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Abstract — The constitutive equation gap method (CEGM) is applied to identify the spatial
distribution of mechanical fields (material parameters and stress) in a heterogeneous elasto-plastic
material. In order to apply the method in a controlled situation, a test producing a known state of
residual stresses was designed. For such a material, the heterogeneous residual stress field can be
interpreted as a distribution of material parameters (yield stress and hardening law). The ability of the
CEGM to identify heterogeneous material properties is verified on the experimental results.
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Introduction

We focus here on the CEGM to identify local constitutive laws and mechanical parameters in
heterogeneous materials. Our approach uses the secant elastoplastic tensor B;; and a measured strain

field € (@) deduced from the displacement field u_’,?) measured at a load step n by a full-field
measurement. The secant tensor depends on the elastic and plastic material properties, on the spatial
position and on the load step n. This tensor is equal to the standard elastic tensor B€ for an elastic step.

The identification method proposed in this work enhances the one proposed by Latourte et al. [1] since
it allows both to identify simultaneously all the plastic parameters and to deal with complex
geometries.

General presentation of the CEGM

The concept of the CEG is based on the minimization of a cost function equal to the sum of the
potential and complementary energies and on the deviation between the measured and computed strain
fields. The CEGM uses a statically admissible stress field o5 involving a secant stiffness tensor Bj

determined at each load step n:
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with &F = ¢ (u—,ﬁ)) representing the strain tensor and u_fl) the associated displacement field.

We consider a quasi-static problem over a domain Q with free surfaces d€);, boundaries 0;

loaded with overall known forces ﬁj and boundaries with imposed displacements 0}, satisfying
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where 11 is the outer unit vector. For a sequence of N successive load steps, the CEG functional
depends on two sets of parameters, i.e. the stress fields g5 and the mechanical material parameters on

which B_,{ depends, and reads:
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According to Simo & Hughes [2], denoting Ay, the plastic multiplier increment and k the
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hardening modulus, the secant tensor reads B = [Be_l + éy" P| ,whereP=2[-1 2 ol
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The convexity of the CEG functional allows the use of a relaxation method for minimizing the
functional with respect to its first argument (the displacement field uf; associated with the stress field
0y) and then to its second argument (the material properties introduced in the expression of the secant
tensor B;;) in order to identify mechanical parameters and stress fields.

First we identify the elastic properties, second we determine the time step at which plasticity is
activated at least on one material domain and third we identify the plastic properties. This approach is
suitable for multilinear kinematic hardening since the expression of the secant elastoplastic tensor
remains valid for any kinematic hardening.

Experimental application

In this section some results obtained with the CEGM presented above are given. The
identification method was applied to a heterogeneous material subjected to a tensile test. Due to its
trapezoidal shape, the specimen presented in Figure 1 allows to obtain heterogeneous residual strain
fields after a tensile loading. The specimen was machined after this pre-hardening in order to obtain a
standard dog-bone specimen. The residual plastic strain field (between the reference trapezoidal
specimen and the machined dog-bone specimen) was measured by DIC. The elasto-plastic response of
the material was previously identified using a standard tensile test. It allows to determine the value of
the yield stress locally reached during this first process. A tensile test is the performed on the obtained
dog-bone specimen. The strain fields are measured by DIC and we perform a multilinear elastoplastic
identification. The mesh used for elastic identification is composed of a single quadrangular element,
since homogeneous elastic properties are expected. The mesh used for plastic identification contains
20 elements and the mesh used for the DIC has 160 quadrangular elements. The identification is
carried out on 20 material domains.
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Figure 1: “Trapezoidal” specimen: dimensions in mm

The elastic identification gives a Young's modulus of 184 GPa and a Poisson's ratio of 0.27
with a maximum relative error of 5%. These values are in agreement with the reference values
identified on the standard tensile test. The distribution of the identified yield stress is shown in Figure 2.
It should be noted that the identified values are similar to the reference values with a maximum
relative error of 10% (see Figure 2.a and 2.b). Figure 2.c shows that once the initial state has been
taken into account, the evolutions of the hardening curves of the 20 material domains are in agreement
with the reference plastic behavior (in black).
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Figure 2: Reference yield stress (a), identified yield stress (b) and illustration of the stress as a function of the
equivalent plastic deformation of the reference model (in black) and those of the different material domains
identified (in color) (c).

Conclusion

To conclude, the identification of heterogeneous mechanical fields has been experimentally
validated for elasto-plasticity with kinematic multi-linear hardening. Measuring the residual plastic
strain and determining the yield stress locally reached during the first loading allows to estimate the
heterogeneous initial state of the material. The identification results are very encouraging and must,
from the same perspective, be validated on even more heterogeneous situations while still being
controlled as for example polycrystalline samples.
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