Ck(K).

3. If we write

Gs(x, y) = Gs≤(x, y) + Gs≥(x, y)

where

Gs≥(x, y) =
1

Γ(s)

(∫ 1

0

(Kt −Π)(x, y)ts−1dt

)
,Gs≤(x, y) =

1

Γ(s)

(∫ ∞
1

(Kt −Π)(x, y)ts−1dt

)
then Gs≤(x, y) is holomorphic in s and valued in C∞(M ×M) which is denoted by
Gs≤ ∈ C∞(M ×M,O(Cp)).

The proof of these classical properties, when M is compact, is recalled in the appendix. For M = Rd,
they follow from straightforward computations.

4.2 Reduction to local charts and localization near deepest diagonal.

The purpose of the next two Lemmas is to localize the proof of our main Theorem about the analytic
continuation of the distribution tG(s) to neighborhoods of the deepest diagonals in MV (G).

Lemma 4.2 Let X be a manifold without boundary, s0 ∈ Cp then t(s) ∈ D′(X,Ms0(Cp)) iff for every
x ∈ N , there exists a neighborhood Ux of x such that t(s)|Ux ∈ D′(Ux,Ms0(Cp)).

If X is non compact, we require that there are linear functions (Li)
k
i=1 corresponding to a fixed

polar set Y = {s;L1(s) = · · · = Lk(s) = 0} ⊂ Cp, s0 ∈ Y such that t(s)|Ux ∈ D′(Ux,Ms0(Cp)) singular
along the polar set Y .

Proof — The direct implication is straightforward. Assume that for every x ∈ X, there exists a
neighborhood Ux of x such that t(s)|Ux ∈ D′(Ux,Ms0(Cp)). Then by local compactness, there is a
locally finite subcover (Ui)i of N such that t(s)|Ui ∈ D′(Ui,Ms0(Cp)). Let (χi)i be a partition of unity
where each χi is supported in Ui. Then for every test function ϕ ∈ C∞c (X), 〈t(s), ϕ〉 =

∑
i〈t(s), χiϕ〉

is a finite sum of meromorphic germs with linear poles at s0. In the non compact case, the polar set Y
is fixed. Therefore the sum is a meromorphic germ with linear poles at s0. This is a finite sum, hence
s 7→ 〈t(s), ϕ〉 is meromorphic with linear poles at s0 with linear poles. �

The next Lemma is inspired by the seminal work of Popineau and Stora [63] and it states that it
is enough to work our analytic continuation problem for the distributions tG ∈ D′(MV (G)) near the
deepest diagonals :

Lemma 4.3 (Popineau–Stora Lemma) If for any graph G, and any x ∈ M , there is some neigh-

borhood Ux of x, such that tG|UV (G)
x

∈ D′(UV (G)
x ,Ms0(Cp)) where s0 = (se = 1)e∈E(G), then tG ∈

D′(MV (G),Ms0(Cp)), s0 = (se = 1)e∈E(G) for every graph G.

Proof — We prove it by induction on the number of vertices of the graph G. For |V (G)| = 2,

tG =
∏E
e=1 G

se(x, y). For a point (x, y) ∈ M2 = MV (G), if x 6= y, consider neighborhoods Vx of x in
M and Vy of y in M , such that Vx∩Vy = ∅, then {Vx×Vy}(x,y)∈M2,x 6=y

⋃
{Ux×Ux}x∈M form an open

cover of M2, it has a locally finite subcover {Wi}i with Wi = Vxi × Vyi or Uxi × Uxi . Let {χi}i be
a partition of unity supported on {Wi}i, then tG =

∑
i tGχi, where each tGχi is holomorphic at s0 if

the support of χi does not intersect the diagonal by Lemma 4.1 or has meromorphic continuation at
s0 by assumption. Now the claim follows from Lemma 4.2 applied to the manifold X = MV (G).
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Now |V (G)| = n > 2 and assume the result holds for all graphs whose number of vertices are
strictly less than n. Denote by dn = {x1 = · · · = xn} ⊂Mn, the deepest diagonal in the configuration
space Mn. For (x1, . . . , xn) ∈ Mn \ dn, let I = {i | xi = x1}, and Ic = {1, . . . , n} \ I, then I 6= ∅,
Ic 6= ∅, and for any j ∈ Ic there are neighborhoods Uj of x1 and Vj of xj such that Uj ∩ Vj = ∅. Let
V = (∩j∈IcUj)|I| ×

∏
j∈Ic Vj , then V ⊂Mn \ dn, and xi 6= xj ,∀(i, j) ∈ I × Ic for all (x1, . . . , xn) ∈ V.

Then we partition the set of edges E(G) of the graph G in three parts : E(G) = EI ∪ EIc ∪ EIIc ,
where EI (resp EIc) is the set of edges of G whose incident vertices are in I (resp Ic) i.e. every
edge e ∈ EI (resp e ∈ EIc) is bounded by vertices in I (resp Ic). The remaining subset of edges is
denoted by EIIc and is made of all edges e ∈ E(G) which are neither in EI nor in EIc . By that,
we mean the edges of EIIc only connect some vertex in I with another vertex of Ic. So we write
(x1, . . . , xn) = (xi, xj)i∈I,j∈Ic ∈ M I ×M Ic . Similarly the complex variables (se)e∈E(G) attached to
the edges of G will be divided in three groups corresponding to the edges EI , EIc and EIIc respectively.
Then we decompose the amplitude tG as a product of three factors :

tG
(
(se)e∈E(G); (xi, xj)i∈I,j∈Ic

)
= tI ((se)e∈EI ; (xi)i∈I) tIc (((se)e∈EIc ; (xj)j∈Ic)

× tIIc ((se)e∈EIIc ; (xi, xj)i∈I,j∈Ic)

where tI =
∏
e∈EI G

se , tIc =
∏
e∈EIc G

se , tIIc =
∏
e∈EIIc G

se .

By the induction assumption, both tI and tIc are distributions in D′(M I ,Ms0I (CEI )), s0I = (se =
1)e∈EI and D′(M Ic ,Ms0Ic (CEIc )), s0Ic = (se = 1)e∈EIc respectively. Then by Lemma 7.1, the exte-
rior product tI ((se)e∈EI ; (xi)i∈I) tIc (((se)e∈EIc ; (xj)j∈Ic) of distributions depending on different vari-
ables is an element in D′(Mn,Ms0IIc (CEI∪EIc )), s0IIc = (se = 1)e∈EI∪EIc . Now the factor tIIc

contains only product of propagators Gse(xi, xj) where xi 6= xj , so in the open subset V ⊂ Mn,
Gse(xi, xj) ∈ C∞(M × M \ Diagonal,O(C)) in the variables (xi, xj) by Lemma 4.1. Thus on V,
tIIc ∈ C∞(V,O(CEIIc )) which means tIIc is holomorphic in the parameter (se)e∈EIIc ∈ CEIIc .
We conclude that near any element of Mn, there is some open neighborhood U ⊂ Mn such that
tG ∈ D′(U,Ms0(CE(G))), s0 = (se = 1)e∈E(G). Then by Lemma 4.2, tG ∈ D′(Mn,Ms0(CE(G))), s0 =
(se = 1)e∈E(G). �

4.3 Reductions to integrals on cubes.

In the representation of the Green function as integral of the heat kernel over (0,+∞), we would like
to get rid of the low energy part which is Gs6 =

∫∞
1
dt(Kt −Π)ts−1 which is smooth and holomorphic

in s so it does not contribute to the singularities of tG. We thus reduce the study of tG, to the study
of some formula PG which contains only integrals over cubes which are easier to handle and contain
all the singularities of tG.

Definition 4.1 For a graph G, and E ⊂ E(G), the subgraph induced by E is the subgraph H of G,
such that E(H) = E, V (H) = {v ∈ V (G) | v is a vertex incident to some e ∈ E}.

Proposition 4.1 If for every graph G, the product

PG(s) =
∏

e∈E(G)

1

Γ(se)

(∫ 1

0

(K`e −Π)(xi(e), xj(e))`
se−1
e d`e

)
extends to D′(MV (G),Ms0(CE(G))) at s0 = (se = 1)e∈E(G), then tG(s) extends to D′(MV (G),Ms0(CE(G)))
at s0 = (se = 1)e∈E(G).

Proof — For all Re(se) >
d
2 , since Gs,Gs≥,G

s
≤ all belong to C0(M ×M) by Lemma 4.1, the following

product makes perfect sense :

tG(s) =
∏

e∈E(G)

(
Gse≤ + Gse≥

)
=

∏
e∈E(G)

Gse≥ +
∏

e∈E(G)

Gse≤ +
∑

E1∪E2=E(G)

(∏
e∈E1

Gse≥

)(∏
e∈E2

Gse≤

)
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where the sum runs over all partitions E(G) = E1 ∪ E2, E1 6= ∅, E2 6= ∅. Therefore :

tG(s) = PG(s) +
∏

e∈E(G)

Gse≤︸ ︷︷ ︸
+

∑
E1∪E2=E(G)

PG(E1)(s)

(∏
e∈E2

Gse≤

)
︸ ︷︷ ︸

where G(E1) is the induced subgraph of G by the subset E1. The terms underbraced are in C∞

functions depending holomorphically on the parameters s ∈ CE(G) near (se = 1)e∈E(G) since each
Gs≤ ∈ C∞(M ×M,O(C)). By assumption, for all induced subgraph G(E1) ⊂ G, PG(E1) extends to

D′(MV (G(E1)),Ms0(CE1)), s0 = (se = 1)e∈E1
. Therefore by Lemma 7.3, each product PG(E1)(s)

(∏
e∈E2

Gse≤

)
has analytic continuation in D′(MV (G),Ms0(CE(G))), s0 = (se = 1)e∈E(G). �

Therefore it is sufficient to study :

PG(s) =
∏

e∈E(G)

1

Γ(se)

(∫ 1

0

(K`e −Π)(xi(e), xj(e))`
se−1
e d`e

)
(11)

Lemma 4.4 Let G be a graph with E edges and

PG(s) =
∏

e∈E(G)

1

Γ(se)

∫
[0,1]E(G)

∏
e∈E(G)

(K`e −Π)(xi(e), xj(e))`
se−1
e d`e

 . (12)

If for all e ∈ {1, . . . , E}, Re(se) > d
2 , then the integral defining PG(s) converges absolutely in [0, 1]E

uniformly in (x1, . . . , x|V (G)|) ∈MV (G).

Proof — First when M = Rd or if M is compact and 0 /∈ ker(P ) then Π = 0. Otherwise, if 0 ∈ ker(P ),
then the Schwartz kernel of Π must a constant function (see appendix 7.3). Therefore, it is sufficient

that Re(s) > 0 so that
∫ 1

0
Π(x, y)`s−1d` is Riemann integrable. Now by Theorem 3.1, there exists a

constant C0 > 0 such that for ` ∈ (0, 1] and for all (x, y) ∈M2 :

|

K`(x, y)− 1

(4π`)
d
2

ψ(d2(x, y))e−
d2(x,y)

4`

∑
06k6 d

2 +1

ak(x, y)`k

 | 6 C0.

So by the triangular inequality and by positivity of the heat kernel, we have the bound

0 6 K`(x, y) 6
1

(4π`)
d
2

ψ(d2(x, y))e−
d2(x,y)

4`

∑
06k6 d

2 +1

|ak(x, y)|`k + C0.

From which we can bound the integral :∫ 1

0

K`(x, y)|`s−1|d` 6
∫ 1

0

1

(4π)
d
2

ψ(d2(x, y))e−
d2(x,y)

4`

∑
06k6 d

2 +1

|ak(x, y)`k+s− d2−1|+ C0|`s−1|d`

6
∫ 1

0

1

(4π)
d
2

∑
06k6 d

2 +1

|ak(x, y)`k+s− d2−1|+ C0|`s−1|d`

since ψe−
d2

4` 6 1 and the right hand side is absolutely integrable when Re(s) > d
2 . Therefore∫

[0,1]E(G)

∏
e∈E(G)

(K`e −Π)(xi(e), xj(e))`
se−1
e d`e

 =
∏

e∈E(G)

∫ 1

0

(K`e −Π)(xi(e), xj(e))`
se−1
e d`e

is a product of convergent Riemann integrals, the above integral inversions make sense by Fubini which
yields the claim of our Lemma. �
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Now we set :

IG(s) =
∏

e∈E(G)

1

Γ(se)

∫ 1

0

K`e(xi(e), xj(e))`
se−1d`e (13)

which is well–defined as soon as Re(se) >
d
2 ,∀e ∈ E(G) by the above arguments. Then

PG(s) =
∑

E⊂E(G)

IG(E)(s)
∏

e∈E(G)\E

Π(xi(e), xj(e))

se
(14)

where G(E) is the induced subgraph by the subset of edges E ⊂ E(G). By the fact that
∫ 1

0
Π`s−1d` =

Π
s ∈ C

∞(M ×M,O1(C)), which is holomorphic near s = 1, the products of spectral projectors do not
contribute to the poles. So we can further reduce our study to the analytic continuation of IG(s).

4.4 Distributional order

In this step, we introduce a further reduction by replacing each K` in the integral formula of IG(s) by
its heat asymptotic expansion and try to control the remainders.

1

Γ(s)

∫ 1

0

K``
s−1d` =

1

Γ(s)

∫ 1

0

e−
d2(x,y)

4`

(4π`)
d
2

(
p∑
k=0

ak(x, y)ψ(d2(x, y))`k

)
+ hp(`, x, y)`s−1d`

where hp(`, x, y) is the remainder in the heat asymptotics which satisfies the estimate ‖hp‖m 6
C`p−

d
2−

m
2 by Theorem 3.1 and ψ is the cut-off function from Theorem 3.1.

We first introduce some refinement of Feynman graphs to keep track of the information on the
heat coefficients for every edge. So these are basically Feynman graphs whose edges are decorated by
integers which correspond to heat coefficients.

Definition 4.2 (labelled graph) For a set S, an S-labelled graph is a pair (G,
−→
k ) where

−→
k is a

map E(G) → S. If S is N, we call it shortly labelled graph, and for e ∈ E(G), we use the short

notation ke to denote the element
−→
k (e) ∈ N. If S = R>0, then the map E(G) 7→ R>0, called the length

function, is denoted by ` and we call such pair (G, `) a metric graph. If ` is injective, then (G, `) is
called strict metric graph.

We next define Feynman amplitudes attached to labelled graphs.

Definition 4.3 For every labelled graph (G,
−→
k ), we define the corresponding amplitude I

G,
−→
k

(s) as

follows :

I
G,
−→
k

(s) =
∏

e∈E(G)

1

Γ(se)

∫
[0,1]E

∏
e∈E(G)

 e−
d2

4`e

(4π)
d
2

akeψ(d2)

 (xi(e), xj(e))`
ke− d2 +se−1
e d`e (15)

which is well–defined and holomorphic in (se)e∈E(G) ∈ CE(G) on the domain se >
d
2 , e ∈ E(G) by

exactly the same proof as in Lemma 4.4.

Proposition 4.2 If for every graph G, there is m ∈ N depending on G, such that for all labels−→
k ∈ NE(G), for all x ∈M , there is an open neighborhood Ux ⊂M of x such that I

G,
−→
k

(s) has analytic

continuation in D′,m(U
V (G)
x ,Ms0(CE(G))), s0 = (se = 1)e∈E(G), then for all G, tG(s) extends in

D′(MV (G),Ms0(CE(G))), s0 = (se = 1)e∈E(G).
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Proof — Let n = |V (G)| and U = Ux. By Lemma 4.3 which allows us to localize our analytic
continuation proof near the deepest diagonal of Mn, we only need to prove that tG(s) extends as a
meromorphic germ of distributions at (se = 1)e∈E(G) on Un. For a test function ϕ,

〈IG(s), ϕ〉

=

∫
Un

( ∏
e∈E(G)

1

Γ(se)

∫ 1

0

K`e`
s−1
e d`e

)
ϕdv(x1) . . . dv(xn)

=

∫
Un

∏
e∈E(G)

 p∑
ke=0

1

Γ(se)

∫ 1

0

e−
d2

4`e

(4π)
d
2

akeψ(d2)`ke+se−
d
2−1d`e +

1

Γ(se)

∫ 1

0

hp`
se−1
e d`e

ϕdv(x1) . . . dv(xn)

=

∫
Un

( ∑
E1∪E2=E(G)

∏
e∈E1

 p∑
ke=0

1

Γ(se)

∫ 1

0

e−
d2

4`e

(4π)
d
2

akeψ(d2)`ke+se−
d
2−1d`e

 ∏
e∈E2

(
1

Γ(se)

∫ 1

0

hp`
se−1
e d`e

))
× ϕdv(x1) . . . dv(xn)

where the sum runs over partitions E1 ∪ E2 = E(G). Therefore we obtain

〈IG(s), ϕ〉 =

∫
Un

∑
E1∪E2=E(G)

∑
−→
k ∈{0,...,p}E1

I
G(E1),

−→
k

(s)
∏
e∈E2

(
1

Γ(se)

∫ 1

0

hp(`e, xi(e), xj(e))`
se−1
e d`e

)
︸ ︷︷ ︸ϕdv(x1) . . . dv(xn)

where the summation is over all
−→
k ∈ {0, 1, · · · , p}E(G). By Theorem 3.1, we have the two estimates

|Dm
x hp(`e, x, y)`se−1

e | ≤ C`p−
d
2−

m
2 +se−1

e ,

and

|Dm
x hp(`e, x, y)`se−1

e log `e| ≤ C`
p− d2−

m
2 +se−1+ε

e ,

for some ε > 0. So when p > d+m
2 − 1, for every e ∈ E2, there is a small neighborhood of se = 1 such

that the integral
∫ 1

0
hp(`e, xi(e), xj(e))`

se−1
e d`e is absolutely convergent and depends holomorphically

on se. Hence the term underbraced belongs to Cm(Un,Os0(CE2)), s0 = (se = 1)e∈E2 , where G(E2) is
the graph induced by E2. Now we conclude the proof by noticing that the product of I

G(E1),
−→
k

(s) ∈
D′,m(Un,Ms0(CE1)), s0 = (se = 1)e∈E1

with some element in Cm(Un,Os0(CE2)), s0 = (se = 1)e∈E2

yields an element of D′,m(Un,Ms0(CE1∪E2)), s0 = (se = 1)e∈E1∪E2
by Lemma 7.3 proved in the

appendix. �

The next Theorem is the main result from the present section and summarizes all reduction steps
performed above :

Theorem 4.1 (Reduction Theorem) Assume that for every graph G, there is an integer

m(G), such that for any x ∈ M , there is a chart Ux of M around x such that for all
−→
k ,

I
G,
−→
k

(s)|Unx admits an analytic continuation in D′,m(G)
(
Unx ,Ms0(CE(G))

)
, s0 = (se = 1)e∈E(G).

Then for a given graph G, let m = supG′⊂Gm(G′), for any p > d+m
2 −1, we have a decomposition

tG(s) =
∑
G′⊂G

mG′(s)hG\G′(s) (16)

where the sum runs over induced subgraphs G′ of G, mG′(s) =
∑
−→
k ∈{0,...,p}E(G′) IG′,−→k (s) ∈

D′,m(MV (G′),Ms0(CE(G′))) and hG\G′(s) ∈ Cm(MV (G\G′),Os0(CE(G)\E(G)′)). In particular,

tG(s) extends as an element in D′(MV (G),Ms0(CE(G))), s0 = (se = 1)e∈E(G).
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So the above Theorem allows to reduce the proof of Theorem 2.1 to the analytic continuation of
the simpler objects I

G,
−→
k

(s) if we can control the distributional order of I
G,
−→
k

(s) independently of the

label
−→
k ∈ NE(G).

Proof — We use the following decomposition formula which summarizes the above three reduction
steps, namely the reduction on cubes, the elimination of the spectral projector and the extraction of
labelled graphs :

tG(s)|Unx =
∑

E1∪E2∪E3∪E4=E(G)

 ∑
−→
k ∈{0,...,p}E1

I
G(E1),

−→
k

(s)︸ ︷︷ ︸
 ∏
e∈E2

(
1

Γ(se)

∫ 1

0

hp(`e, x, y)`se−1
e d`e

)

×
∏
e∈E3

Π(xi(e), yj(e))

se

∏
e∈E4

Gse≤

where the sum runs over partitions E1∪E2∪E3∪E4 = E(G). Then considerm = supE1⊂E(G)m(G(E1))
which is the supremum of distributional orders m(G(E1)) for E1 ⊂ E(G), m is finite by assumption
and bounds the distributional order of all the terms I

G(E1),
−→
k

(s) underbraced. Moreover, we saw in

the proof of Proposition 4.2 that if we choose p > d+m
2 − 1, then the product

∏
e∈E2

(
1

Γ(se)

∫ 1

0

hp(`e, x, y)`se−1
e d`e

) ∏
e∈E3

Π(xi(e), yj(e))

se

∏
e∈E4

Gse≤

belongs to Cm(MV (G(E2∪E3∪E4)),Os0(CE2∪E3∪E4)), s0 = (se = 1)e∈E2∪E3∪E4
. Therefore the whole

product tG(s) ∈ D′(MV (G),Ms0(CE(G))), (se = 1)e∈E(G). The above complicated formula can be
written very concisely as

tG(s) =
∑
G′⊂G

mG′(s)hG\G′(s)

where the sum runs over induced subgraphs G′ of G, mG′(s) =
∑
−→
k ∈{0,...,p}E(G′) IG′,−→k (s) and hG\G′ =∏

e∈E2

(
1

Γ(se)

∫ 1

0
hp(`e, x, y)`se−1

e d`e

)∏
e∈E3

Π(xi(e),xj(e))

se

∏
e∈E4

Gse≤ where E2 ∪E3 ∪E4 forms a parti-

tion of E(G) \ E(G′). �

5 Desingularization of parameter space.

Now that we reduced the proof of Theorem 2.1 to the proof of Theorem 4.1, we start by studying in

local coordinates the amplitudes I
G,
−→
k

(s) ∈ D′(MV (G)) corresponding to labelled graphs (G,
−→
k ).

Fixing charts. For any x ∈M , take a coordinate chart U around x such that U ∼= Rd and Ū ⊂M
is compact and d(y1, y2) < ε

2 for any y1, y2 ∈ U . Since the volume form dv on a Riemannian manifold
reads |det(g)|ddx in local coordinate chart, we may absorb the smooth function |det(g)| in the test
function ϕ and forget about the determinant of the metric in the local coordinate system. We number
the vertices of G by {1, . . . , n}, and the edges by integers {1, . . . , E}. For every edge e, we associate
vertices i(e), j(e) which are incident to e. Then for a test function ϕ with supp(ϕ) ⊂ Un,

〈I
G,
−→
k

(s), ϕ〉

=
1

(4π)
dE
2

E∏
e=1

1

Γ(se)

∫
[0,1]E

d`1 . . . d`E

(∫
Un

E∏
e=1

exp

(
− d2

4`e

)
`
se+ke− d2−1
e akeψ(d2)ϕ̃ddx1 . . . d

dxn

)
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where ϕ̃ = |det(g)|ϕ. This formula is well–defined when Re(se) > d
2 ,∀e ∈ {1, . . . , E} since the

integration on [0, 1]E is absolutely convergent, the integral on Un converges absolutely by compactness
of the support of ϕ, hence we can integrate in order by Fubini Theorem. Furthermore, arguing as in
the proof of Proposition 4.2 show that 〈I

G,
−→
k

(s), ϕ〉 is holomorphic in s ∈ CE when Re(se) >
d
2 .

By our choice of U , d2 is smooth on U × U , it is enough to prove that :

1

(4π)
dE
2

∫
[0,1]E

d`1 . . . d`E

(∫
Rdn

E∏
e=1

exp

(
− d2

4`e

)
`
se+ke− d2−1
e akeψ(d2)ϕ̃ddx1 . . . d

dxn

)

extends to a meromorphic germ of distribution at (se = 1). Note that this argument also applies to
the case where M = Rd with constant metric g and P = −∆g +m2,m ∈ R>0.

5.1 Smoothness problems and the need to resolve singularities.

Assume we work on flat space Rd, then to study the analytic continuation of I
G,
−→
k

, we need to study

integrals of the form :∫
[0,1]E

d`1 . . . d`E

(∫
Rdn

E∏
e=1

exp

(
−
|xi(e) − xj(e)|2

4`e

)
`
se+ke− d2−1
e akeψ(d2)ϕ̃ddx1 . . . d

dxn

)
.

The analytic continuation would come from integration by parts on the cube [0, 1]E w.r.t. the variables

(`1, . . . , `E). However, we see immediately that e−|x−y|
2/4` is not a smooth function of (`, x, y) ∈

[0, 1]×Rd ×Rd. The problem occurs at the set X = {` = 0, x− y = 0} ⊂ [0, 1]×Rd ×Rd. A solution
in global analysis is to consider the following smooth map :

π : (t, x, h) ∈ [0, 1]× (Rd)2 7→ (t, x, x+
√
th) ∈ [0, 1]× (Rd)2.

Note that after pull–back by π, we find that e−|x−y|
2/4` ◦ π(x, t, h) = e−|h|

2/4 which is now a smooth
function near the preimage π−1 (X) = {t = 0} in [0, 1] × (Rd)2. We say that we resolved the sin-

gularities of e−|x−y|
2/4`. For a discussion of why one needs to use blow–ups to study heat kernels

and applications to index theory, the reader is referred to [54, p. 253]. Similarly, the product of

exponentials
∏E
e=1 exp

(
− |xi(e)−xj(e)|

2

4`e

)
appearing in Feynman amplitudes is also not smooth on the

whole domain of integration (`1, . . . , `E , x1, . . . , xn) ∈ [0, 1]E × Rdn and integration by parts can-

not be done. It follows that we must resolve the products
∏E
e=1 exp

(
− |xi(e)−xj(e)|

2

4`e

)
to make them

smooth which is discussed in paragraph 5.4. Such resolution of singularities were studied by Speer
on flat space building on the work of Hepp. Also, when (M, g) is an analytic Riemannian mani-
fold or when M = Rd with constant Euclidean metric, one can use Hironaka’s resolution of singu-
larities as in [5] or Bernstein–Sato polynomials to regularize Feynman amplitudes [25, 44]. How-
ever, on a Riemannian manifold (M, g), if for all m ∈ M , there is an open subset U containing
m and a local coordinate system (x1, . . . , xd) : U ⊂ M 7→ Rd such that for every (m1,m2) ∈ U2,

d(m1,m2) =
√∑d

i=1(xi(m1)− xi(m2))2 then (M, g) is flat. Otherwise for generic Riemannian

manifolds (M, g), it is not possible to find good coordinates to make the distance function locally
quadratic because of curvature. This makes our resolution of singularities more difficult to handle
than the one appearing in the work of Speer and the fact that we work in the C∞ case and not in
the analytic or algebraic category prevents us from using directly Hironaka’s resolution of singularities
or Bernstein–Sato polynomials. Following the tradition in QFT [38, 68], our strategy is essentially
combinatorial and our blow-ups are encoded by spanning trees of Feynman graphs whose definition is
recalled in the next paragraph.
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5.2 Spanning trees of metric graphs.

Let us first collect some definitions and classical results on graphs which are close to [50, paragraph
2.1]. Recall that for all graph we consider in the present paper, since we assume the graph has no
self-loop, every edge e is adjacent to two different vertices.

Definition 5.1 For a graph G,

• a path from vertex u to w in a graph G is a sequence (u = v1, e1, v2, · · · , vn, en, vn+1 = w), where
vi ∈ V (G), ej ∈ E(G) such that the vertices bounding ei are vi and vi+1, u is the initial vertex
and w is the terminal vertex, n is called the length. A path is simple if all the edges are distinct.
If u = w, it is called a cycle.

• The set of subgraphs is ordered as follows, we say G1 ⊂ G2 for two subgraphs G1, G2 of G if
E(G1) ⊂ E(G2). A forest T is a graph without any simple cycle and a tree is a connected forest.

• A spanning forest T of a graph G is a subgraph of G which is a forest and is maximal for the
inclusion relation among subgraphs which are forests. If T is a tree, it is called spanning tree.
For any graph G, we will often use the following equivalent characterizations of spanning forests
which is a classical result in graph theory [52, p. 40-41]. A subgraph T ⊂ G is a spanning forest
if and only if T is a forest whose complement contains b1(G) edges :

b1(G) = |E(G)| − |E(T )| (17)

where b1(G) is the first Betti number of G.

• To a metric graph (G, `), a metric filtration of G is an increasing family of subgraphs G1 ⊂ G2 ⊂
· · · ⊂ GE where Gi is induced by the shortest i edges where E = |E(G)| is the number of
edges in G. For a strict metric graph, the metric filtration is unique.

• For every forest T ⊂ G and every subgraph Gi of G, we define T |Gi as the subgraph of Gi
induced by the subset of edges E(T )∩E(Gi) ⊂ E(Gi). We will call T |Gi the trace of T in Gi.

• If T is a subgraph of G induced by E(T ), and e ∈ E(G) \ E(T ) then we define T ∪ e as the
subgraph of G induced by E(T ) ∪ e. For every edge e ∈ E(G), the graph G \ e is the subgraph
induced by E(G) \ e.

Definition 5.2 For any permutation σ ∈ SE of {1, . . . , E}, the simplex ∆σ :

∆σ = {`σ(1) < · · · < `σ(E)}. (18)

is called a sector of [0, 1]E.

Before we proceed, let us remark that for a graph G, an element ` ∈ [0, 1]E(G), which is a map
` : E(G) → [0, 1], naturally defines a metric graph (G, `). To a strict metric graph G, the metric
induces a natural strict ordering of edges by the length which defines an element ` ∈ [0, 1]E(G) in a
unique sector. The next Theorem, due to Kruskal, aims to show how from a strict connected metric
graph (G, `), one can produce some algorithm which extracts a unique spanning tree T in G.

Theorem 5.1 (Kruskal) For a connected strict metric graph (G, `), let G1 ⊂ · · · ⊂ GE = G be the
unique metric filtration of G. We denote by Ni the first Betti number b1(Gi) of Gi. Then there exists
a unique spanning tree T of G such that for all i ∈ {1, . . . , E}, its trace T |Gi is a spanning forest of
Gi.

Proof — Let ` : E(G) → (0,∞) be the length function. We shall assume that the edges E(G) are
numbered as {e1, . . . , eE} in such a way that i < j =⇒ `(ei) < `(ej). We construct the tree by
the Kruskal algorithm [51] as described in [38, p. 107]. Notice that the requirement that T is a tree
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implies that T together with all traces T |Gi contain no simple cycles. So T |Gi is a forest and therefore
its complement in Gi contains at least Ni edges of Gi. Also notice that for any graph G, for every
e ∈ E(G), we have the inequality 0 6 b1 (G)−b1(G\e) 6 1. This implies that the sequence N1, N2, · · ·
is increasing.

Now we can construct the desired spanning tree T : start from G1 which has only one edge {e1}
hence contains no simple cycle, N1 = 0. Let us denote by i1 the first integer such that b1(Gi1) = 1,
similarly define {i2, . . . , iNE} ⊂ {1, . . . , E} such that b1(Gi2) = 2, . . . , b1(GiNE ) = NE = b1(G) and
every ij is the smallest integer so that b1(Gij ) = j for any j = 1, · · · , NE . Set i0 = 1, then we have
an increasing family of subgraphs Gi0 ⊂ Gi1 ⊂ · · · ⊂ GiNE ⊂ G. Let Gi = Gi−1 ∪ ei and we set

T = G \ ∪NEj=1eij . We prove that the subgraph T constructed above has the property that its trace
T |Gi to every subgraph Gi is a spanning forest in Gi by induction for j = 1, . . . , E. First, we initialize
the induction for j = 1, G1 contains just one edge hence T |G1

= G1 is a spanning tree in G1. Assume
that T |Gk is a spanning forest in Gk, then there are two cases:

Case 1 : b1(Gk) = b1(Gk+1) i.e. Nk = Nk+1 so ek+1 ∈ T , and T |Gk+1
= T |Gk ∪ ek+1, and let us

prove that T |Gk ∪ ek+1 is a spanning forest in Gk+1. First T |Gk ∪ ek+1 contains no simple cycle. Since
if it contained a simple cycle γ, then ek+1 would belong to γ and therefore T |Gk would be a spanning
forest in Gk+1, so b1(Gk+1) = b1(Gk) + 1 by equation (17) which contradicts b1(Gk) = b1(Gk+1).
T |Gk ∪ ek+1 is thus a forest. T |Gk is spanning in Gk hence T |Gk ∪ ek+1 meets all vertices of Gk+1 and
is spanning in Gk+1.

Case 2 : b1(Gk) + 1 = b1(Gk+1) and by definition T |Gk+1
= T |Gk . T |Gk is obviously a forest in

Gk+1, its complement in Gk+1 contains b1(Gk) + 1 = b1(Gk+1) edges by construction which implies it
is spanning by equation 17.

Now we use induction to prove the uniqueness of T , in fact, we prove T |Gk is unique for any
k. The initial step is trivial, and in general there are two cases. Either b1(Gk) = b1(Gk+1), then
T |Gk+1

= T |Gk ∪ ek+1 or b1(Gk) + 1 = b1(Gk+1) then T |Gk+1
= T |Gk , so our algorithm produces a

unique spanning tree. �

Corollary 5.1 Let (G, `) be a strict metric graph and T be the unique spanning forest in T from
Theorem 5.1. Then for every edge e ∈ E(G) \ E(T ), there is a unique simple cycle γe in T ∪ e, such
that for any edge e′ ∈ γe \ {e}, `(e) > `(e′).

Proof — Since T is a spanning tree, e ∈ E(G) \ E(T ), so there is a unique simple cycle γe in T ∪ e.
By our construction, if e = eij , then T |Gij−1

= T |Gij , and T |Gij−1
∪ eij contains only one simple cycle

γe, so for any edge e′ ∈ γe, e′ 6= e, `(e) > `(e′). �

5.3 Approximation of the Riemannian distance in normal coordinates.

For a smooth Riemannian manifold (M, g), and any x ∈ M , g(x) is an inner product in TxM
which induces an isomorphism g(x) : TxM → T ∗xM and thus an inner product g−1(x) on T ∗xM
by g−1(x)(w1, w2) = g(x)(g−1(x)(w1), g−1(x)(w2)). This defines a smooth metric g−1 on T ∗M .

For every x ∈M , we will use normal coordinates (U, φ, xµ) around x, without loss of generality U
is assumed to be geodesically convex. The use of normal coordinates will be crucial since it allows us
to approximate the squared distance d2(x, y) by |x− y|2 in local coordinates in Lemma 5.2. In some
other coordinate chart, this approximation might not be as good. On (U, φ, xµ), there are two metrics:
the Riemannian metric g and the Euclidean metric h:

h(
∂

∂xµ
,
∂

∂xν
) = hµν = δµν .

For this Euclidean metric, we will use |x − y| to denote the induced distance. We recall that at the
origin, we have the identity gµν(0) = hµν = δµν . The following Lemma which dates back to Hadamard
can be found in [28, Lemma 8.3 p. 90], [57, (A.3) p. 31], [67, (38) p. 171] :
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Lemma 5.1 (Hadamard) We denote by d the Riemannian distance and φ = d2. Then there exists
a neighborhood U of the diagonal ⊂M ×M , such that φ ∈ C∞(U) and is symmetric, that is φ(x, y) =
φ(y, x), φ vanishes along the diagonal at order 2 and φ satisfies the Hamilton–Jacobi equation :

g−1 (dxφ(x, y), dxφ(x, y)) = 4φ(x, y). (19)

Next we state an important Lemma which gives informations on the jets of the function φ = d2 along
the diagonal in M ×M .

Lemma 5.2 For x0 ∈M , if (U, φ) is a normal coordinate system around x0 such that φ(x0) = 0 and
the square of Riemannian distance φ is smooth on U × U , then on U × U ,

φ(x, y)− gµν(x)(xµ − yµ)(xν − yν), (20)

vanishes along the diagonal at order 3.

The proof can be found in appendix 7.5.

5.4 Resolving singularities using spanning trees.

Let (G, `) be a connected strict metric graph with edge set E(G) identified with the set of integers
{1, . . . , E} in such a way that 0 6 `1 < · · · < `E 6 1. This means that the metric graph (G, `) lies in
a fixed sector ∆ = {0 < `1 < · · · < `E < 1} ⊂ [0, 1]E , ∆ denotes its closure {0 6 `1 6 · · · 6 `E 6 1}.
It is associated with a unique spanning tree T by Theorem 5.1 and the vertices of both graphs G and

T are numbered by {1, . . . , n}. For any (i, j) ∈ {1, . . . , n}2, we denote by
−→
ij the unique simple path

in T from i to j.

The product
∏
e∈E(G) e

−
d2(xi(e),xj(e))

4`e ψ(d2(xi(e), xj(e))), where ψ is the cut–off function from Theo-

rem 3.1, is not smooth near the algebraic set X = ∪e∈E(G){`e(xi(e) − xj(e)) = 0} ⊂ Rdn ×∆. What
we do next is give a recipe to resolve the singularities of such products by some explicit map π which
is defined as follows :

Definition 5.3 In the above notation, the map from Rd × (Rd)E(T ) × [0, 1]E to Rdn ×∆ is :

π : (x, (he)e∈E(T ), (tk)Ek=1)︸ ︷︷ ︸
∈Rd×(Rd)E(T )×[0,1]E

7−→

(x+
∑
e∈−→1i

(
∏
j>e

tj)he)
n
i=1, (

∏
k>e

t2k)Ee=1


︸ ︷︷ ︸

∈Rdn×∆

(21)

where the sum runs over all edges e in the path
−→
1i. The map π depends on spanning tree T hence on

the strict ordering of E(G) induced by the metric `.

In the sequel, we shall denote elements of the target space Rdn ×∆ by (xi, `e)16i6n,16e6E . We check
that the map π : Rd × (Rd)E(T ) × [0, 1]E 7→ Rdn × ∆ is a diffeomorphism outside some subset of
measure zero.

Proposition 5.1 The map π is a smooth diffeomorphism from Rd × Rd(n−1) × (0, 1)E to Rdn ×∆.

Proof — It is one to one since we can explicitly invert π as tE = `
1
2

E , te =
(
`e+1

`e

) 1
2

for e 6 E−1 and the

linear map: (x, (he)e∈E(T )) ∈ Rd×Rd(n−1) 7→
(
xi = x+

∑
e∈−→1i

(∏
j>e tj

)
he

)n
i=1
∈ Rdn is invertible

when (tj)j ∈ (0, 1)E . Then the diffeomorphism property follows from an explicit calculation of the
differential of π whose determinant does not vanish when t ∈ (0, 1)E . �
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Finally we may state the main Theorem from this section :

Theorem 5.2 (Resolution of singularities.) Let g be a Riemannian metric on Rd and d : Rd ×
Rd 7→ R>0 be the Riemannian distance whose injectivity radius is ε. Let π be the map defined by

equation (21). For any ψ(t) ∈ C∞c (R) such that ψ(t) = 1 when t 6 ε2

4 and ψ(t) = 0 when t > 4ε2

9 , for
every edge e ∈ E(G) bounded by the vertices (i(e), j(e)), the pull–back :

π∗
(
ψ(d2(xi(e), xj(e)))

d2(xi(e), xj(e))

`e

)
(22)

defines a smooth function in Rd × Rd(n−1) × [0, 1]E.

Proof — For e ∈ E(T ), set xj(e) − xi(e) = ±he. Recall that he has in fact d components (hµe )dµ=1.
Then by Lemma 5.2 :

π∗
(

d2(xi(e), xj(e))

`e

)
=

gµν(xi(e))h
µ
eh

ν
e (
∏
i>e ti)

2 +R(π∗xi(e), π
∗xi(e) ± (

∏
i>e ti)he)

(
∏
i>e ti)

2

= gµν(xi(e))h
µ
eh

ν
e + re(t, x, h)

where

re(t, x, h) =
R(π∗xi(e), π

∗xi(e) + (
∏
i>e ti)he)

(
∏
i>e ti)

2
=
O((
∏
i>e ti)

3‖he‖3)

(
∏
i>e ti)

2
= O((

∏
i>e

ti)‖he‖3)

vanishes at order 3 in (he)e∈T and at order 1 in (te)
E
e=1 by Lemma 5.2 and re is smooth.

If e /∈ E(T ), then

π∗
(

d2(xi(e), xj(e))

`e

)
= π∗

(
gµν(xi(e))(x

µ
i(e) − x

µ
j(e))(x

ν
i(e) − x

ν
j(e))

`e

)
+ π∗

(
R(xi(e), xj(e))

`e

)
.

where

π∗

(
gµν(xi(e))(x

µ
i(e) − x

µ
j(e))(x

ν
i(e) − x

ν
j(e))

`e

)

=
gµν(xi(e))(

∑
e′∈γe\e ε(e

′)
(∏

j>e′ tj

)
hµe′)(

∑
e′∈γe\e ε(e

′)
(∏

j>e′ tj

)
hνe′)

(
∏
i>e ti)

2

where ε(e′) = ±1 and γe is the unique simple cycle in T ∪ e in Corollary 5.1. The important fact is
that for all edge e′ in the path γe \ {e}, e′ < e. It follows that :

π∗

(
gµν(xi(e))(x

µ
i(e) − x

µ
j(e))(x

ν
i(e) − x

ν
j(e))

`e

)

= gµν(xi(e))(
∑

e′∈γe\e

ε(e′)

 ∏
e′6j<e

tj

hµe′)(
∑

e′∈γe\e

ε(e′)

 ∏
e′6j<e

tj

hνe′)

which is smooth since the product (πi>eti)
2 on the denominator cancel out with the same powers

appearing on the numerator. The same argument applies to the remainder term π∗
(
R(xi(e),xj(e))

`e

)
. �
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5.5 Change of variables

For a test function ϕ supported in Rdn, since the map π is a smooth diffeomorphism from Rd ×
Rd(n−1) × (0, 1)E to Rdn ×∆, we can take it as a change of variables for integration:

〈I
G,
−→
k

(s), ϕ〉 =
1

(4π)
dE
2

(
E∏
e=1

1

Γ(se)

)∫
[0,1]E

d`1 . . . d`E

∫
Rdn

E∏
e=1

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))`

se+ke− d2−1
e ake(xi(e), xj(e))ϕ̃d

dx1 . . . d
dxn

=
1

(4π)
dE
2

(
E∏
e=1

1

Γ(se)

) ∑
σ∈SE

∫
∆σ

d`1 . . . d`E

∫
Rdn

E∏
e=1

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))`

se+ke− d2−1
e ake(xi(e), xj(e))ϕ̃d

dx1 . . . d
dxn

where σ runs over the group SE of permutations of {1, . . . , E}. The open simplices ∆σ do not cover
the unit cube [0, 1]E . However the complement of ∪σ∆σ in [0, 1]E has zero Lebesgue measure. Since

for Re(se)e=1,··· ,E large enough, the integral
∫

[0,1]E

∏
e∈E(G)

e
− d2

4`e

(4π)
d
2
akeψ(d2)`

ke− d2 +se−1
e d`e is absolutely

convergent and depends holomorphically in s ∈ CE , we have the equality of integrals∫
[0,1]E

∏
e∈E(G)

e−
d2

4`e

(4π)
d
2

akeψ(d2)`
ke− d2 +se−1
e d`e =

∑
σ∈S(E)

∫
∆σ

∏
e∈E(G)

e−
d2

4`e

(4π)
d
2

akeψ(d2)`
ke− d2 +se−1
e d`e,

where both sides depend holomorphically on (se)e for Re(se)e=1,··· ,E large enough.
Now we can carry the change of variables in the fixed sector ∆ = {0 < `1 < · · · < `E < 1} (the

other terms will be obtained by permutation) which yields an expression of the form :∫
∆

E∏
e=1

d`e
`e

(∫
(Rd)n

E∏
e=1

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))`

se+ke− d2
e ake(xi(e), xj(e))ϕ̃d

dx1 . . . d
dxn

)

= 2E
∫

[0,1]E

E∏
e=1

dte
te

∫
(Rd)n

π∗

(
E∏
e=1

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))

)

× π∗

ϕ̃ ∏
e∈E(G)

ake

 ∏
e∈E(G)

`
(se+ke)− d2
e

 ∏
e∈E(T )

`
d
2
e

 ddx
∏

e∈E(T )

ddhe.

We can further simplify the product
∏
e∈E(G) `e(t)

(se+ke)− d2
∏
e∈E(T ) `e(t)

d
2 as :

∏
e∈E(G)

∏
i>e

ti

2(se+ke)−d ∏
e∈E(T )

∏
i>e

ti

d

=
∏

e∈E(T )

∏
i>e

ti

2se+2ke ∏
e/∈E(T )

∏
i>e

ti

2se−d+2ke

=
∏

e∈E(G)

∏
i>e

ti

2se+2ke ∏
e/∈E(T )

∏
i>e

ti

−d

= t2sE+2kE
E (tEtE−1)2sE−1+2kE−1 . . . (tE . . . t1)2s1+2k1(tE . . . tik)−d . . . (tE . . . ti1)−d

where (i1 < · · · < ik) ⊂ {1, . . . , E} are the numbers decorating the edges in the complement of E(T )
and k = b1(G), hence :

∏
e∈E(T )

`e(t)
2se+2ke

∏
e/∈E(T )

`e(t)
2se−d+2ke =

E∏
e=1

t
∑
i6e 2si+2ki−db1(Ge)

e (23)
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where Ge denotes the graph induced by the first e edges {1, . . . , e}. This in turns implies that we
obtain the simplified form :∫

∆

E∏
e=1

d`e
`e

(∫
(Rd)n

E∏
e=1

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))`

se+ke− d2
e ake(xi(e), xj(e))ϕ̃d

dx1 . . . d
dxn

)

=

∫
[0,1]E

E∏
e=1

dte
te
t
(
∑
i6e 2si+2ki)−db1(Ge)

e

∫
(Rd)n

A(te, x, he)d
dx

∏
e∈E(T )

ddhe (24)

where

A((te)
E
e=1, x, (he)e∈E(T )) = 2Eπ∗

((
E∏
e=1

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))ake

)
ϕ̃

)
.

The coordinates ((te)
E
e=1, x, (he)e∈E(T )) on [0, 1]E×Rd×(Rd)E(T ) will be shortly denoted by (t, x, h)

for simplicity. We now prove the smoothness in t ∈ [0, 1]E of the partial integral
∫

(Rd)n
A(t, x, h)ddx

∏
e∈E(T ) d

dhe
which is needed to ensure analytic continuation.

Lemma 5.3 The map t 7→
∫

(Rd)n
A(t, x, h)ddx

∏
e∈E(T ) d

dhe belongs to C∞([0, 1]E).

Proof — The smoothness of A is a direct consequence of Theorem 5.2. Now start from the definition
of A :

A(t, x, h) = 2Eπ∗

 ∏
e∈E(T )

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))ake


× π∗

 ∏
e/∈E(T )

exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))ake


× ϕ̃(x+

∑
e∈(r,1)

(
∏
j>e

tj)he, . . . , x+
∑

e∈(r,n)

(
∏
j>e

tj)he).

Then use the key fact that since the open neighborhood (∼= Rd) is chosen small enough and has
compact closure, there exists a fixed constant δ > 0 such that for all x, y ∈ Rd, we have the following
bound on the Riemannian distance :

δ|x− y| 6 d(x, y) = |x− y|+ o(|x− y|) 6 δ−1|x− y|

which follows from Lemma 5.2 since d2(x, y)−
∑
gµν(x)(xµ−yµ)(xν−yν) vanishes along the diagonal

at order 3, and locally
∑
gµν(x)(xµ−yµ)(xν−yν) is bounded by some multiple of |x−y| by compactness

of the neighborhood. It follows that

δ2|x− y|2

4`e
6

d(x, y)2

4`e
6
δ−2|x− y|2

4`e

which implies that for all edges e ∈ E(T ), we have the bound :

π∗ exp

(
−

d2(xi(e), xj(e))

4`e

)
6 π∗ exp(−δ

2|x− y|2

4`e
) = exp

(
−δ

2|he|2

4

)
.

This allows us to use the product π∗
(∏

e∈E(T ) exp
(
−d2(xi(e),xj(e))

4`e

))
to control the exponential decay

of A :

π∗

 ∏
e∈E(T )

exp

(
−

d2(xi(e), xj(e))

4`e

) 6 ∏
e∈E(T )

exp

(
−δ

2|he|2

4

)
.
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By smoothness of the heat coefficients ak, by compactness of the support of ϕ ∈ C∞c (Un) thus of ϕ̃,
and by the definition of π, for every multi-index α, we find that there exists some constant Cα > 0 s.t.

|∂αt π∗
ϕ̃ ∏

e/∈E(T )

exp

(
−

d2(xi(e), xj(e))

4`e

) E∏
e=1

akeψ(d2(xi(e), xj(e)))

 | 6 Cα
1 +

∑
e∈E(T )

|he|

|α| ,
the partial derivatives in t contributes the powers of h.

Therefore we have the bound for all (t, x, h) :

|∂αt A(te, x, he)| 6 Cα
∏

e∈E(T )

exp

(
−δ

2|he|2

4

)1 +
∑

e∈E(T )

|he|

|α|

with A compactly supported in x. Then smoothness of t 7→
∫

(Rd)n
A(t, x, h)ddx

∏
e∈E(T ) d

dhe follows

from smoothness of the integrand which is the function A ∈ C∞([0, 1]E × (Rd)n), and any derivative
∂αt A has fast decrease in h when |h| → +∞ and compact support in the variable x ∈ Rd. Therefore
all derivatives in ∂αt A are integrable, uniformly in t ∈ [0, 1]E and the conclusion follows from classical
results on integrals depending smoothly on parameters. �

Lemma 5.4 [Jet Lemma] Fix the sector ∆ corresponding to the system of inequalities {0 6 `1 6 · · · 6
`E}. Let

A((te)
E
e=1, x, (he)e∈T ) = π∗

(
E∏
e=1

(
exp

(
−

d2(xi(e), xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))ake

)
ϕ̃

)
.

Then the k-jet of

χ(t1, . . . , tE) =

∫
(Rd)n

A((te)
E
e=1, x, (he)e∈E(T ))d

dx
∏

e∈E(T )

ddhe

depends continuously on the k-jet of (aki , i = 1, · · ·E,ϕ,d2, g).

Proof — The claim follows from the formulas defining A and the change of variables π and repeated

application of the chain rule to π∗
(∏E

e=1

(
exp

(
−d2(xi(e),xj(e))

4`e

)
ψ(d2(xi(e), xj(e)))ake

)
ϕ
)

. �

Recall that from Theorem 4.1, the main Theorem 2.1 reduces to an analytic continuation result

for the amplitudes I
G,
−→
k

(s) corresponding to the labelled Feynman graphs (G,
−→
k ). The problem was

that the integral formula for I
G,
−→
k

(s) involved some product of heat kernels which required blow–ups

which were performed in sectors. The following Proposition shows how the integral expression I
G,
−→
k

(s)

simplifies after blow-up :

Proposition 5.2 Let us consider I
G,
−→
k

(s) as in Equation (15), for any e ∈ {1, . . . , E} ' E(G) and any

permutation σ ∈ SE, Gσ(e) is the subgraph of G induced by the collection of edges {σ(1), . . . , σ(e)} ⊂
E(G). Then for every test function ϕ ∈ C∞c (Un), there exists a family χσ ∈ C∞([0, 1]E) indexed by
σ ∈ SE such that the identity :∫

Rdn
I
G,
−→
k

(s)ϕdndx =

E∏
e=1

1

Γ(se)

∑
σ∈SE

∫
[0,1]E

E∏
e=1

dte
te
t
∑
i6e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ(t) (25)

holds true for all Re(se), e ∈ {1, . . . , E} large enough and both sides are holomorphic in s ∈ CE.

In the next paragraph, we will proceed to the meromorphic continuation of the r.h.s of equation (25) as
meromorphic function with linear poles in s and we will also bound the distributional order of I

G,
−→
k

(s)

independently of the label
−→
k .
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5.6 Integration by parts, bounding orders and pole decomposition.

Now the proof of Theorem 2.1 on the analytic continuation of tG(s) is reduced to the meromorphic
continuation in s ∈ CE of the right hand side of Equation (25). The meromorphic continuation comes
from integration by parts as shown in the next Lemma and its corollary.

Lemma 5.5 Let E be a positive integer, for any smooth function ψ on [0, 1],

Is(ψ) =

∫
[0,1]E

ts11 . . . tsEE ψ(t1, . . . , tE)dEt

can be analytically extended to a meromorphic germ at (se = pe)
E
e=1 ∈ ZE, more precisely, let I =

{i | pi < 0} (∏
i∈I

(si − pi)

)
Is(ψ) (26)

extends to a holomorphic germ at (se = pe)e and Is ∈ D′,m([0, 1]E ,Ms0(CE)), s0 = (p1, . . . , pE),
m =

∑
i∈I |pi|.

The proof of this Lemma, given in the appendix, follows from integration by parts. One consequence
of this Lemma is

Corollary 5.2 Denote by 1[0,1]E the indicator function of the unit cube [0, 1]E ⊂ RE. Let (L1, · · · , LE)

be linear functions in s ∈ CE with real coefficients Li ∈ (RE)∗, 1 6 i 6 E, and (a1, . . . , aE) ∈ ZE. Set
I = {i | ai < 0}, then (∏

i∈I
Li(s)

)∫
[0,1]E

t
L1(s)+a1
1 . . . t

LE(s)+aE
E ψ(t1, . . . , tE)dEt

is a holomorphic germ at s = 0 ∈ CE, and

1[0,1]E t
L1(s)+a1
1 . . . t

LE(s)+aE
E

extends to an element in D′,m(RE ,M0(CE)) where m =
∑
i∈I |ai| and the polar set is contained in

{
∏
i∈I Li = 0}.

Applying Corollary 5.2 to the r.h.s. of Equation (25) shows that :

Lemma 5.6 Let Sσ be the set of all subgraphs H ∈ {Gσ(1) ⊂ · · · ⊂ Gσ(E) = G} such that b1(H) > 1,
then

∏
H∈Sσ

 ∑
e∈E(H)

se − |E(H)|

(∫
[0,1]E

E∏
e=1

dte
te
t
∑
i6e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ(t)

)

is a holomorphic germ at (se = 1)e.

Proof — By Corollary 5.2 and a change of variables s′e = se − 1, e ∈ {1, · · · , E}, we need to consider
the following set of indices :

I = {e | e+
∑
i6e

kσ(i) −
d

2
b1(Gσ(e)) ≤ 0} ⊂ {1, . . . , E}

which is contained in {e | b1(Gσ(e)) ≥ 1}, which yields the conclusion. �
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Let us comment on the above bound on the location of the pole. First the bound seems suboptimal
since the set of indices I = {e | e +

∑
i6e kσ(i) − d

2b1(Gσ(e)) ≤ 0} ⊂ {1, . . . , E} is only a subset
of {e | b1(Gσ(e)) ≥ 1} ⊂ {1, . . . , E}. However, it is important for us that we can give a bound on

the location of the poles which does not depend on the multi–index
−→
k since poles from the original

Feynman amplitude tG(s) do not depend on
−→
k . The formula of Theorem 4.1 expresses tG as a sum

of I
G,
−→
k

for some
−→
k . Hence the poles of tG(s) come from contributions from the poles of I

G,
−→
k

.

Therefore it is convenient to have some
−→
k independent bound for poles of I

G,
−→
k

. Finally, we bound

the distributional order of I
G,
−→
k

and also give precise location on the affine planes supporting the poles

of I
G,
−→
k

in the following :

Proposition 5.3 (Poles of I
G,
−→
k

and distributional order) Let G be a graph whose set of edges

is in bijection with {1, . . . , E}. For any e ∈ {1, . . . , E} ' E(G) and any permutation σ ∈ SE,
Gσ(e) is the subgraph of G induced by the collection of edges {σ(1), . . . , σ(e)} ⊂ E(G). For every
permutation σ ∈ SE, we associate the filtration {Gσ(1) ⊂ · · · ⊂ Gσ(E) = G}, and we consider the set

Sσ of all subgraphs H ∈ {Gσ(1) ⊂ · · · ⊂ Gσ(E) = G} such that b1(H) > 1. For every
−→
k ∈ NE(G),

the distribution I
G,
−→
k

(s) defined in definition 15 can be analytically continued to D′,m(Un,Ms0(CE)),

s0 = (se = 1)Ee=1 where

m =
∑

H⊂G;2|E(H)|−db1(H)−1<0

db1(H)− 2|E(H)|+ 1. (27)

For every test function ϕ,∫
Rdn

I
G,
−→
k

(s)ϕdndx =
∑
σ∈SE

∏
H∈Sσ

1(∑
i∈H si − E(H)

)fσ(s)

where fσ is holomorphic germ at (se = 1)e.

Remark 5.1 The bound on the distributional order depends only on the topology of the graph G and the

dimension d and not on the element
−→
k ∈ NE. The bound on the distributional order is also not sharp

since we should only sum over subgraphs G′ ∈ {Gσ(1), . . . , Gσ(E)} such that 2|E(G′)| − db1(G′)− 1 < 0
then take the supremum over all permutations σ.

Proof — We proved in Proposition 5.2 that for every labelled graph (G,
−→
k ), and every test function

ϕ ∈ C∞c (Un), n = |V (G)|, there exists a family χσ(t) of smooth functions on the cube [0, 1]E indexed
by permutations σ ∈ SE such that:∫

Rdn
I
G,
−→
k

(s)ϕdndx =

E∏
e=1

1

Γ(se)

∑
σ∈SE

∫
[0,1]E

E∏
e=1

dte
te
t
∑
i6e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ(t).

By applying Lemma 5.6 to

∑
σ∈SE

∫
[0,1]E

E∏
e=1

dte
te
t
∑
i6e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ(t),

we obtain the meromorphic continuation of s 7→
∫
Rdn IG,−→k (s)ϕdndx with the bound on the location of

poles. To show that I
G,
−→
k

(s) is actually an element of D′,m(Un,Ms0(CE)), s0 = (se = 1)Ee=1, we need

to show that

ϕ ∈ C∞c (Un) 7→
∫
Rdn

I
G,
−→
k

(.)ϕdndx ∈Ms0(CE)
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depends linearly on the m-jet of ϕ for some m. By Corollary 5.2, the integral∫
[0,1]E

E∏
e=1

dte
te
t
∑
i6e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ(t)

depends linearly on the m-jet of χσ for

m =
∑

G′⊂G;2|E(G′)|−db1(G′)−1<0

db1(G′)− 2|E(G′)|+ 1.

Then by Lemma 5.4, the m-jet of χσ depends continuously on the m-jet of ϕ which yields the result. �

Now let us restate the first main Theorem from our paper and conclude its proof :

Theorem 5.3 Let (M, g) be a smooth, compact, connected Riemannian manifold without bound-
ary of dimension d, dv(x) the Riemannian volume and P = −∆g +V , V ∈ C∞>0(M) or M = Rd

with a constant metric g and P = −∆g + λ2, λ ∈ R>0. Then for every graph G,

tG(s) =
∏

e∈E(G)

Gse(xi(e), xj(e)) (28)

can be analytically continued as an element of D′(MV (G),Ms0(CE(G))) where s0 = (se =
1)e∈E(G), with linear poles supported on the union of affine hyperplanes⋃

G′

{
∑
e∈G′

se − |E(G′)| = 0}

where the union runs over subgraphs G′ of G such that 2|E(G′)| − b1(G′)d 6 0 and |E(G′)| is
the number of edges in G′.

Proof — From Theorem 4.1, one has a decomposition :

tG(s)|Unx =
∑
G′⊂G

 ∑
−→
k ∈{0,...,p}E1

I
G′,
−→
k

(s)︸ ︷︷ ︸
× hG\G′(s)

where the sum runs over subgraphs G′ ⊂ G and hG\G′(s) ∈ Cm(MV (G),Os0(CE(G)\E(G′))), s0 = (se =

1)e∈E(G)\E(G′) as soon as p > d+m
2 − 1 for m =

∑
G′⊂G;2|E(G′)|−db1(G′)−1<0 db1(G′) − 2|E(G′)| + 1.

Therefore, the analytic continuation of tG(s) should follow from the analytic continuation of I
G′,
−→
k

for all subgraphs G′ of G and the fact that the distributional order of I
G′,
−→
k

is bounded from above

by some integer m(G′) independent of
−→
k ∈ NE(G′). But Proposition 5.3 precisely gives us that the

distributional order of every I
G′,
−→
k

is bounded from above by some integer which depends only on the

topology of G′. Now following the notations from Proposition 5.3, for every subgraph G′ ⊂ G, we
denote by SE(G′) the permutations of the edges E(G′) = {1, . . . , E′}. For every permutation σ ∈ SE(G′)

corresponds a canonical filtration {G′σ(1) ⊂ · · · ⊂ G
′
σ(E′)} of G′ and Sσ denotes the set of all subgraphs

H ∈ {G′σ(1) ⊂ · · · ⊂ G
′
σ(E′)} such that b1(H) > 1. Finally doing all the bookkeeping, we find that

tG(s) =
∑
G′⊂G

∑
σ∈SE(G′)

( ∏
H∈Sσ

1

(
∑
i∈H si)− E(H)

)
hσ(s)

where hσ(s) ∈ D′(MV (G),Os0(CE(G))), s0 = (se = 1)e∈E(G). �

30



6 Renormalization of Feynman amplitudes

In this second part of our paper, we shall apply the analytic continuation results derived in the previous
part to the renormalization of Feynman amplitudes on Riemannian manifolds.

6.1 Renormalization maps.

For a smooth manifold (M, g) and for every finite subset I ⊂ N, we denote by M I the configuration
space of points labelled by I. For J ⊂ I with |J | ≥ 2, DJ is the subset {(xi)i∈I s.t. xj = xk for j, k ∈
J} of M I called J-diagonal. Let ∆I = ∪J⊂I,|J|≥2DJ be the maximal diagonal.

Definition 6.1 (Labelling vertices) Let I ⊂ N, |I| < +∞ be some finite subset of integers. A
graph with vertices labelled by I is a pair (G, ι), where G is a graph, ι is an injective map from
V (G) to I.

For a graph with vertices labelled by I, (G, ι), defines an element

tG =
∏

e∈E(G)

G(xi(e), xj(e)),

where (i(e), j(e)) ∈ I2 and tG is a smooth function on M I \ ∆I . For a finite subset I of N, let us
denote by F(M I) the linear span of tG of all (G, ι) with ι(V (G)) ⊂ I as smooth functions on M I \∆I .

For a linear map R : E 7→ D′(M) where E is a vector space and M is a smooth manifold, and any
open subset U ⊂M , let iU : U ↪→M denote the inclusion map. Then R|U = i∗UR : E 7→ D′(U) is the
pull–back of R by iU . Following recent work by Nikolov–Stora–Todorov [59], we can give a definition
of renormalization as follows :

Definition 6.2 A renormalization is a sequence of (not necessarily continuous) linear maps RI :
F(M I) 7→ D′(M I) indexed by finite subsets I of N, which satisfies the following system of functional
equations :

• For I ⊂ J , and t ∈ F(M I),

RJ(t) = RI(t). (29)

This is the compatibility condition for the family of linear maps.

• ∀t ∈ F(M I), ϕ ∈ C∞c (M I \∆I),

〈RI(t), ϕ〉 = 〈t, ϕ〉. (30)

This means that RI(t) is a distributional extension of t ∈ C∞(M I \∆I).

• For a graph (G, ι) with vertices labelled by J ⊂ N, and I ⊂ J = ι(V (G)), set Ic = J \ I, let
EI = {e ∈ E(G); i(e), j(e) ∈ I2}, EIc = {e ∈ E(G); i(e), j(e) ∈ Ic2}, EIIc = E(G) \ (EI ∪ EIc),
and we denote by GI , GIc , GIIc the corresponding induced subgraphs of G. For open subsets U, V
of M with dist(U, V ) > 0, denote by U I × V Ic the subset {(xj)j∈J ∈MJ s.t. xi ∈ U,∀i ∈ I, xi ∈
V,∀i ∈ Ic} ⊂MJ . Then :

RJ |UI×V Ic (tG) = (RJ |UI (tGI )�RJ |V Ic (tGIc )) tGIIc

as distributions in D′(U I × V Ic). This means that renormalization must preserve locality.

• Let Φ : M 7→ M be an orientation preserving diffeomorphism and we denote by ΦI : M I 7→ M I

the induced diffeomorphism on configuration space M I . We assume that the renormalization
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maps depend on the Riemannian metric g and denote it by R[g] = (R[g]I)I to stress this de-
pendence. Then the covariance equation on renormalization maps reads for all graph (G, ι) with
vertices labelled by I :

R[Φ∗g]I (Φ∗ItG) = Φ∗I (R[g]I (tG)) . (31)

This axiom of functorial nature ensures the renormalization is covariant.

The following property follows from the locality condition : for a graph (G, ι) with vertices labelled
by I, if G is the disjoint union of G1 and G2, ι(V (G1)) ⊂ I1, ι(V (G2)) ⊂ I2, I1 ∩ I2 = ∅ then :

RI1∪I2(tG) = RI1(tG1
)�RI2(tG2

)

as distributions in D′(M I1∪I2).

6.2 Decompositions of meromorphic germs of distributions

Our goal in this paragraph is to extend the decomposition of [40] (see also [14, Appendix]) of the
spaceMs0 of meromorphic germs with linear poles at s0 ∈ Rp ⊂ Cp to their distributional counterpart
D′(.,Ms0) defined in paragraph 3.2. This decomposition plays an essential role in our definition of
renormalization maps by projections. Recall we denoted by Os0 the space of holomorphic germs at s0.

Let us fix a nondegenerate bilinear form

Q(·, ·) : Rp × Rp → R,

which induces a nondegenerate bilinear form

Q∗(·, ·) : (Rp)∗ × (Rp)∗ → R.

We can now define the concept of polar germ [40, definition 2.3], a polar germ at s0 is a meromorphic
germ of the form 1

L
n1
1 (s−s0)···Lnkk (s−s0)

h(`(s − s0)), where L1, · · · , Lk are linearly independent linear

functions in (Rp)∗, (n1, · · ·nk) ∈ Nk>0, ` = (`1, · · · , `n) : Rp → Rn defined by linear functions `1, · · · , `n,
and h is a holomorphic germ at 0 ∈ Cn, such that Q∗(Li, `j) = 0, 1 6 i 6 k, 1 6 j 6 n. Let Ps0 be
the linear span of polar germs at s0 in Ms0 .

Notice the polar set is defined by real linear functions, by similar proof as in [40] using some
geometry of cones, we have the following :

Proposition 6.1 There is a decomposition:

Ms0 = Os0 ⊕ Ps0 .

Proof — We assume w.l.o.g that s0 = 0. Our setting is slightly more general than that in [40] since
we deal with complex coefficients whereas [40] deals with real coefficients. However the proofs can be
readily adapted in a straightforward way as we shall indicate below. Just like Lemma 2.9 and Theorem
2.10 in [40], we have M0 = O0 + P0, where the proof is the same for all coefficients since it relies on
the decomposition of the meromorphic germ 1

L
n1
1 ...L

nk
k

as a sum of polar germs and Taylor expansion

of the numerator.
To prove that the sum is direct, we need to show O0 ∩ P0 = {0}, where we used two properties:

a projectively properly positioned family of simplicial real fractions is linearly independent over C. This
is an analog of Proposition 3.5 in [40]. When taking real and imaginary parts, this conclusion follows
from Proposition 3.5 in [40].
A projectively properly positioned family of polar germs at zero in our sense is non-holomorphic, as
in Theorem 3.6 in [40], we can show that if a linear combination of projectively properly positioned
family of polar germs is holomorphic then it is zero.
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We may conclude as in [40, Thm 4.15], take any decomposition of f ∈ P0 ∩O0 as f =
∑
gi where

(gi)i is a finite set of polar germs. By [40, Lemmas 4.10 and 4.11] there is a choice of the family of the
supporting cones of the polar germs such that the union of the cones does not contain any nonzero
linear subspace and this family of supporting cones has a properly positioned subdivision. Then we
transform the finite sum of polar germs

∑
hi into a sum

∑
h̃j of projectively properly positioned polar

germs (h̃j)j using the subdivision operator from [40, p. 18]. Finally, we get
∑
h̃j = f ∈ O0 where

the r.h.s is holomorphic hence
∑
h̃j = 0 by the non-holomorphicity [40, Thm 3.6]. Finally, this yields

O0 ∩ P0 = {0}. �

Now we extend the concept of polar germs to distributions valued in polar germs.

Definition 6.3 Let M be a smooth manifold and p ∈ N. A polar germ of distributions at s0 ∈ Rp ⊂ Cp
is some element of D′(M,Ms0(Cp)) of the form 1

L
n1
1 (s−s0)···Lnkk (s−s0)

h(`(s−s0)), where L1, · · · , Lk are

linearly independent linear functions in (Rp)∗, (n1, · · ·nk) ∈ Nk>0, ` = (`1, · · · , `n) : Rp → Rn defined
by linear functions `1, · · · , `n, and h ∈ D′(M,O0(Cp)) such that Q∗(Li, `j) = 0, 1 6 i 6 k, 1 6 j 6 n.
We denote by D′(M,Ps0(Cp)) the linear span of polar germs of distributions at s0 in D′(M,Ms0(Cp)).

Lemma 6.1 If 1
L
n1
1 (s−s0)···Lnkk (s−s0)

h(`(s − s0)) and 1
M
m1
1 (s−s0)···Mmp

p (s−s0)
g(`′(s − s0)) represent the

same nonzero meromorphic germ of distributions, then k = p, and M1, · · · ,Mm, L1, . . . , Lk can be
rearranged in such a way that Li is a multiple of Mi and ni = mi for 1 ≤ i ≤ k.

Proof — Since this meromorphic germ is not zero, we can take a test function ϕ such that h(`(s−s0))(ϕ)
is not identically zero, then 1

L
n1
1 (s−s0)···Lnkk (s−s0)

h(`(s − s0))(ϕ) and 1
M
m1
1 (s−s0)···Mmp

p (s−s0)
g(`′(s −

s0))(ϕ) represent the same polar germ, by the same proof as in [40, Lemma 2.8], we have the conclu-
sion. �

We then prove the promised decomposition Theorem for D′(M,Ms0) which generalizes the result
in [40].

Theorem 6.1 Let M be some smooth manifold and s0 ∈ Rp ⊂ Cp. We have the direct sum decompo-
sition :

D′(M,Ms0(Cp)) = D′(M,Os0(Cp))⊕D′(M,Ps0(Cp)).

Proof — Without loss of generality, we can assume that s0 = 0. For t ∈ D′(M,M0(Cp)), by definition,
there exist L1, · · · , Lk ∈ (Rp)∗ such that L1 · · ·Lkt ∈ D′(M,O0(Cp)). By partial fractions decomposi-
tions as in the proof of [40, Lemma 2.9 property a)], we may assume there is (n1, . . . , nk) ∈ Nk>0 such
that Ln1

1 · · ·L
nk
k t ∈ D′(M,O0(Cp)) with L1, · · · , Lk linearly independent and (n1, · · · , nk) ∈ Nk>0.

Now let us expand L1, · · · , Lk to a basis (e1, . . . , ep) of (Rp)∗ with ei = Li, 1 6 i 6 k and Q(ei, ej) =
0 for 1 6 i 6 k, k + 1 6 j 6 p. Then by Proposition 3.2, we have the power series expansion for :

zn1
1 · · · z

nk
k t =

∑
α∈Np

zα

α!
tα,

where z =
∑
zie
∗
i ∈ (Cp)∗. So when we apply zn1

1 · · · z
nk
k t against the test function ϕ, we obtain

zn1
1 · · · z

nk
k t(ϕ) =

∑
α∈Np

zα

α! tα(ϕ), which is absolutely convergent in a small neighborhood of 0 ∈ Cp.
Let S = {d = (d1, · · · , dp) ∈ Np | d 6= (0, . . . , 0), 0 6 di 6 ni}. For d ∈ S, let I(d) = {i | di 6= 0} ⊂

{1, . . . , p}, and set

Nd = {α ∈ Np | αi = ni − di if i ∈ I(d), αi ≥ ni if i ∈ {1, . . . , k} \ I(d), αi ∈ N if i ∈ {k + 1, . . . , p}}.

Then we note that Nd∩Ne = ∅ if d 6= e ∈ S and most importantly, we have the partition Np =
⋃
d∈S Nd.

Now for zi 6= 0, 1 6 i 6 k,

t(ϕ) =
∑
α∈Np

zα−α0

α!
tα(ϕ) =

∑
d∈S

∑
α∈Nd

zα−α0

α!
tα(ϕ),
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where α0 = (n1, · · · , nk, 0, · · · , 0). And we have

∑
α∈Nd

zα−α0

α!
tα(ϕ) =

1

zdI(d)

∑
α∈Nd

zα−α0

[p]\I(d)

α!
tα(ϕ),

where zdI(d) =
∏
i∈I(d) z

di
i , zα−α0

[p]\I(d) =
∏
i∈{1,...,k}\I(d) z

αi−si
i

∏
i∈{k+1,...,p} z

αi
i .

Let

hd =
∑
α∈Nd

zα−α0

[p]\I

α!
tα.

By Proposition 3.2, for every compact K ⊂ U there exists C > 0 and some continuous seminorm P
for the Fréchet topology of C∞K (U) such that : ∀ϕ ∈ C∞K (U), |tα(ϕ)| 6 α!

r|α|
CP (ϕ) for all multi-indices

α ∈ Np. This implies that for every 0 < R < r, for all |z| < R,

|
∑
α∈Np

zα

α!
tα(ϕ)| 6

∑
α∈Np

|z
α

α!
tα(ϕ)| 6

∑
α∈Np

R|α|

α!

α!

r|α|
CP (ϕ) =

(
1− R

r

)−p
CP (ϕ).

Therefore, |(
∏
i∈[k]\I(d) z

si
i )hd(ϕ)| 6

∑
α∈Np |

zα

α! tα(ϕ)| 6
(
1− R

r

)−p
CP (ϕ), so (

∏
i∈[k]\I(d) z

si
i )hd ∈

D′(M,O0(Cp)), so hd ∈ D′(M,O0(Cp)).
Now by definition, 1

zd
I(d)

hd is a polar germ of distributions if d 6= (0, · · · , 0), h(0,··· ,0) ∈ D′(M,O0(Cp)),
and

t =
∑
d∈S

1

zdI(d)

hd ∈ D′(M,P0(Cp)) +D′(M,O0(Cp)) (32)

where the singular part reads as a finite sum of polar germs as a corollary of the above argument.
So we have D′(M,Ms0(Cp)) = D′(M,Os0(Cp)) + D′(M,Ps0(Cp)). To show it is a direct sum, if
t ∈ D′(M,Os0(Cp)) ∩ D′(M,Ps0(Cp)), then for any test function φ, t(φ) ∈ Ps0 ∩ Os0 , so t(φ) = 0 by
Proposition 6.1, which implies t = 0. �

A consequence of the decomposition Theorem is the following

Proposition 6.2 Let M be a smooth manifold, p ∈ N and s0 ∈ Rp ⊂ Cp. There exists a projection

πp : D′(M,Ms0(Cp)) 7→ D′(M,Os0(Cp))

which sends distribution valued in meromorphic germs at s0 to distribution valued in holomorphic
germs at s0 such that ker(πp) = D′(M,Ps0(Cp)).

Remark 6.1 Note that πp is uniquely determined by the vector subspace of polar germs which are in
turn uniquely determined by the choice of the canonical quadratic form Q : Rp ×Rp → R that we fixed
at the beginning of the present section.

In appendix 7.2, we show some useful Lemmas on the functorial properties of the projection πp
for p ∈ N. As a consequence of [40], we have a similar projection, still denoted a bit abusively by πp,
at the germ level : πp : Ms0 7→ Os0 . It follows that the two projectors are related by the following
equation :

Corollary 6.1 Let X be a smooth manifold and s0 ∈ Rp ⊂ Cp. For all t(s) ∈ D′(X,Ms0(Cp)) and
for all test function ϕ ∈ C∞c (X),

(πpt(s))(ϕ) = πp(t(s)(ϕ)).
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6.3 A renormalization map by projections

From now on, for any integer p, we fix the canonical quadratic form Q on Rp : Q(x) =
∑p
i=1 |xi|2

and we study germs at s0 = (1, . . . , 1) ∈ Rp. We denote by ev|s0 the evaluation of some holomorphic
germ at s0. The properties of the family of projections (πp)p∈N allow to us to give a definition of
renormalization maps as follows :

Definition 6.4 (Renormalization maps by projections) For I ⊂ N, we define the renormaliza-
tion map RI as follows: for a graph (G, ι) with vertices labelled by I,

RI(tG) = ev|s0
(
π|E(G)| (tG(s))

)
where Gs is the Schwartz kernel of (−∆)−s.

Theorem 6.2 (Renormalization Theorem) Let (M, g) be a smooth, compact, connected Rieman-
nian manifold without boundary of dimension d, dv(x) the Riemannian volume and P = −∆g + V ,
V ∈ C∞>0(M) or M = Rd with a constant metric g and P = −∆g + m2,m ∈ R>0. For every finite

subset I ⊂ N, for every graph (G, ι) with vertices labelled by I ⊂ N, we define RI(tG) ∈ D′(M I) as in
definition 6.4 and extend it by linearity to the vector space F(M I).

Then the collection of renormalization maps (RI)I⊂N,|I|<+∞ satisfies the functional equations of
definition 6.2.

Proof — The compatibility condition is encoded in the family of projections. For simplicity of no-
tations, we choose to drop the subindex s0 for the space of germs so we will write M,O instead of
Ms0 ,Os0 and it will always be understood from the context that we consider holomorphic and mero-
morphic germs localized at s0 = (1, . . . , 1) ∈ Cp for some p ∈ N. Furthermore, we also write π for
the projections instead of π|E(G)| where it will be understood that for every graph G, π(tG(s)) means
π|E(G)|(tG(s)).

We now prove that RI(tG) is a distributional extension of tG. By Lemma 4.1, on M I \∆I , for every
e ∈ E(G), every Green function Gse ∈ C∞(M I \∆I ,O) are in fact smooth and depend holomorphically
on se. We also have the convergence Gse → G in C∞(M2 \∆2) when se → 1. Therefore, for any test
function ϕ ∈ C∞c (M I \∆I), by Corollary 6.1, π(tG(s))(ϕ) = π(tG(s)(ϕ)) = tG(s)(ϕ) since tG(s)(ϕ) is
holomorphic at s0 = (se = 1)e∈E(G) ∈ CE(G), and

RI(tG)(ϕ) = ev|s0π(tG(s))(ϕ) = ev|s0tG(s)(ϕ) = tG(ϕ).

Now let us prove the locality. For a graph (G, ι) with vertices labelled by J ⊂ N, and I ⊂
J = ι(V (G)), set Ic = J \ I, let EI = {e ∈ E(G); i(e), j(e) ∈ I2}, EIc = {e ∈ E(G); i(e), j(e) ∈
Ic2}, EIIc = E(G)\(EI ∪ EIc), and we denote by (GI , GIc , GIIc) the corresponding induced subgraphs
of G. Start from tG(s) = tGI (sI)tGIc (sIc)tGIIc (sIIc) where s = (se)e∈E(G), sI = (se)e∈EI , sIc =
(se)e∈EIc , sIIc = (se)e∈EIIc . For a pair of disjoint open subsets (U, V ) such that dist(U, V ) > 0, denote
by {(xj)j∈J ∈ MJ s.t. xi ∈ U,∀i ∈ I, xi ∈ V,∀i ∈ Ic} the open subset of configuration space MJ .
Then note that the product tGIIc (sIIc) =

∏
e∈EIIc G

se(xi(e), xj(e)) ∈ C∞(U I × V I
c

,O(CEIIc )). It
follows by Lemma 7.3 proved in the appendix that

π (tG(s)) = π (tGI (sI)tGIc (sIc)tGIIc (sIIc)) = π (tGI (sI)tGIc (sIc)) tGIIc (sIIc).

Now the distributions tGI (sI) ∈ D′(U I ,M(CEI )) and tGIc (sIc) ∈ D′(V I
c

,M(CEIc )) depend on
different variables, therefore by Lemma 7.2, π (tGI (sI)� tGIc (sIc)) = π (tGI (sI))�π (tGIc (sIc)). Then
as distributions on U I × V Ic :

RJ(tG) = ev|(se=1)e∈E(G)
(π (tGI (sI))� π (tGIc (sIc))× tGIIc (sIIc))

= ev|(se=1)e∈EI
π (tGI (sI)) ev|(se=1)e∈EIc

π (tGIc (sIc)) ev|(se=1)e∈EIIc
tGIIc (sIIc)

= RI (tGI )RIc (tGIc ) tGIIc |UI×V Ic

where tGIIc is smooth on U I × V Ic which yields the desired equation. �
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7 Appendix: technical details.

7.1 Proof of Proposition 3.2.

Proof — Without loss of generality assume that z = 0. By definition and the multidimensional
Cauchy’s formula [39, p. 3], for any polydisc D1 × · · · × Dp around z = 0, for any test function
ϕ ∈ C∞c (M) and any λ in the polydisc :

t(λ)(ϕ) =
1

(2πi)p

∫
∂D1

. . .

∫
∂Dp

t(z)(ϕ)dz1 . . . dzp
(z1 − λ1) . . . (zp − λp)

=
1

(2πi)p

∫
∂D1

. . .

∫
∂Dp

∑
α

λα
t(z)(ϕ)dz1 . . . dzp

zα1+1
1 . . . z

αp+1
p

.

So for any multi-index α and any test function ϕ, we define the functional tα by

tα(ϕ) =
α!

(2πi)p

∫
∂D1

. . .

∫
∂Dp

t(z)(ϕ)dz1 . . . dzp

zα1+1
1 . . . z

αp+1
p

,

then the series
∑
|α|>0

sα

α! tα(ϕ) converges absolutely to t(s)(ϕ).
First note that the functional tα is linear, it remains to prove that tα is continuous. For that, it

suffices to show that for every compact K ⊂M , the restriction of tα to the Fréchet space C∞K (M) of test
functions supported in K is continuous. For fixed s, t(s) is linear continuous on C∞K (M) therefore there
exists some constant C(s) and continuous seminorm P of C∞K (M) such that |t(s)(ϕ)| 6 C(s)P (ϕ),∀ϕ ∈
C∞K (M). Conversely for fixed ϕ, s ∈ D1 × · · · ×Dp 7→ t(s)(ϕ) is bounded by holomorphicity. By an
application of the uniform boundedness principle since C∞K (M) is Fréchet, for every compact K ⊂M ,
there exists C > 0 and some continuous seminorm P for the Fréchet topology of C∞K (M) such that :

∀ϕ ∈ C∞K (M), sup
s∈∂D1×···×∂Dp

|t(s)(ϕ)| 6 CP (ϕ).

Assuming that all discs ∂Di have radius r, it immediately follows that tα satisfies a distributional
version of Cauchy’s bound:

∀ϕ ∈ C∞K (M), |tα(ϕ)| 6 α!

r|α|
CP (ϕ). (33)

This also implies that for all ϕ ∈ C∞K (M), the power series
∑
α
sα

α! tα(ϕ) converges for |λ| < r i.e. the
convergence radius equals r. �

7.2 Products of meromorphic germ of distributions in different variables.

In this part, we prove some useful Lemmas on products of meromorphic germ of distributions in
different variables.

Lemma 7.1 Let (X1, X2) be smooth manifolds, µ1 ∈ Rp1 ⊂ Cp1 and µ2 ∈ Rp2 ⊂ Cp2 . If t1(s1) ∈
D′(X1,Mµ1

(Cp1)) and t(s2) ∈ D′(X2,Mµ2
(Cp2)) then the external tensor product t1(s1)� t2(s2) is a

well–defined element in D′(X1 ×X2,M(µ1,µ2)(Cp1+p2)).

Proof — Denote by dv1, dv2 some smooth densities on X1, X2 respectively. Since every compact
subset K ⊂ X1 × X2, can be covered by some finite number of products of compacts of the form
K1 × K2, by Lemma 4.2 it suffices to show that for all compacts K1 ⊂ X1,K2 ⊂ X2, the ele-
ment t(s1;x)t(s2; y)|K1×K2 is a well–defined meromorphic family of distribution in D′(K1 × K2) at
(µ1, µ2) ∈ Cp1 × Cp2 with linear poles. Hence we can assume, without loss of generality, that we
work over some product K1 × K2 ⊂ X1 × X2 of compact subsets and we assume without loss of
generality that we work around (µ1, µ2) = (0, 0). There exists mononomials P (s1) = L1(s1) . . . Lk(s1)
and Q(s2) = M1(s2) . . .Ml(s2), where (Li)

k
i=1, (Mi)

l
i=1 are linear functions, such that P (s1)t1(s1)

and Q(s2)t2(s2) are holomorphic germs of distributions at s1 = µ1, s2 = µ2 respectively. Therefore
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by Proposition 3.2, we know that P (s1)t1(s1) and Q(s2)t2(s2) both admit Laurent series expansions
P (s1)t1(s1) =

∑
α1
sα1

1 uα1
, Q(s2)t2(s2) =

∑
α2
sα2

2 vα2
where there exists two integers (m1,m2) corre-

sponding to the distributional orders of (t1|K1
, t2|K2

) and two positive real numbers (r1, r2) such that
for all multi–index (α1, α2) ∈ Np1+p2 , we have the bounds :

‖uα1‖(Cm1 )′ 6 C1r
|α1|
1 , ‖vα2‖(Cm2 )′ 6 C2r

|α2|
2 . (34)

We define the series P (s1)t1(s1) �Q(s2)t2(s2) =
∑
α1,α2

sα1
1 sα2

2 uα1
� vα2

and we shall prove that
the above series converges for |s1|+ |s2| small enough in the sense that for every test function ϕ(x1, x2)
supported in K1 ×K2, the series∑

α1,α2

sα1
1 sα2

2 uα1
� vα2

(ϕ) =
∑
α1,α2

sα1
1 sα2

2

∫
X1×X2

uα1
(x1)vα2

(x2)ϕ(x1, x2)dv1(x1)dv2(x2)

converges absolutely. We first prove it for some element ϕ = ϕ1 � ϕ2 ∈ C∞K1
(X1) � C∞K2

(X2) ⊂
C∞K1×K2

(X1 ×X2) which is a tensor product of two elements. For s ∈ Cp, we shall use the notation
‖s‖ = supj∈{1,...,p} |sj | and for some multi–index α ∈ Np, |α| =

∑p
j=1 αj . Then the series converges

thanks to the bound :

|
∑
α1,α2

sα1
1 sα2

2

∫
X1×X2

uα1(x1)vα2(x2)ϕ(x1, x2)dv1(x1)dv2(x2)|

6
∑
α1,α2

‖sα1
1 sα2

2 ‖|
∫
X1

uα1(x1)ϕ1(x1)dv1(x1)

∫
X2

vα2(x2)ϕ2(x2)dv2(x2)|

6
∑
α1,α2

‖s1‖|α1|C1r
|α|
1 ‖ϕ1‖Cm1 (X1)‖s2‖|α2|C2r

|α|
2 ‖ϕ2‖Cm2 (X2)

6
∑
α1,α2

C1(‖s1‖r1)|α1|C2(‖s2‖r2)|α2|‖ϕ‖Cm(X1×X2)

for any m > sup(m1,m2) where the r.h.s is absolutely convergent for s1, s2 small enough. Then

we conclude by using the fact that the completed tensor product C∞K1
(X1)�̂C∞K2

(X2) coincides with
C∞K1×K2

(X1 ×X2) where the topology for which we do the completion does not matter since C∞Ki(Xi)
are Fréchet nuclear spaces. Therefore the algebraic tensor product C∞K1

(X1) � C∞K2
(X2) is dense in

C∞K1×K2
(X1 ×X2) and the inequality

|
∑
α1,α2

sα1
1 sα2

2

∫
X1×X2

uα1(x1)vα2(x2)ϕ(x1, x2)dv1(x1)dv2(x2)| 6
∑
α1,α2

C1(‖s1‖r1)|α1|C2(‖s2‖r2)|α2|‖ϕ‖Cm(X1×X2)

holds true for all ϕ ∈ C∞K1×K2
(X1 ×X2). �

For every p ∈ Cp, s0 ∈ Rp ⊂ Cp, let πp : D′(M,Ms0(Cp)) 7→ D′(M,Os0(Cp)) be the projection
from Proposition 6.2. Then :

Lemma 7.2 Under the assumptions of the previous Lemma, the following equation holds true :

πp1+p2 (t1 � t2) = πp1(t1)� πp2(t2). (35)

Proof — The proof of equation 35 goes as follows, we decompose t1 and t2 as t1 = πp1(t1)+(1−π1)(t1)
and t2 = πp2(t2) + (1 − π2)(t2) where (πp1(t1), πp2(t2)) ∈ D′(X1,Oµ1(Cp1)) × D′(X2,Oµ2(Cp2)) and
((1− π1)(t1), (1− π2)(t2)) ∈ D′(X1,Pµ1(Cp1))×D′(X2,Pµ2(Cp2)). Then note that

t1 � t2 = πp1(t1)� πp2(t2)︸ ︷︷ ︸
∈D′(X1×X2,O(µ1,µ2)(Cp1+p2 ))

+ (1− π1)(t1)� π2(t2) + π1(t1)� (1− π2)(t2) + (1− π1)(t1)� (1− π2)(t2)︸ ︷︷ ︸
∈D′(X1×X2,P(µ1,µ2)(Cp1+p2 ))
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where the term (1− π1)(t1)� π2(t2) + π1(t1)� (1− π2)(t2) + (1− π1)(t1)� (1− π2)(t2) is a finite sum
of polar germs by equation (32). It follows that πp1+p2 (t1 � t2) = πp1(t1)� πp2(t2) by the uniqueness
of the decomposition which follows from Theorem 6.1. �

By a similar proof as in the above Lemma, we also have :

Lemma 7.3 Let X be a smooth manifold, U ⊂ X an open subset and m ∈ N. Set (p1, p2) ∈ N2 to be
an arbitrary pair of integers and (µ1, µ2) ∈ Rp1 × Rp2 ⊂ Cp1+p2 . Let t(s1) ∈ D′,m(U,Mµ1

(Cp1)) and
h(s2) ∈ Cm(U,Oµ2(Cp2)) . Then the product t(s1)h(s2) is an element of D′,m(U,M(µ1,µ2)(Cp1+p2))
which satisfies the equation :

πp1+p2(t(s1)h(s2)) = πp1(t(s1))h(s2). (36)

Proof — Without loss of generality, we can work locally since all local results can be glued together
by partition of unity thanks to Lemma 4.2. For every test function ϕ ∈ C∞c (U), 〈t(s1)h(s2), ϕ〉 =
〈t(s1), h(s2)ϕ︸ ︷︷ ︸

∈Cmc (U)

〉 hence the product t(s1)h(s2) is well defined in D′,m(U) as soon as both t(s1), h(s2)

exist. We now explain the meromorphicity of (s1, s2) 7→ 〈t(s1)h(s2), ϕ〉 at (µ1, µ2) ∈ Cp1+p2 . Since
t(s) ∈ D′,m(U,Mµ1(Cp1)), there exists u(s) ∈ D′,m(U,Oµ1(Cp1)) and linear functions (L1, . . . , Lk) such
that (L1(s) · · ·Lk(s)) t(s) = u(s). Therefore the product t(s1)h(s2) also reads 1

L1(s1)···Lk(s1)u(s1)h(s2).

Then using power expansions in s1−µ1 for u(s1) as in Theorem 3.2 and expanding h(s2) in powers of
s2−µ2 where coefficients are in Cm(U), we easily show that u(s1)h(s2) ∈ D′,m(U,O(µ1,µ2)(Cp1+p2)) for
(s1, s2) ∈ Cp1+p2 close enough to (µ1, µ2) ∈ Cp1+p2 which proves t(s1)h(s2) ∈ D′,m(U,M(µ1,µ2)(Cp1+p2)).

The equation πp1+p2(th) = hπp1(t) immediately follows from the fact that πp2(h(s2)) = h(s2) since
h is holomorphic and h(s2)(1− πp1)(t(s1)) is valued in polar germs. �

7.3 Proof of Lemma 4.1.

Proof — Since our Riemannian manifold (M, g) is connected, ker(P ) contains only constant functions.
Indeed Pu = 0 implies that u ∈ C∞ by elliptic regularity and 0 = 〈u,−∆gu〉+〈u, V u〉 =⇒ 〈∇u,∇u〉 =
0 =⇒ ∇u = 0 thus u is constant on connected components. Let us determine explicitly the spectral
projector Π, it should satisfy for all u :

0 = 〈1, u−Π(u)〉 =

∫
M

(u−Π(u)) =

∫
M

udx−Π(u)Vol(M) =⇒ Π(u) =

∫
M
udx

Vol(M)
.

The Schwartz kernel of the spectral projector Π is therefore the constant function Π(x, y) = Vol(M)−1.
The first two claims about the Schwartz kernel Gs(x, y) follow from [72, Theorem 4 p. 302] in the

celebrated work of Seeley, by applying his Theorem to A = P − Π which is a well defined elliptic
pseudodifferential operator of order 2.

For the third claim, we start from the formula Gs =
∫∞

0

(
e−tP −Π

)
(x, y)ts−1dt and our proof

exactly follows the proof of [8, Proposition 1] where we replace the heat semigroup et∆g in their proof
by the semigroup (e−tP − Π) whose Schwartz kernel is Kt − Π and is denoted by pt. Start from the
formula pt(x, y) = 〈δx, (e−tP − Π)δy〉L2(M) = 〈(e− t2P − Π)δx, (e

− t2P − Π)δy〉L2(M). For any integers

(k, l,m), |∂mt P kxP lypt(x, y)| = |P k+m
x P lypt(x, y)| since ∂mt

(
e−tP −Π

)
= Pm

(
e−tP −Π

)
. Hence,

|∂mt P kxP lypt(x, y)| 6 ‖(e−(t−ε)P −Π)‖B(L2(M))‖P k+m
x (e−

ε
2P −Π)δx‖L2(M)‖P ly

(
e−

ε
2P −Π

)
δy‖L2(M).

Therefore taking the supremum over (x, y) ∈M ×M yields :

‖∂mt P kxP lypt‖C0(M×M) 6 ‖(e−(t−ε)P −Π)‖B(L2(M))‖P k+m
x (e−

ε
2P −Π)δx‖L2(M)‖P ly

(
e−

ε
2P −Π

)
δy‖L2(M)
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where both ‖P k+m
x (e−

ε
2P − Π)δx‖L2(M) and ‖P ly

(
e−

ε
2P −Π

)
δy‖L2(M) are finite since both (e−

ε
2P −

Π)δx and (e−
ε
2P − Π)δy are smooth functions because the semigroup (etP − Π)t∈R>0

is smooth-

ing. Furthermore, the term ‖(e−(t−ε)P − Π)‖B(L2(M)) has exponential decay when t → +∞ since(
e−(t−ε)P −Π

)
is a smoothing operator which has a gap in the spectrum, indeed by spectral theory

e−tPu =
∑
λ∈σ(P ) e

−tλΠλ(u) where Πλ is the spectral projector on the eigenspace of eigenvalue λ and

the r.h.s. converges absolutely in all Sobolev spaces Hs(M), s ≥ 0 when t > 0. More generally, we
obtain decay estimates of the form

‖∂mt pt‖Ck(M×M) 6
∑

l1,l26 k
2 +1

‖∂mt P k1x P k2y pt‖C0(M×M)

6 Ck,m‖(e−(t−ε)P −Π)‖B(L2(M)) 6 Ck,me
−(t−ε)λ1

where λ1 > 0 is the smallest non zero eigenvalue of P which exists since σ(P ) is a discrete subset of
[0,+∞). It follows that the integral

∫∞
1
ts−1ptdt converges absolutely for all s ∈ C and is valued in all

Banach spaces Ck(M ×M), k ∈ N since :

‖
∫ ∞

1

ts−1ptdt‖Ck(M×M) 6
∫ ∞

1

tRe(s)−1‖pt‖Ck(M×M)dt 6 Ck

∫ ∞
1

tRe(s)−1e−(t−ε)λ1dt.

The integral
∫∞

1
ts−1ptdt depends holomorphically in s since

‖
∫ ∞

1

(
d

ds

)l
ts−1ptdt‖Ck(M×M) 6 Ck

∫ ∞
1

tRe(s)−1 log(t)le−(t−ε)λ1dt (37)

where the r.h.s. is absolutely convergent and we can conclude by dominated convergence arguments. �

7.4 Proof of Lemma 5.5.

Proof — First notice that when Re(si) > −1, i = 1, · · · , E, this integral is absolutely convergent and
holomorphic in s.

Now If E = 1, then by integration by parts, for Re(s) > −1,∫
[0,1]

tsψ(t)dt =

k−1∑
i=0

(−1)i
1

li(s)
ψ(i)(1) + (−1)k

1

lk−1(s)

∫
[0,1]

ts+kψ(k)(t)dt,

where li(s) = (s + 1) · · · (s + i + 1), the l.h.s is a meromorphic function when Re(s) > −k − 1 with
possible poles at s = −1, · · · ,−k, so it extends to a meromorphic function on Re(s) > −k − 1.

In general, for Re(si) > −1, i = 1, · · · , E, and k1, · · · , kE ∈ Z>0,

Is(ψ) =

∫
[0,1]E

ts11 . . . tsEE ψ(t1, . . . , tE)dEt

=
∑

{j1,··· ,jm}⊂{1,··· ,E}

∑
j 6=j1,···jm

ij=0,··· ,kj−1

(−1)ij

lij (sj)

m∏ (−1)kji

lkji−1(sji)∫
[0,1]m

∏
j=j1,···jm

tsj+kj
( ∏
j 6=j1,···jm

∂
ij
tj

)
∂
kj1
tj1
· · · ∂kjmtjm ψ|tj=1,j 6=j1,···jmdtj1 · · · dtjs (38)

the r.h.s is a meromorphic function when Re(si) > −ki − 1. So Is(ψ) extends to a meromorphic germ
at any point in ZE .
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Now at a given point (pe)e ∈ ZE , 1
se−ae is holomorphic except ae = pe, therefore(∏

i∈I
(si − pi)

)
Is(ψ)

is a holomorphic germ at (pe)e. The distribution order of Is(ψ) at the point (pe) can be read from
Equation (38) easily. �

7.5 Proof of Lemma 5.2.

Proof — In the chart (U × U, (xµ, yν)), let us consider the Taylor expansion of φ(x, y), φ(x, y) =∑
k>0 φ[k](x, y), where φ[k](x, y) =

∑
|α|+|β|=k

xαyβ

α!β! ∂
α
x ∂

β
y φ(0, 0).

Obviously φ[0](x, y) = 0. By symmetry and φ(x, x) = 0, we know that

φ[1](x, y) = 0.

By symmetry and φ(x, x) ≡ 0, we know that φ[2](x, y) =
∑
µ aµ(xµ − yµ)2, now by the fact φ(0, y) =

‖y‖2, we find that :

φ[2](x, y) =
∑

(xµ − yµ)2. (39)

In fact, let us take x = y in Equation (19),

g−1(x)(
∂φ

∂xµ
(x, x)dxµ,

∂φ

∂xν
(x, x)dxν) = 0

which means
∂φ

∂xµ
(x, x)dxµ ≡ 0⇒ ∂φ

∂xµ
(x, x) ≡ 0.

By symmetry
∂φ

∂yµ
(x, x) ≡ 0. (40)

Now let us make a change of variables on V ×W → U × U given by

(v, h) 7→ (v, v + h),

we can take V,W small enough such that V ×W is a coordinate chart around (x0, x0).
Let φ̃(v, h) = φ(v, v + h). Take a partial Taylor expansion in h for φ̃,

φ̃(v, h) = φ̃(v, 0) +
∂φ̃

∂hµ
(v, 0)hµ +

1

2

∂2φ̃

∂hµ∂hν
(v, 0)hµhν + ε3

where ε3 vanishes at order 3 in h.
We know

φ̃(v, 0) = φ(v, v) = 0,

by Equation (40),

∂φ̃

∂hµ
(v, 0) =

∂φ

∂yµ
(v, v) = 0.

By chain rule,
∂2φ̃

∂hµ∂hν
(v, 0) =

∂2φ

∂yµ∂yν
(v, v)

40



Equation (19) shows :
∂φ

∂xµ
(x, y)gµν(x)

∂φ

∂xν
(x, y) = 4φ(x, y).

Taking ∂2

∂xµ1∂xν1 on both sides and let x = y = v, we have

∂2φ

∂xµ∂xµ1
(v, v)gµν(v)

∂2φ

∂xν∂xν1
(v, v) +

∂2φ

∂xµ∂xν1
(v, v)gµν(v)

∂2φ

∂xν∂xµ1
(v, v) = 4

∂2φ

∂xµ1∂xν1
(v, v).

that is
∂2φ

∂xµ∂xµ1
(v, v)gµν(v)

∂2φ

∂xν∂xν1
(v, v) = 2

∂2φ

∂xµ1∂xν1
(v, v).

Notice that ∂2φ
∂xµ∂xν (v, v) is invertible since ∂2φ

∂xµ∂xν (0, 0) = δµν by (39) and if U is chosen small enough.
Then we get that

∂2φ

∂xµ∂xν
(v, v) = 2gµν(v).

Since φ is symmetry, we know

∂2φ

∂yµ∂yν
(v, v) =

∂2φ

∂xµ∂xν
(v, v) = 2gµν(v).

So
φ̃(v, h) = gµν(v)hµhν + ε3

which concludes the proof. �
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