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GALOIS REDUCIBILITY AND FREENESS OF

LOCALIZED COHOMOLOGY OF KHT

SHIMURA VARIETIES

by

Boyer Pascal

Abstract. — In [9], we proved that the Zl-cohomology of KHT
Shimura varieties of dimension d which is not prime, whatever is the
weight of the coefficients, when the level is large enough at l, always
contains non trivial torsion classes. In [5], and more generally in [10] for
other compact PEL Shimura varieties, for a generic maximal ideal m of
the unramified Hecke algebra, the localisation at m of these cohomology
groups appear to be free. In this work we obtain the same result for m
such that its associated galoisian Fl-representation ρm is irreducible.
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Introduction

From Matsushima’s formula and computation of pG, K8q-cohomology,
we know that tempered automorphic representations contribution in the
cohomology of Shimura varieties with complex coefficients, is concen-
trated in middle degree. In [10], the authors consider the case of Fl-
coefficients and prove an analog result under some genericness hypothesis
which can be stated as follows. Let m be a system of Hecke eigenvalues
appearing in Hn0pShK ,Flq with ShK some compact unitary Shimura vari-
ety of Kottwitz type associated to some similitude group G. By the main
result of [17], one can attach to such m, a mod l Galois representation

ρm : GalpF̄ {F q ÝÑ GLdpFlq
where F is the reflex field of ShK which, by assumption, contains some
imaginary quadratic extension E{Q. From [10] definition 1.9, we say that
m is generic (resp. decomposed generic) at some split p in E, if for all
places v of F dividing p, the eigenvalues tλ1, ¨ ¨ ¨ , λnu of ρmpFrobvq satisfy
λi{λj R tq

˘1
v u for all i ‰ j (resp. and are pairwise distincts), where qv is

the cardinal of the residue field at v. Then under the hypothesisp1q that
there exists such p with m generic at p, the integer n0 above is necessary
equals to the relative dimension of ShK . In particular the H ipShK ,Zlqm
are all torsion free.

In this work we consider the particular case of Kottwitz-Harris-Taylor
Shimura varieties ShK of [14] associated to inner forms of GLd. In [5]
we gave a very explicit proof of the fact that if m is generic at some
split place v then the localized cohomology groups are all torsion free.
Moreover we described the shape of the local component at v of any
Ql-automorphic representations raising the multiset of modulo l Satake
parameters given by m. Concerning torsion cohomology classes, in [9],
we proved, at least when d is not prime, that whatever is the weight ξ,

p1qIn their new preprint, Caraiani and Scholze explained that, from an observation
of Koshikawa, one can replace decomposed generic by simply generic, in their main
statement.
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if you increase the level at l, then non trivial torsion cohomology classes
always appear. The main result of this paper is the following.

Theorem. — Let m be a system of Hecke eigenvalues such that ρm is
irreducible, then the localized cohomology groups of ShK with coefficients
in any Zl-local system Vξ, are all free.

Roughly the proof relies on the fact that, cf. [6] theorem 3.1.1 which
follows easily from [18] theorem 5.6, if ρm is absolutely irreducible, then
as a TS,mrGalF,Ss-module,

Hd´1
pXU,η̄,Zlqm » σm bTS,m ρm,

for some TS,m-module σm on wich GalF acts trivially. The idea is then
to prove that if there were torsion then the previous decomposition of
the global lattice as a tensorial product could not be possible. To do
this we compute the cohomology using two different filtrations of the
nearby cycles perverse sheaf through their associated spectral sequence,
cf. (3.1.1) and (3.1.2).

The author would like to thanks Koshikawa for helpful conversation
about a previous work on the same theme, where he pointed me a major
mistake. He then explained me some of his ideas which was very inspiring.

1. Recalls from [5]

1.1. Representations of GLdpKq. — We fix a finite extension K{Qp

with residue field Fq. We denote | ´ | its absolute value.

For a representation π of GLdpKq and n P 1
2
Z, set

πtnu :“ π b q´n val ˝ det.

1.1.1. Notations. — For π1 and π2 representations of respectively

GLn1pKq and GLn2pKq, we will denote by

π1 ˆ π2 :“ ind
GLn1`n2 pKq

Pn1,n1`n2 pKq
π1t

n2

2
u b π2t´

n1

2
u,

the normalized parabolic induced representation where for any sequence

r “ p0 ă r1 ă r2 ă ¨ ¨ ¨ ă rk “ dq, we write Pr for the standard parabolic

subgroup of GLd with Levi

GLr1 ˆGLr2´r1 ˆ ¨ ¨ ¨ ˆGLrk´rk´1
.
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Recall that a representation % of GLdpKq is called cuspidal (resp.

supercuspidal) if it’s not a subspace (resp. subquotient) of a proper

parabolic induced representation. When the field of coefficients is of

characteristic zera then these two notions coincides, but this is no more

true for Fl.

1.1.2. Definition. — (see [22] §9 and [3] §1.4) Let g be a divisor of

d “ sg and π an irreducible cuspidal Ql-representation of GLgpKq. The

induced representation

πt
1´ s

2
u ˆ πt

3´ s

2
u ˆ ¨ ¨ ¨ ˆ πt

s´ 1

2
u

holds a unique irreducible quotient (resp. subspace) denoted Stspπq (resp.

Spehspπq); it’s a generalized Steinberg (resp. Speh) representation.

Moreover the induced representation Sttpπt
´r
2
uq ˆ Spehrpπt

t
2
q (resp.

of Stt´1pπt
´r´1

2
uq ˆ Spehr`1pπt

t´1
2
q) owns a unique irreducible subspace

(resp. quotient), denoted LTπpt´ 1, rq.

Remark. These representations LTπpt ´ 1, rq appear in the cohomology

of the Lubin-Tate spaces, cf. [2].

1.1.3. Proposition. — (cf. [20] III.5.10) Let π be an irreducible cus-

pidal representation of GLgpKq with a stable Z-latticep2q, then its modulo

l reduction is irreducible and cuspidal but not necessary supercuspidal.

The supercuspidal support of the modulo l reduction of a cuspidal rep-

resentation, is a segment associated to some irreducible Fl-supercuspidal

representation % of GLg´1p%qpFvq with g “ g´1p%qt where t is either equal

to 1 or of the following shape t “ mp%qlu with u ě 0 and where mp%q

is some integer associated to %: when % is the trivial representation

then mp1vq is either the order of q modulo l when it is ą 1, otherwise

mp1vq “ l. We say that such πv is of %-type u with u ě ´1.

1.1.4. Notation. — For % an irreducible Fl-supercuspidal representa-

tion, we denote Cusp% (resp. Cusp%puq for some u ě ´1) the set of

p2qWe say that π is entire.
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equivalence classes of irreducible Ql-cuspidal representation whose mod-

ulo l reduction has supercuspidal support a segment associated to % (resp.

of %-type u).

Let u ě 0, πv,u P Cusp%puq and τ “ πv,urssD. Let then denote ι the

image of Spehsp%q by the modulo l Jacquet-Langlands correspondance

defined at §1.2.4 de [11]. Then the modulo l reduction of τ is isomorphic

to

ιt´
mpτq ´ 1

2
u ‘ ιt´

mpτq ´ 3

2
u ‘ ¨ ¨ ¨ ‘ ιt

mpτq ´ 1

2
u (1.1.5)

where ιtnu :“ ιb q´n val ˝ nrd.

We want now to recall the notion of level of non degeneracy from [1]

§4. The mirabolic subgroup MdpKq of GLdpKq is the set of matrices

with last row p0, ¨ ¨ ¨ , 0, 1q: we denote

VdpKq “ tpmi,j P PdpKq : mi,j “ δi,j for j ă nu.

its unipotent radical. We fix a non trivial character ψ of K and let

θ the character of VdpKq defined by θppmi,jqq “ ψpmd´1,dq. For G “

GLrpKq or MrpKq, we denote AlgpGq the abelian category of algebraic

representations of G and ,following [1], we introduce

Ψ´ : AlgpMdpKqq ÝÑ AlgpGLd´1pKq, Φ´ : AlgpMdq ÝÑ AlgpMd´1pKqq

defined by Ψ´ “ rVd,1 (resp. Φ´ “ rVd,θ) the functor of Vd´1 coinvariants

(resp. pVd´1, θq-coinvariants), cf. [1] 1.8. We also introduce the normalize

compact induced functor

Ψ` :“ iV,1 : AlgpGLd´1pKqq ÝÑ AlgpMdpKqq,

Φ` :“ iV,θ : AlgpMd´1pKqq ÝÑ AlgpMdpKqq.

1.1.6. Proposition. — ([1] p451)

– The functors Ψ´, Ψ`, Φ´ and Φ` are exact.

– Φ´ ˝Ψ` “ Ψ´ ˝ Φ` “ 0.

– Ψ´ (resp. Φ`) is left adjoint to Ψ` (resp. Φ´) and the following

adjunction maps

Id ÝÑ Φ´Φ`, Ψ`Ψ´
ÝÑ Id,

are isomorphisms meanwhile

0 Ñ Φ`Φ´ ÝÑ Id ÝÑ Ψ`Ψ´
Ñ 0.
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1.1.7. Definition. — For τ P AlgpMdpKqq, the representation

τ pkq :“ Ψ´
˝ pΦ´qk´1

pτq

is called the k-th derivative of τ . If τ pkq ‰ 0 and τ pmq “ 0 for all m ą k,

then τ pkq is called the highest derivative of τ .

1.1.8. Notation. — (cf. [22] 4.3) Let π P AlgpGLdpKqq (or π P

AlgpMdpKq). The maximal number k such that pπ|MdpKqq
pkq ‰ p0q is

called the level of non-degeneracy of π and denoted λpπq. We can also

iterate the construction so that at the end we obtain a partition λpπq of

d.

1.1.9. Definition. — A representation π of GLdpKq, over Q̄l or F̄l, is

then said generic if its level of non degeneracy λpπq is equal to d.

1.2. Shimura varieties of KHT type. — Let F “ F`E be a CM

field where E{Q is quadratic imaginary and F`{Q totally real with a

fixed real embedding τ : F` ãÑ R. For a place v of F , we will denote

– Fv the completion of F at v,

– Ov the ring of integers of Fv,

– $v a uniformizer,

– qv the cardinal of the residual field κpvq “ Ov{p$vq.

Let B be a division algebra with center F , of dimension d2 such that

at every place x of F , either Bx is split or a local division algebra and

suppose B provided with an involution of second kind ˚ such that ˚|F is

the complex conjugation. For any β P B˚“´1, denote 7β the involution

x ÞÑ x7β “ βx˚β´1 and G{Q the group of similitudes, denoted Gτ in [14],

defined for every Q-algebra R by

GpRq » tpλ, gq P Rˆ ˆ pBop
bQ Rq

ˆ such that gg7β “ λu

with Bop “ B bF,c F . If x is a place of Q split x “ yyc in E then

GpQxq » pB
op
y q

ˆ
ˆQˆx » Qˆx ˆ

ź

zi

pBop
zi
q
ˆ, (1.2.1)

where, identifying places of F` over x with places of F over y, x “
ś

i zi
in F`.

Convention: for x “ yyc a place of Q split in E and z a place of F over

y as before, we shall make throughout the text, the following abuse of
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notation by denoting GpFzq in place of the factor pBop
z q

ˆ in the formula

(1.2.1).

In [14], the authors justify the existence of some G like before such

that moreover

– if x is a place of Q non split in E then GpQxq is quasi split;

– the invariants of GpRq are p1, d´ 1q for the embedding τ and p0, dq

for the others.

As in [14] bottom of page 90, a compact open subgroup U of GpA8q is

said small enough if there exists a place x such that the projection from

U v to GpQxq does not contain any element of finite order except identity.

1.2.2. Notation. — Denote I the set of open compact subgroup small

enough of GpA8q. For I P I, write XI,η ÝÑ SpecF the associated

Shimura variety of Kottwitz-Harris-Taylor type.

1.2.3. Definition. — Define Spl the set of places v of F such that

pv :“ v|Q ‰ l is split in E and Bˆv » GLdpFvq. For each I P I, write

SplpIq the subset of Spl of places which doesn’t divide the level I.

In the sequel, v and w will denote places of F in Spl. For such a place

v the scheme XI,η has a projective model XI,v over SpecOv with special

fiber XI,sv . For I going through I, the projective system pXI,vqIPI is

naturally equipped with an action of GpA8q ˆ Z such that wv in the

Weil group Wv of Fv acts by ´ degpwvq P Z, where deg “ val ˝Art´1

and Art´1 : W ab
v » Fˆv is Artin’s isomorphism which sends geometric

Frobenius to uniformizers.

1.2.4. Notations. — For I P I, the Newton stratification of the geo-

metric special fiber XI,s̄v is denoted

XI,s̄v “: Xě1
I,s̄v

Ą Xě2
I,s̄v

Ą ¨ ¨ ¨ Ą Xěd
I,s̄v

where X“h
I,s̄v

:“ Xěh
I,s̄v
´Xěh`1

I,s̄v
is an affine scheme, smooth of pure dimen-

sion d ´ h built up by the geometric points whose connected part of its

Barsotti-Tate group is of rank h. For each 1 ď h ă d, write

ih : Xěh
I,s̄v

ãÑ Xě1
I,s̄v

, jěh : X“h
I,s̄v ãÑ Xěh

I,s̄v
,

and j“h “ ih ˝ j
ěh.
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Let σ0 : E ãÑ Ql be a fixed embedding and write Φ the set of embed-

dings σ : F ãÑ Ql whose restriction to E equals σ0. There exists, [14]

p.97, then an explicit bijection between irreducible algebraic representa-

tions ξ of G over Ql and pd` 1q-uple
`

a0, pÝÑaσqσPΦ
˘

where a0 P Z and for

all σ P Φ, we have ÝÑaσ “ paσ,1 ď ¨ ¨ ¨ ď aσ,dq. We then denote

Vξ,Zl

the associated Zl-local system on XI Recall that an irreducible automor-

phic representation Π is said ξ-cohomological if there exists an integer i

such that

H i
`

pLie GpRqq bR C, U,Π8 b ξ_
˘

‰ p0q,

where U is a maximal open compact subgroup modulo the center of GpRq.
Let diξpΠ8q be the dimension of this cohomology group.

1.3. Cohomology of Newton strata. —

1.3.1. Notation. — For 1 ď h ď d, let Ivphq denote the set of open

compact subgroups

Uvpm,hq :“ Uvpm
v
q ˆ

ˆ

Ih 0

0 Kvpm1q

˙

,

where Kvpm1q “ Ker
`

GLd´hpOvq ÝÑ GLd´hpOv{p$
m1
v qq

˘

. We then de-

note rH iph, ξqs (resp. rH i
! ph, ξqs) the image of

lim
ÝÑ

IPIvphq

H i
pXěh

I,s̄v ,1
, Vξ,Qlrd´hsq resp. lim

ÝÑ

IPIvphq

H i
pXěh

I,s̄v ,1
, jěh1,! Vξ,Q̄lrd´hsq

inside the Grothendieck Grothpv, hq of admissible representations of

GpA8q ˆGLd´hpFvq ˆ Z.

Remark. An element σ P Wv acts through´ deg σ P Z and Πpv ,0pArt´1
pσqq.

We moreover consider the action of GLhpFvq through val ˝ det :

GLhpFvq ÝÑ Z and finally Ph,dpFvq through its Levi factor GLhpFvq ˆ

GLd´hpFvq, i.e. its unipotent radical acts trivially.

From [5] proposition 3.6, for any irreducible tempered automorphic

representation Π of GpAq and for every i ‰ 0, the Π8,v-isotypic compo-

nent of rH iph, ξqs and rH i
! ph, ξqs are zero. About the case i “ 0, for Π
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an irreducible automorphic tempered representation ξ-cohomological, its

local component at v looks like

Πv » Stt1pπv,1q ˆ ¨ ¨ ¨ ˆ Sttupπv,uq,

where for i “ 1, ¨ ¨ ¨ , u, πv,i is an irreducible cuspidal representation of

est une GLgipFvq.

1.3.2. Proposition. — (cf. [5] proposition 3.9) With the previous no-

tations, we order the πv,i such that the first r-ones are unramified char-

acters. Then the Π8,v-isotypic component of rH0ph, ξqs is then equals

to
´

7Ker1
pQ, Gq
d

ÿ

Π1PUGpΠ8,vq

mpΠ1qdξpΠ
1
8q

¯´

ÿ

1ďkďr: tk“h

Πpkqv b χv,kΞ
d´h

2

¯

where

– Ker1
pQ, Gq is the subset of elements H1pQ, Gq which become trivial

in H1pQp1 , Gq for every prime p1;

– Π
pkq
v :“ Stt1pχv,1qˆ¨ ¨ ¨ˆSttk´1

pχv,k´1qˆSttk`1
pχv,k`1qˆ¨ ¨ ¨ˆSttupχv,uq

and

– Ξ : 1
2
Z ÝÑ Zˆl is defined by Ξp1

2
q “ q

1
2
v .

– UGpΠ8,vq is the set of equivalence classes of irreducible automorphic

representations Π1 of GpAq such that pΠ1q8,v » Π8,v.

Remark. In particular if rH0ph, ξqs has non trivial invariant vectors under

some open compact subgroup I P Ivphq which is maximal at v, then the

local component of Π at v is of the following shape Sthpχv,1q ˆ χv,2 ˆ

¨ ¨ ¨χv,d´h where the χv,i are unramified characters.

1.3.3. Definition. — For I P I a finite level, let TI :“
ś

xPUnrpIq Tx be

the unramified Hecke algebra where UnrpIq is the union of places q where

G is unramified and Ix is maximal, and where Tx » ZlrXunpTxqs
Wx for

Tx a split torus, Wx the spherical Weyl group and XunpTxq the set of

Zl-unramified characters of Tx.

Example. For w P SplpIq, we have

Tw “ Zl
“

Tw,i : i “ 1, ¨ ¨ ¨ , d
‰

,
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where Tw,i is the characteristic function of

GLdpOwq diagp

i
hkkkkkkikkkkkkj

$w, ¨ ¨ ¨ , $w,

d´i
hkkkikkkj

1, ¨ ¨ ¨ , 1qGLdpOwq Ă GLdpFwq.

The minimal prime ideals of TI are the prime ideals above the zero

ideal of Zl and are then in bijection with the prime ideals of TI bZl
Ql. To such an ideal, which corresponds to give a collection of Satake

parameters, is then associated a unique near equivalence class in the sense

of [19], denoted Π
rm which is the finite set of irreducible automorphic

representations cohomological whose multi-set of Satake parameters at

each place x P UnrpIq, is given by S
rmpxq the multi-set of roots of the

Hecke polynomial

P
rm,wpXq :“

d
ÿ

i“0

p´1qiq
ipi´1q

2
w Tw,i,rmX

d´i
P QlrXs

i.e.

S
rmpwq :“

 

λ P TI bZl Ql{rm » Ql such that P
rm,wpλq “ 0

(

.

Thanks to [14] and [19], we denote

ρ
rm : GalpF̄ {F q ÝÑ GLdpQlq

the galoisian representation associated to any Π P Π
rm. Recall that the

modulo l reduction of ρ
rm depends only of m, and was denoted above ρm.

For every w P SplpIq, we also denote Smpwq the multi-set of modulo l

Satake parameters at w given as the multi-set of roots of

Pm,wpXq :“
d
ÿ

i“0

p´1qiq
ipi´1q

2
w Tw,iX

d´i
P FlrXs

i.e.

Smpwq :“
 

λ P TI{m » Fl such that Pm,wpλq “ 0
(

.

For ξ an irreducible algebraic representation of GpQq, let TIpξq be

the image of TI inside the Zl-endomorphism of the free quotient of
À

iPNH
ipXI,η̄v , Vξ,Zlq.
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2. Computation of torsion cohomology classes

Our strategy to compute the cohomology of the KHT-Shimura vari-

ety XI,η̄ with coefficients in Vξ,Zl , is to realize it as the outcome of the

vanishing cycles spectral sequence at some place v P Spl.

2.1. The case where the level at v is maximal. — As for each 1 ď

h ď d´1, the open Newton stratum X“h
I,s̄v

is affine then H ipX“h
I,s̄v

, Vξ,Zlrd´

hsq is zero for i ă 0 and free for i “ 0. Using this property and the short

exact sequence of free perverse sheaves

0 Ñ ih`1,˚Vξ,Zl,|Xěh`1
I,s̄v

rd´ h´ 1s ÝÑ jěh! jěh,˚Vξ,Zl,|XěhI,s̄v
rd´ hs

ÝÑ Vξ,Zl,|XěhI,s̄v
rd´ hs Ñ 0,

we then obtain for every i ą 0

0 Ñ H´i´1
pXěh

I,s̄v
, Vξ,Zlrd´ hsq ÝÑ H´i

pXěh`1
I,s̄v

, Vξ,Zlrd´ h´ 1sq Ñ 0,

(2.1.1)

and for i “ 0,

0 Ñ H´1
pXěh

I,s̄v
, Vξ,Zlrd´ hsq ÝÑ H0

pXěh`1
I,s̄v

, Vξ,Zlrd´ h´ 1sq ÝÑ

H0
pXěh

I,s̄v
, jěh! jěh,˚Vξ,Zlrd´ hsq ÝÑ H0

pXěh
I,s̄v

, Vξ,Zlrd´ hsq Ñ ¨ ¨ ¨

(2.1.2)

In [5], arguing by induction from h “ d to h “ 1, we prove that for a

maximal ideal m of TIpξq such that Smpvq does not contain any subset of

the form tα, qvαu, all the cohomology groups H ipXěh
I,s̄v

, Vξ,Zlqm are free:

note that in order to deal with i ě 0, one has to use Grothendieck-Verdier

duality.

Without this hypothesis, arguing similarly, we conclude that any tor-

sion cohomology class comes from a non strict map

H0
freepX

ěh`1
I,s̄v

, Vξ,Zlrd´ h´ 1sqm ÝÑ H0
pXěh

I,s̄v
, jěh! jěh,˚Vξ,Zlrd´ hsqm.

In particular it raises in characteristic zero to some free subquotient of

H0pXěh
I,s̄v

, jěh! jěh,˚Vξ,Zlrd´ hsqm.

2.1.3. Proposition. — Consider as in [5], h0 maximal such that there

exists i with Hd´h0`ipXěh0
I,s̄v

Vξ,Zlqm,tor ‰ p0q, then we have the following

properties:
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– i “ 0, 1;

– for all 1 ď h ď h0 and i ă h0 ´ h then Hd´h`ipXěh
I,s̄v

Vξ,Zlqm,tor “ p0q

while for i “ h0 ´ h it’s non trivial.

Remark. Note that any system of Hecke eigenvalues m of TI inside the

torsion of some H ipXI,η̄v , Vξ,Zlq raises in characteristic zero, i.e. is asso-

ciated to a maximal ideal m of TIpξq.

2.2. Harris-Taylor perverse sheaves over Zl. — Consider

now the ideals Ivpnq :“ IvKvpnq where Kvpnq :“ KerpGLdpOvq �
GLdpOv{Mn

v qq. Recall then that X“h
Ivpnq,s̄ is geometrically induced under

the action of the parabolic subgroup Ph,d´hpOv{Mn
v q, defined as the

stabilizer of the first h vectors of the canonical basis of F d
v . Concretely

this means there exists a closed subscheme X“h
Ivpnq,s̄,1 stabilized by the

Hecke action of Ph,d´hpFvq and such that

X“h
Ivpnq,s̄ » X“h

Ivpnq,s̄,1 ˆPh,d´hpOv{Mn
v q
GLdpOv{Mn

v q.

Let then denote mv the multiset of Hecke eigenvalues given by m but

outside v and introduce for Πh any representation of GLhpFvq

H i
pXěh

Ivp8q,s̄v ,1
, Vξ,Zlqmv b Πh :“ lim

ÐÝ

Ivpnq

H i
pXěh

Ivpnq,s̄v ,1
, Vξ,Zlqmv b Πh,

as a representation of GLhpFvq ˆ GLd´hpFvq, where g P GLhpFvq acts

both on Πh and on H ipXěh
Ivpnq,s̄v ,1

, Vξ,Zlqmv through the determinant map

det : GLhpFvq � Fˆv . Note moreover that the unipotent radical of

Ph,dpFvq acts trivially on these cohomology groups and introduce the

induced version

H i
pXěh

Ivp8q,s̄v
,Πh b Vξ,Zlqmv » ind

GLdpFvq
Ph,dpFvq

H i
pXěh

Ivp8q,s̄v ,1
, Vξ,Zlqmv b Πh.

More generally, with the notations of [2], replace now the trivial rep-

resentation by an irreducible cuspidal representation πv of GLgpFvq for

some 1 ď g ď d.

2.2.1. Notations. — Let 1 ď t ď s :“ td{gu and Πt any representation

of GLd´tgpFvq. We then denote

ĄHT 1pπv,Πtq :“ LpπvrtsDq1 b Πt b Ξ
tg´d

2

the Harris-Taylor local system on the Newton stratum X“tg
I,s̄v ,1

where
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– LpπvrtsDq1 is defined thanks to Igusa varieties attached to the repre-

sentation πvrtsD of the division algebra of dimension ptgq2 over Fv
associated to Sttpπvq by the Jacquet-Langlands correspondence,

– Ξ : 1
2
Z ÝÑ Zˆl defined by Ξp1

2
q “ q1{2.

We also introduce the induced version

ĄHT pπv,Πtq :“
´

LpπvrtsDq1h b Πt b Ξ
tg´d

2

¯

ˆPtg,d´tgpFvq GLdpFvq,

where the unipotent radical of Ptg,d´tgpFvq acts trivially and the action of

pg8,v,

ˆ

gcv ˚

0 getv

˙

, σvq P GpA8,vq ˆ Ptg,d´tgpFvq ˆWv

is given

– by the action of gcv on Πt and degpσvq P Z on Ξ
tg´d

2 , and

– the action of pg8,v, getv , valpdet gcvq´deg σvq P GpA8,vqˆGLd´tgpFvqˆ
Z on LQlpπvrtsDq1h b Ξ

tg´d
2 .

We also introduce

HT pπv,Πtq1 :“ ĄHT pπv,Πtq1hrd´ tgs,

and the perverse sheaf

P pt, πvq1 :“ j“tg1,!˚HT pπv, Sttpπvqq1 b Lpπvq,

and their induced version, HT pπv,Πtq and P pt, πvq, where

j“h “ ih ˝ jěh : X“h
I,s̄ ãÑ Xěh

I,s̄ ãÑ XI,s̄

and L_ is the local Langlands correspondence. Finally we will also use

the indice ξ in the notations, for example HTξpπv,Πtq, when we twist the

sheaf with Vξ,Zl.

With the previous notations, from (1.1.5), we deduce the following

equality in the Grothendieck group of Hecke-equivariant local systems

mp%qlu
”

FFξ,Z̄lpt, πv,uq
ı

“

”

FFξ,Z̄lptmp%ql
u, πv,´1q

ı

. (2.2.2)

We want now to focus on the perverse Harris-Taylor sheaves. Note

first that over Zl, there are two notions of intermediate extension for

the two classical t-structures p and p`, so that we can define for every

πv P Cusp% of GLgpFvq and 1 ď t ď d{g:

pj“tg!˚ HT pπv,,Πtq ã�`
p`j“tg!˚ HT pπv,Πtq, (2.2.3)
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the symbol ã� meaning bimorphism, ie both a monomorphism and epi-

morphism, so that the cokernel for the t-structure p (resp. the kernel for

p`) has support in Xětg`1
I,s̄v

. When πv is a character, i.e. when g “ 1, it’s

trivial that there are in fact isomorphic but in general there are not.

Remark. One of the main result of [7], is to prove that the previous

bimorphism is an isomorphism for any πv P Cusp%p´1q, but as here we’ll

only deal with % the trivial representation, we don’t need the result of

[7].

We focus now on the case where % is a character and πv P Cusp%puq

for u ě 0. Let Fp‚q :“ ‚ bL
Zl
Fl be the modulo l reduction functor.

2.2.4. Proposition. — (cf. proposition 2.4.2 of [7]) Let % be a char-

acter, i.e. g´1p%q “ 1, we then have the following equality in the

Grothendieck group of Hecke-equivariant perverse sheaves

F
´

pj
“tgup%q
!˚ HT pπv,u,Πtq

¯

“ mp%qlu
s´tmp%qlu

ÿ

r“0

pj
“tgup%q`rg´1p%q
!˚

HT
`

%, rlpΠtq
ÝÑ
ˆV%pr,ă δuq

˘

b Ξr g´1
2 ,

where V%pr,ă δuq
˘

is defined in loc. cit. as the sum of irreducible consti-

tuants of the modulo l reduction of Strpπv,´1q of %-level strictly less than

δu :“ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ q, cf. §A.2 of [7]

Remark. The proof only uses the fact that F and pj! commutes and the

property that the bimorphism (2.2.3) is a isomorphism for πv a character.

Note moreover that the equality of the previous proposition remains true

if we replace pj
“tgup%q
!˚ HT pπv,u,Πtq by any perverse sheaf P such that

pj
“tgup%q
!˚ HT pπv,u,Πtq ã�` P ã�`

p`j
“tgup%q
!˚ HT pπv,u,Πtq.

When we look at FP for such P , they differ from each of others only in

the order of the Jordan-Holder factors: for example they appears in the

increasing (resp. decreasing) order of the dimension of their support for
pj
“tgup%q
!˚ HT pπv,u,Πtq (resp. for p`j

“tgup%q
!˚ HT pπv,u,Πtq).

2.3. The infinite level case at v and w. — Recall that v and w are

places of Spl and we focus now on the torsion in the cohomology groups

with compact support of HT pχv,Πtq when the level at v and w is infinite.
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2.3.1. Notation. — We will denote Iv,w P I a finite level outside v

and w, and let mv,w be the maximal ideal of TIv,xpξq associated to m.

Start first from the following resolution of pj“tg!˚ HT pχv,Πtq

0 Ñ j“d! HT pχv,Πtt
t´ s

2
uq ˆ Spehd´tpχvtt{2uqq b Ξ

s´t
2 ÝÑ ¨ ¨ ¨

ÝÑ j“t`1
! HT pχv,Πtt´1{2u ˆ χvtt{2uq b Ξ

1
2 ÝÑ

j“t! HT pχv,Πtq ÝÑ
pj“t!˚ HT pχv, P itq Ñ 0. (2.3.2)

Remark. This result is proved in full generality over Ql for any irreducible

cuspidal representation in replacement of χv. Over Zl, it’s proved in [7]

for any irreducible representation whose modulo l reduction is supercus-

pidal. In the case of a character, the argument is trivial as we just have

to notice that the strata Xěh
I,s̄v ,1

are smooth so that the constant sheaf,

up to shift, is perverse and so equals to the intermediate extension of the

constant sheaf, shifted by d ´ h, on X“h
I,s̄v ,1

. The previous resolution is

then just the induced version of this.

By adjunction property, the map

j“t`δ! HT pχv,Πtt
´δ

2
uq ˆ Spehδpχvtt{2uqq b Ξδ{2

ÝÑ j“t`δ´1
! HT pχv,Πtt

1´ δ

2
uq ˆ Spehδ´1pχvtt{2uqq b Ξ

δ´1
2 (2.3.3)

is given by

HT pχv,Πtt
´δ

2
u ˆ Spehδpχvtt{2uqq b Ξδ{2

ÝÑ

pit`δ,!j“t`δ´1
! HT pχv,Πtt

1´ δ

2
uq ˆ Spehδ´1pχvtt{2uqq b Ξ

δ´1
2 (2.3.4)

From [7], we have

pit`δ,!j“t`δ´1
! HT pχv,Πtt

1´ δ

2
uq ˆ Spehδ´1pχvtt{2uqq b Ξ

δ´1
2

» HT
´

χv,Πtt
1´ δ

2
uqˆ

`

Spehδ´1pχvt´1{2uqˆχvt
δ ´ 1

2
u
˘

tt{2u
¯

bΞδ{2

(2.3.5)

Fact. In particular, up to homothety, the map (2.3.5), and so those

of (2.3.4), is unique. Finally as the map of (2.3.2) are strict, the given



16 BOYER PASCAL

maps (2.3.3) are uniquely determined, that is if we forget the infinitesimal

parts, these maps are independent of chosen t in (2.3.2).

We want now to copy the arguments of §2.1. For every 1 ď h ď d, let

denote iphq the smaller index i such that H ipXIv,w,s̄v ,
pj“h!˚ HTξpχv,Πhqqm

has non trivial torsion: if it doesn’t exists then set iphq “ `8. By

duality, as pj“h!˚ “ p`j“h!˚ for Harris-Taylor local systems associated to

character, note that when iphq is finite then iphq ď 0. Suppose there

exists h with iphq finite and denote h0 the bigger such h.

2.3.6. Lemma. — For 1 ď h ď t0 then iphq “ h´ h0.

Proof. — Note first that for every h0 ď h ď s, then the cohomology

groups of j“h! HTξpχv,Πhq are torsion free. Indeed there exists a filtration

p0q “ Fil0pχv, hq ãÑ Fil´dpχv, hq ãÑ ¨ ¨ ¨ ãÑ Fil´hpχv, hq “ j“h! HT pχv,Πhq

with graduates

gr´kpχv, hq »
pj“k!˚ HT pχv,Πht

h´ k

2
u b Stk´hpχvth{2uqqp

h´ k

2
q.

The ξ-associated spectral sequence localized at mv,w is then concentrated

in middle degree and torsion free. Then the spectral sequence associated

to (2.3.2) has all its E1 terms torsion free and degenerates at its E2 terms.

As by hypothesis the aims of this spectral sequence is free and equals to

only one E2 terms, we deduce that all the maps

H0
`

XIv,w,s̄,v, j
“h`δ
! HTξpχv,Πht

´δ

2
uq ˆ Spehδpχvtt{2uqq bΞδ{2

˘

mv,w
ÝÑ

H0
`

XIv,w,s̄,v, j
“h`δ´1
! HTξpχv,Πht

1´ δ

2
uq

ˆ Spehδ´1pχvtt{2uqq b Ξ
δ´1

2

˘

mv,w
(2.3.7)

are strict. Then from the previous fact stressed after (2.3.5), this property

remains true when we consider the associated spectral sequence for 1 ď

h1 ď h0.
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Consider now h “ h0 where we know the torsion to be non trivial.

From what was observed above we then deduce that the map

H0
`

XIv,w,s̄,v, j
“h0`1
! HTξpχv,Πh0t

´1

2
uq ˆ χvth0{2uqq b Ξ1{2

˘

mv,w

ÝÑ H0
`

XIv,w,s̄,v, j
“h0
! HTξpχv,Πh0q

˘

mv,w
(2.3.8)

has a non trivial torsion cokernel so that iph0q “ 0.

Finally for any 1 ď h ď h0, the map like (2.3.8) for h` δ ´ 1 ă h0 are

strict so that the H ipXIv,w,s̄v ,
pj“h!˚ HTξpχv,Πhqqmv,w are zero for i ă h´h0

while when h` δ´1 “ h0 its cokernel has non trivial torsion which gives

then a non trivial torsion class in Hh´h0pXIv,w,s̄v ,
pj“h!˚ HTξpχv,Πhqqmv,w .

From the previous proof we also deduce that all cohomology classes of

any of the H ipXIv,w,s̄v ,Pξpt, χvqqmv,w comes from non strictness of some

of the map (2.3.8) where Πv :“ Sttpχvq. In the following we will focus on

H ipXIv,w,s̄v ,Pξpt, χvqqmv,wrls as a Fl-representation of GLdpFvqˆGLdpFwq.

More precisely we are interested in irreducible such sub-quotients which

have maximal non-degeneracy level either at v or w. Let first fix such

non degeneracy level λ for GLdpFvq in the sense of notation 1.1.8, which

is maximal for torsion classes in H0pXIv,w,s̄v ,Pξpt, χvqqmv,wrls for various

1 ď t ď d.

2.3.9. Lemma. — Let % be a Fl-character of Fˆv and πv P Cusp%. For

i ‰ 0, 1 all FlrGLdpFvqs-irreducible sub-quotients of H ipXIv,w,s̄v ,Pξpt, πvqqmv,wrls
have a level of non degeneracy strictly less than λ.

Remark. Recall that we only know, a priori, that the Ppt, πvq only verify

pj“tg!˚ HT pπv, Sttpπvqq ã�` Ppt, πvq ã�`
p`j“tg!˚ HT pπv, Sttpπvqq.

Proof. — If πv P Cusp%p´1q is a character then the result follows from

above. In particular the result remains true for pj“t!˚ HTξ,Flp%,Πtqrd ´ ts,

i.e. if HIpXIv,w,s̄v ,
pj“t!˚ HTξ,Flp%,Πtqrd´ tsqmv,w has an irreducible subquo-

tient with level of non-deneracy greater or equal to λ then i “ 0, 1.p3q We

p3qRecall that the Ql-cohomology groups localized at m are concentrated in degree

i “ 0.
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then conclude using the equality of proposition 2.2.4 and its following

remark.

3. Proof of the theorem

3.1. Filtrations of the nearby cycles perverse sheaf. — Let de-

note

ΨI,v :“ RΨηvpZlrd´ 1sqp
d´ 1

2
q

the nearby cycles autodual free perverse sheaf on the geometric special

fiber XI,s̄v of XI . We also denote ΨI,ξ,v :“ ΨI,v b Vξ,Zl .

Using the Newton stratification and following the constructions of [8],

we can define a Zl-filtration Fil‚pΨI,vq whose graduates are free, isomor-

phic to some free perverse Harris-Taylor sheaf. Moreover in [7] proposi-

tion 3.1.3, we prove the following splitting

ΨI,v »

d
à

g“1

à

%PScuspFl
pgq

ΨI,%

where ScuspFlpgq is the set of inertial equivalence classes of irreducible

Fl-supercuspidal representation of GLgpFvq, with the property the irre-

ducible constituant of ΨI,% bZl Ql are exactly the perverse Harris-Taylor

sheaves, of level I, associated to a irreducible cuspidal Ql-representations

of some GLgpFvq such that the supercuspidal support of the modulo l

reduction of πv is a segment associated to the inertial class %.

Remark. In [7], we proved that if you always use the adjunction maps

j“h! j“h,˚ Ñ Id then all the previous graduates of ΨI,% are isomorphic to p-

intermerdiate extensions. In the following we will only consider the case

where % is a character in which case the p and p` intermediate extension

associated to character χv,´1 P Cusp%p´1q, coincides. Note that in the

following we will not use the results of [7].

We then have a spectral sequence

Ep,q
1 “ Hp`q

pXI,s̄v , gr´ppΨI,ξ,vqq ñ Hp`q
pXI,η̄v , Vξ,Zlq. (3.1.1)

Let consider now the filtration of stratification of ΨI,% constructed

using the adjunction morphisms j“t! j“t,˚ as in [4]

Fil0! pΨI,%q ãÝ|Ñ Fill1! pΨI,%q ãÝ|Ñ Fill2! pΨI,%q ãÝ|Ñ ¨ ¨ ¨ ãÝ|Ñ Filld! pΨI,%q
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where Fillt!pΨI,%q is the saturated image of j“t! j“g,˚ΨI,% ÝÑ ΨI,%. We

then denote grkI,%,! the graduates and

Ep,q
!,%,1 “ Hp`q

pXI,s̄v , gr´p!,I,ξ,%q ñ Hp`q
pXI,η̄v ,ΨI,ξ,%q. (3.1.2)

3.2. About torsion cohomology classes. — Recall we have fixed

two places v, w P Spl as well as a finite level Iv,w outside v, w. We then

simply denote Ψ and Ψξ, the inductive system of perverse sheaves indexed

by the finite level Iv,wIvIw P I.

Fix some character χv of type % and let denote Filg!,χvpΨq ãÝ|Ñ Filg! pΨ%q

such that Filg!,χvpΨq bZl Ql » Filg! pΨχvq where Ψχv is the direct factor of

ΨbZl Ql associated to χv, cf. [4]. From the main result of [7], which can

also be deduce easily from [16] and the comparison theorem of Faltings-

Fargues cf. [13], we have then the following resolution of Filg!,χvpΨq

0 Ñ j“d! HT pχv, Spehdpχvqq b Lpχvp
d´ 1

2
qq ÝÑ

j“d´1
! HT pχv, Spehd´1pχvqq b Lpχvp

d´ 2

2
qq ÝÑ

¨ ¨ ¨ ÝÑ j“1
! HT pχv, χvq b Lpχvq ÝÑ Fil1!,χvpΨq Ñ 0 (3.2.1)

We can then apply the arguments of the previous section so that

H ipXIv,w,s̄v ,Fil1!,χvpΨξqqmv,w has non trivial torsion for i “ 1 ´ t0 and

with free quotient zero for i ‰ 0. Clearly we can also repeat the same

arguments for the other grt!,χv ãÝ|Ñ grt!pΨ%q with

0 Ñ j“d! HT pχv, LTχvpt´ 1, d´ tqq b Lpχvp
d´ 2t` 1

2
qq ÝÑ

j“d´1
! HT pχv, LTχvpt´ 1, d´ t´ 1qq b Lpχvp

d´ 2t

2
qq ÝÑ

¨ ¨ ¨ ÝÑ j“t! HT pχv, Sttpχvqq b Lpχvq ÝÑ Filt!,χvpΨq Ñ 0. (3.2.2)

Finally all the torsion cohomology classes of the H ipXI,s̄v , grt!,χvqmv come

from non strictness of the maps

H´1
pXI,s̄v , j

“h`1
! HT pχv,Πh`1qqmv ÝÑ H0

pXI,s̄v , j
“h
! HT pχv,Πhqqmv

(3.2.3)

where pΠh,Πh`1q is of the shape
´

LTχvpt´1, h´tq, LTχvpt´1, h`1´tq
¯

.
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3.2.4. Lemma. — As a FlrGLdpFvqs-module, for every i, the l-torsion

of H ipXI,s̄v ,Zlqmv does not have an irreducible generic sub-quotient.

Proof. — Recall first that, as by hypothesis ρm is irreducible, the Ql-

version of the spectral sequence (3.1.2) degenerates at E1 so that in

particular all the torsion cohomology classes appear in the E1 terms.

The result then follows from the previous maps (3.2.3) and the fact that

for any r ą 0, the modulo l reduction of LTχvpt ´ 1, rq does not admit

any irreducible generic sub-quotient.

Recall we argue by absurdity so there should exist non trivial cohomol-

ogy classes, so there should exist such h so that the cokernel of the map

(3.2.3) has torsion. We then denote h0 the greatest such h. Then as the

Ql-cohomology groups localized at mv,w of the graduates of Filh0
!,χv
pΨξq are

concentrated in degree 0, we then have a filtration of the free quotient of

H0pXIv,w,s̄v ,Filh0
!,χv
pΨξqqmv,w whose graduate are lattices Γ!,χvph0, iq of the

free quotients of H0pXIv,w,s̄v ,Pξph0 ` i, χvqp
h0´1´i

2
qqmv,w .

3.2.5. Lemma. — Let denote Γpχv, tq the lattice of the free quotient

of H0pXIv,w,s̄v ,Pξpt, χvqqmv,w . With the previous notations, there exists

1 ď i ď d´ h0 and a short exact sequence

0 Ñ Γ!,χvph0, iq ÝÑ Γpχv, h0 ` iq ÝÑ T Ñ 0

where T is a sub-quotient of the torsion submodule of the cokernel of

H0
pXIv,w,s̄v , j

“h0`1
! HTξpχv, Sth0`1pχvqqqmv,w

ÝÑ H0
pXIv,w,s̄v , j

“h0
! HTξpχv, Sth0pχvqqqmv,w . (3.2.6)

Proof. — By maximality of h0, note that for h0 ă t ď d, the cohomology

groups of Pξpt, χvq and j“t! HTξpπv,Πtq, are all free after localization by

mv,w. Using the same argument as before through the spectral sequence

associated to (3.2.2), we then deduce that H ipXIv,w,s̄v ,Filh0
!,χv
pΨξqqmv,w are

all free for i ‰ 0, 1 while for i “ 0 the torsion is non trivial given by the

non strictness of

H0
pXIv,x,s̄v , j

“h0`1
! HTξpχv, LTχvph0 ´ 1, 1qqqmv,w

ÝÑ H0
pXIv,w,s̄v , j

“h0
! HTξpχv, Sth0pχvqqqmv,w . (3.2.7)
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Concerning H0pXIv,w,s̄v ,Pξpχv, h0qqmv,w , its torsion submodule is

parabolic induced, so that beside those coming from the non strict-

ness of (3.2.7), there is also the contribution given by the non strictness

of (3.2.6).

In particular, when we compute the cohomology of Filh0
!,χv
pΨξq through

its filtration of stratification with graduate the Pξph0 ` k, χvq with

0 ď k ď d ´ h0, this extra torsion part which appears as a quotient

of H0pXIv,w,s̄v ,Pξpχv, h0qqmv,w , must be used to modify the lattice

Γpχv, h0 ` iq in another one Γ!,χvph0, iq well adapted to the free quotient

of H0pXIv,w,s̄v ,Pξpχv, h0qqmv,w .

Arguing as in the proof of lemma 2.3.6, using (3.2.3), we have the

following result.

3.2.8. Lemma. — For every 1 ď t, let jptq the minimal integer j such

that the torsion of HjpXIv,w,s̄v ,Filt!,χvpΨξqqmv,w is non trivial. Then

jptq “

"

`8 if t ě h0 ` 1,

t´ h0 for 1 ď t ď h0.

Moreover in case 1 ď t ď h0, for the action of GLdpFwq, up to multi-

plicities, we recover the same irreducible sub-quotients in the l-torsion of

H0pXIv,w,s̄v ,Filh0
!,χv
pΨξqqmv,w .

Fact : through the spectral sequence (3.1.2), we then deduce that the

l-torsion of H1´h0pXIv,w,s̄v , Vξ,Zlqmv,w is non trivial and, for the action

of GLdpFwq, up to multiplicities, we recover the same irreducible sub-

quotients in the l-torsion of H0pXIv,w,s̄v ,Filh0
!,χv
pΨξqqmv,w .

3.3. Global lattices. — In lemma 3.2.4, we proved that the l-torsion

of any H ipXIv,w,s̄v , Vξ,Zlqmv,w , as a FlrGLdpFvqs, never contains any generic

sub-quotient. In this section we want to prove the opposite, i.e. there

should exist generic sub-quotient which gives us our contradiction so

that our hypothesis there should exist non trivial torsion classes, is in

fact absurd. By symmetry between the places v and w, it suffices to do

it for the action of GLdpFwq.
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3.3.1. Lemma. — With the notations of the previous section, the lat-

tices Γ!,χvph0, iq and Γpχv, h0 ` iq are isomorphic.

Proof. — Recall that ρm is supposed to be absolutely irreducible. Fol-

lowing [18] §5 and especially theorem 5.6, see also [6] theorem 3.1.1, we

know that as a TS,mrGalF,Ss-module,

Hd´1
pXIv,w,η̄, Vξ,Zlqmv,w » σmv,w bTS,mv,w ρmv,w ,

for some TS,mv,w-module σmv,w on wich GalF acts trivially. In particular

for Π8,I
v,w
b σpΠq a direct factor of Hd´1pXIv,w,η̄v1

, Vξ,Qlqmv,w , and its

lattice given by the Zl-cohomology is a tensorial product ΓG b ΓW of a

stable lattice ΓG (resp. ΓW ) of Π8,I
v,w

(resp. of LdpΠ
_
v1
q).

With the notations of lemme 3.2.5, for any automorphic Π which

appears in the m-cohomology of Pph ` i, χvq, we denote Γ!,χvph0, i,Πq

(resp. Γpχv, h0` i,Πq) the lattice Γ!,χvph0, iqXΠ8,I bσ (resp. Γpχv, h0`

iq XΠ8,I b σ) induces by Π8,I b σ ãÑ H0pXIv,w,s̄v ,Filh0
!,χv
pΨξqqmv,w (resp.

Π8,Ibσ ãÑ H0pXIv,w,s̄v ,Pξph`i, χvqph0´1´i
2
qmv,w). We then consider such

Π so that the map short exact sequence of lemma 3.2.5 induces a non

trivial map Γ!,χvph0, i,Πq ãÑ Γpχv, h0 ` i,Πq: as in loc. cit., the cokernel

T is non trivial, we know such Π should exists.

Through the spectral sequence associated to the filtration Fill‚! pΨξ,%q,

we then obtain a filtration of the free quotient of H0pXIv,w,s̄v , Vξ,Zlqmv,w

and so of Π8,I b σpΠq as a submodule. Recall that for every h ě h0, the

E1 terms of the spectral sequence computing Filh!,χvpΨξq are torsion free,

so that the lattices of the Π8,I b σ parts of H0pXIv,w,s̄v ,Filh!,χvpΨξqqmv,w ,

are given by the associated lattices of H0pXIv,w,s̄v ,Pξph` δqqmv,w .

Now as the global lattice is a tensor product, we then conclude that

Γ!,χvph0, i,Πq and Γpχv, h0 ` i,Πq have to be isomorphic.

In particular considering only the action of GLdpFwq, the l-torsion of

the cokernel T in lemma 3.2.5 should contains a generic representation.

So using the last fact of the previous section, we then deduce that as

a FlrGLdpFwqs-module, the l-torsion of H1´h0pXIv,w,s̄v , Vξ,Zlqmv,w has a

generic sub-quotient.
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