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GALOIS REDUCIBILITY AND FREENESS OF
LOCALIZED COHOMOLOGY OF KHT
SHIMURA VARIETIES
by
Boyer Pascal

Abstract. — In [9], we proved that the Z;-cohomology of KHT
Shimura varieties of dimension d which is not prime, whatever is the
weight of the coefficients, when the level is large enough at [, always
contains non trivial torsion classes. In [5], and more generally in [10] for
other compact PEL Shimura varieties, for a generic maximal ideal m of
the unramified Hecke algebra, the localisation at m of these cohomology
groups appear to be free. In this work we obtain the same result for m
such that its associated galoisian F;-representation p,, is irreducible.
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Introduction

From Matsushima’s formula and computation of (&, K )-cohomology,
we know that tempered automorphic representations contribution in the
cohomology of Shimura varieties with complex coefficients, is concen-
trated in middle degree. In [10], the authors consider the case of F;-
coefficients and prove an analog result under some genericness hypothesis
which can be stated as follows. Let m be a system of Hecke eigenvalues
appearing in H™ (Shg, F;) with Shx some compact unitary Shimura vari-
ety of Kottwitz type associated to some similitude group G. By the main
result of [17], one can attach to such m, a mod [ Galois representation

ﬁm . Gal(F/F) I GLd(Fl>

where F' is the reflex field of Shi which, by assumption, contains some
imaginary quadratic extension F/Q. From [10] definition 1.9, we say that
m is generic (resp. decomposed generic) at some split p in F, if for all
places v of F' dividing p, the eigenvalues {\, -, A\, } of p,,(Frob,) satisfy
Ni/A; ¢ {qgr'} for all i # j (vesp. and are pairwise distincts), where g, is
the cardinal of the residue field at v. Then under the hypothesis™ that
there exists such p with m generic at p, the integer ny above is necessary
equals to the relative dimension of Shg. In particular the H*(Shg,Z;)m
are all torsion free.

In this work we consider the particular case of Kottwitz-Harris-Taylor
Shimura varieties Shy of [14] associated to inner forms of GL;. In [5]
we gave a very explicit proof of the fact that if m is generic at some
split place v then the localized cohomology groups are all torsion free.
Moreover we described the shape of the local component at v of any
Q;-automorphic representations raising the multiset of modulo [ Satake
parameters given by m. Concerning torsion cohomology classes, in [9],
we proved, at least when d is not prime, that whatever is the weight &,

(W1In their new preprint, Caraiani and Scholze explained that, from an observation
of Koshikawa, one can replace decomposed generic by simply generic, in their main
statement.
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if you increase the level at [, then non trivial torsion cohomology classes
always appear. The main result of this paper is the following.

Theorem. — Let m be a system of Hecke eigenvalues such that p,, is
irreducible, then the localized cohomology groups of Shx with coefficients
in any Zi-local system Ve, are all free.

Roughly the proof relies on the fact that, cf. [6] theorem 3.1.1 which
follows easily from [18] theorem 5.6, if p,, is absolutely irreducible, then
as a Tgn[Galpg]-module,

H" N Xv, Li)m ~ O @14, Py

for some Tgn-module o, on wich Galp acts trivially. The idea is then
to prove that if there were torsion then the previous decomposition of
the global lattice as a tensorial product could not be possible. To do
this we compute the cohomology using two different filtrations of the
nearby cycles perverse sheaf through their associated spectral sequence,
cf. (3.1.1) and (3.1.2).

The author would like to thanks Koshikawa for helpful conversation
about a previous work on the same theme, where he pointed me a major
mistake. He then explained me some of his ideas which was very inspiring.

1. Recalls from [5]

1.1. Representations of GL4(K). — We fix a finite extension K/Q,
with residue field IF,. We denote | — | its absolute value.
For a representation 7 of GLy4(K) and n € %Z, set

ﬂ_{n} = 7T®q7nvalodet.

1.1.1. Notations. — For m and mwy representations of respectively

GL,, (K) and GL,,(K), we will denote by
. . GLp+4n (K) n2 nl
T X o 1= 1ndPn17:+i2(K) 7T1{7} ®7r2{—?},
the normalized parabolic induced representation where for any sequence
r=0<r <ry<---<r,=d), we write P, for the standard parabolic
subgroup of GLg with Levi

GL,, x GLyy_y, X --- x GL

Tk—Tk—1"
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Recall that a representation o of GL4(K) is called cuspidal (resp.
supercuspidal) if it’s not a subspace (resp. subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zera then these two notions coincides, but this is no more
true for F,.

1.1.2. Definition. — (see [22] §9 and [3] §1.4) Let g be a divisor of
d = sg and 7 an irreducible cuspidal Q,-representation of GLy(K). The
induced representation

7r{1; 3;8}><~--><7r{8_1}

holds a unique irreducible quotient (resp. subspace) denoted Sts(m) (resp.

%} % m

Speh () ); it’s a generalized Steinberg (resp. Speh) representation.
Moreover the induced representation Sty(m{5"}) x Speh,(7{%) (resp.

of Sti—1(m{=52}) x Speh, 4 (7{5)) owns a unique irreducible subspace

(resp. quotient), denoted LT, (t — 1,7).

Remark. These representations LT, (t — 1,7) appear in the cohomology
of the Lubin-Tate spaces, cf. [2].

1.1.3. Proposition. — (cf. [20] 111.5.10) Let 7 be an irreducible cus-
pidal representation of GL,(K) with a stable Z-lattice® | then its modulo
[ reduction is irreducible and cuspidal but not necessary supercuspidal.

The supercuspidal support of the modulo [ reduction of a cuspidal rep-
resentation, is a segment associated to some irreducible Fj-supercuspidal
representation ¢ of GLy_, (,)(F,) with g = g_1(0)t where t is either equal
to 1 or of the following shape t = m(p){* with v > 0 and where m(p)
is some integer associated to p: when p is the trivial representation
then m(1,) is either the order of ¢ modulo [ when it is > 1, otherwise
m(1,) = I. We say that such =, is of p-type u with v > —1.

1.1.4. Notation. — For o an irreducible F;-supercuspidal representa-
tion, we denote Cusp, (resp. Cusp,(u) for some u > —1) the set of

(2)We say that = is entire.
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equivalence classes of irreducible Q;-cuspidal representation whose mod-
ulo | reduction has supercuspidal support a segment associated to o (resp.

of o-type u).

Let w > 0, m,, € Cusp,(u) and 7 = m,,[s]p. Let then denote ¢ the
image of Speh (o) by the modulo ! Jacquet-Langlands correspondance
defined at §1.2.4 de [11]. Then the modulo [ reduction of 7 is isomorphic
to

m(T)—l}@L{_W}@...@L{%} (1.1.5)

{— 5
where t{n} := 1 ®q
We want now to recall the notion of level of non degeneracy from [1]
§4. The mirabolic subgroup My(K) of GL4(K) is the set of matrices
with last row (0,---,0,1): we denote
‘/d(K) = {(mi,j € Pd(K) P my = 5i,j fOI'j < TL}

its unipotent radical. We fix a non trivial character ¢ of K and let
6 the character of Vy(K) defined by 6((m;;)) = ¥(mi—14). For G =
GL,(K) or M,.(K), we denote Alg(G) the abelian category of algebraic
representations of G and following [1], we introduce

U™ Alg(My(K)) — Alg(GLa-1(K), ™ : Alg(Ma) — Alg(Ma-1(K))

defined by U~ = ry, | (resp. = = ry, ) the functor of V;_; coinvariants
(resp. (Vg—1,0)-coinvariants), cf. [1] 1.8. We also introduce the normalize
compact induced functor

Ut = iva: Alg(GLg-1(K)) — Alg(Mqy(K)),
DT =iy : Alg(Ma-1(K)) — Alg(Ma(K)).

—n val o nrd

1.1.6. Proposition. — (1] p451)
— The functors V=, ¥, &~ and ®T are exact.
— P ot =TV 0d" =0.
— U™ (resp. ®71) is left adjoint to ¥t (resp. ®~) and the following
adjunction maps
d— & &+  Uro —1d,
are 1somorphisms meanwhile

0—>®"®" —Id — T U™ — 0.
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1.1.7. Definition. — For 1 € Alg(My(K)), the representation
T®) = U o (7))

is called the k-th derivative of 7. If 7™ # 0 and 7™ = 0 for all m > k,
then 7®) is called the highest derivative of T.

1.1.8. Notation. — (cf. [22] 4.3) Let m € Alg(GL4(K)) (or m €
Alg(My(K)). The mazimal number k such that (Ta,u)™ # (0) is
called the level of non-degeneracy of m and denoted \(mw). We can also
iterate the construction so that at the end we obtain a partition \(m) of
d. -
1.1.9. Definition. — A representation ™ of GLy(K), over Q; or Iy, is
then said generic if its level of non degeneracy \(m) is equal to d.

1.2. Shimura varieties of KHT type. — Let F = F''E be a CM
field where E/Q is quadratic imaginary and F'*/Q totally real with a
fixed real embedding 7 : F'* < R. For a place v of F', we will denote

— F, the completion of F' at v,

— O, the ring of integers of F,,

— w, a uniformizer,

— @, the cardinal of the residual field k(v) = O,/(w,).
Let B be a division algebra with center F', of dimension d? such that
at every place x of F'| either B, is split or a local division algebra and
suppose B provided with an involution of second kind # such that #z is
the complex conjugation. For any € B*~~!  denote fs the involution
x> 1% = Br*B~! and G/Q the group of similitudes, denoted G, in [14],
defined for every Q-algebra R by

G(R) ~ {(\,9) € R* x (B ®y R)* such that gg" = \}
with B? = B®p,. F. If x is a place of Q split z = yy© in E then
G(Q.) = (BP)* x Q) ~Q x [ [(BX)~, (1.2.1)

where, identifying places of F'* over z with places of F over y, z = [ [, 2
in F'*.
Convention: for x = yy© a place of Q split in F and z a place of F' over
y as before, we shall make throughout the text, the following abuse of
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notation by denoting G(F}) in place of the factor (B%)* in the formula
(1.2.1).
In [14], the authors justify the existence of some G like before such
that moreover
— if 2 is a place of Q non split in E then G(Q,) is quasi split;
— the invariants of G(R) are (1,d — 1) for the embedding 7 and (0, d)
for the others.

As in [14] bottom of page 90, a compact open subgroup U of G(A®) is
said small enough if there exists a place x such that the projection from
U" to G(Q,) does not contain any element of finite order except identity.

1.2.2. Notation. — Denote I the set of open compact subgroup small
enough of G(A®). For I € I, write X;,, — SpecF the associated
Shimura variety of Kottwitz-Harris-Taylor type.

1.2.3. Definition. — Define Spl the set of places v of F such that
Py 1= vjg # 1 is split in E and B ~ GLq4(F,). For each I € T, write
Spl(I) the subset of Spl of places which doesn’t divide the level I.

In the sequel, v and w will denote places of F' in Spl. For such a place
v the scheme X7, has a projective model X7, over Spec O, with special
fiber X;,,. For I going through Z, the projective system (X;,)rer is
naturally equipped with an action of G(A*) x Z such that w, in the
Weil group W, of F, acts by —deg(w,) € Z, where deg = valo Art™!
and Art™' : W% ~ FX is Artin’s isomorphism which sends geometric
Frobenius to uniformizers.

1.2.4. Notations. — For I € I, the Newton stratification of the geo-
metric special fiber X5, 1s denoted

_. y=1 =2 >d
XI,Ev - XI,EU - XI,gv - - XI,EU

where X7l = stflv —ng:’l s an affine scheme, smooth of pure dimen-
ston d — h built up by the geometric points whose connected part of its
Barsotti-Tate group is of rank h. For each 1 < h < d, write

S >h >1 >h =h >h
th Xl,gv - XI,§U’ Jo X],gv - XI,§U’

and j=" =iy 0 52",



8 BOYER PASCAL

Let 0 : E < Q; be a fixed embedding and write ® the set of embed-
dings o : F' < @, whose restriction to E equals oy. There exists, [14]
p.97, then an explicit bijection between irreducible algebraic representa-
tions € of G over Q; and (d + 1)-uple (ag, (ch’)ge@) where ag € Z and for
all 0 € ®, we have @y = (a,1 < -+ < a,4). We then denote

‘/g 7Zl

the associated Z;-local system on X7 Recall that an irreducible automor-
phic representation II is said £&-cohomological if there exists an integer ¢
such that

H'((Lie G(R)) ® C,U, I, ® ") # (0),

where U is a maximal open compact subgroup modulo the center of G(R).
Let di(T1,) be the dimension of this cohomology group.

1.3. Cohomology of Newton strata. —

1.3.1. Notation. — For 1 < h < d, let Z,(h) denote the set of open
compact subgroups

Ui 1) = U < (e ).
where K.“(ml) = Ker(GLd_h(Ov) —> GLq_p(Oy/(w™))). We then de-
note [H'(h,§)] (resp. [H!(h,§)]) the image of

h_l’I)l Hi(XI%g,J?va,@l [d_h]) resp. h_I>n Hi(XI),gv,lvjl%!th&Ql [d_h])
I€Z,(h) I€Zy(h)

inside the Grothendieck Groth(v,h) of admissible representations of
G(AOO) X GLd—h(Fv) X 7.

Remark. An element o € W, acts through — deg o € Z and I1,,, o(Art ™' (o).
We moreover consider the action of GL,(F,) through valodet
GLy(F,) — Z and finally P, 4(F,) through its Levi factor GLj(F,) x
GL4_n(F,), i.e. its unipotent radical acts trivially.

From [5] proposition 3.6, for any irreducible tempered automorphic
representation I of G(A) and for every i # 0, the II®"-isotypic compo-
nent of [H'(h,&)] and [H{(h,£)] are zero. About the case i = 0, for II
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an irreducible automorphic tempered representation £-cohomological, its
local component at v looks like

Hv >~ Sttl (ﬂ-v,l) X - X Sttu (ﬂ-v,u)y

where for ¢ = 1,--- ,u, m,; is an irreducible cuspidal representation of

est une GL,, (F,).

1.3.2. Proposition. — (cf. [5] proposition 3.9) With the previous no-
tations, we order the m,; such that the first r-ones are unramified char-
acters. Then the TI®"-isotypic component of [H°(h,£)] is then equals
to

(@9 v amm)( Y 1P e

H/GZ/{G(HOO*“) 1<k<r: tp=h
where

— Ker' (Q, G) is the subset of elements H*(Q, G) which become trivial
in H'(Qy, G) for every prime p';
- Hl()k) = Stt1 (Xv,l) XX Sttk71 (Xv,k—l) X Sttk+1 (Xv,k+1) XX Sttu (Xv,u)

and )
- Z2:32— 7, is defined by 2(3) = qéd.

— Ug(TT™V) is the set of equivalence classes of irreducible automorphic
representations II' of G(A) such that (II')*¥ ~ 1%,

Remark. In particular if [H°(h, )] has non trivial invariant vectors under
some open compact subgroup I € Z,(h) which is maximal at v, then the
local component of II at v is of the following shape Stp(xu1) X Xuvz2 X
-+ Xv.d—h Where the x,; are unramified characters.

1.3.3. Definition. — For I € T a finite level, let T; := ]_[erm(I) T, be
the unramified Hecke algebra where Unr(I) is the union of places q where
G is unramified and I, is maximal, and where T, ~ Z;[ X" (T,)|"= for
T, a split torus, W, the spherical Weyl group and X""(T,) the set of
Zi-unramified characters of Ty.

Ezample. For w € Spl(1), we have
T, :Zl[Tw,i ce=1,--- ad]a
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where T, ; is the characteristic function of

; d—i

—
GLy(O) diag(For -y, L 1)GLa(Oy) © GLa(F).

The minimal prime ideals of T; are the prime ideals above the zero
ideal of Z; and are then in bijection with the prime ideals of T; ®z,
Q. To such an ideal, which corresponds to give a collection of Satake
parameters, is then associated a unique near equivalence class in the sense
of [19], denoted ITz which is the finite set of irreducible automorphic
representations cohomological whose multi-set of Satake parameters at
each place x € Unr([), is given by Si(z) the multi-set of roots of the

Hecke polynomial
d - iGim1)
Paw(X) = D> (—1)'qu 2

=0

Tw,i,ﬁXd_i e Q[X]

le.
Si(w) = {)\ e T; ®z, Q,/m ~ Q, such that Py, (\) = 0}.
Thanks to [14] and [19], we denote
pa : Gal(F/F) — GLy(Q)

the galoisian representation associated to any II € II;. Recall that the
modulo [ reduction of pz depends only of m, and was denoted above p,,.
For every w € Spl(I), we also denote Sy(w) the multi-set of modulo [
Satake parameters at w given as the multi-set of roots of

.= —

d
Pow(X) = D> (=1)'qu * T, X" e FY[X]
i=0

ie.
Sm(w) = {)\ € T;/m ~ F; such that Py, (\) = 0}.

For ¢ an irreducible algebraic representation of G(Q), let T;(§) be
the image of T; inside the Z;-endomorphism of the free quotient of

@ieN Hi<XI,ﬁw Vg,Zl)'
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2. Computation of torsion cohomology classes

Our strategy to compute the cohomology of the KHT-Shimura vari-
ety Xj; with coefficients in V, 7 , is to realize it as the outcome of the
vanishing cycles spectral sequence at some place v € Spl.

2.1. The case where the level at v is maximal. — As for each 1 <
h < d—1, the open Newton stratum X7 is affine then H* (X, V. 7 [d—
h]) is zero for i < 0 and free for ¢ = 0. Using this property and the short
exact sequence of free perverse sheaves

~ >h :>h,
0— 1h+1,*Vg,Z,|XI>jgj1 [d—h—1] —j" *Vg,Zl,\ngv [d — h]

—> Vs o [d—h] — 0,

£7Zl7| 1,54

we then obtain for every i > 0

0~ H N XPE Vez ld—hl) — B (XPE Vg [d—h—1]) ~0,
(2.1.1)
and for ¢ = 0,

0~ H (X7 Vegld = ) — HOOXFE Vg [d = h = 1) —

HY(XTL, 37" 7" Vez ld = b)) — HO(X72, Vez,[d—h]) — -
(2.1.2)

In [5], arguing by induction from h = d to h = 1, we prove that for a
maximal ideal m of T () such that Sy, (v) does not contain any subset of
the form {a, g,a}, all the cohomology groups H i(Xigv, Vez,)m are free:
note that in order to deal with 7 > 0, one has to use Grothendieck-Verdier
duality.

Without this hypothesis, arguing similarly, we conclude that any tor-
sion cohomology class comes from a non strict map

HY (PR Vg [d = = 1)) — HOXFE 77"V, [d = W)

In particular it raises in characteristic zero to some free subquotient of
H(X7g, 37" Vez,[d = h])m.

2.1.3. Proposition. — Consider as in [5], hg mazimal such that there
exists i with Hd*hOH(ngfV%Zl)mtm # (0), then we have the following
properties:
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—i=0,1;
— for all1 < h < hy and i < hg—h then H*""(X7! Ve 7 Ymsor = (0)
while for i = hg — h it’s non trivial.

Remark. Note that any system of Hecke eigenvalues m of T; inside the
torsion of some H'(X;,, V¢ 7,) raises in characteristic zero, i.e. is asso-
ciated to a maximal ideal m of T(¢).

2.2. Harris-Taylor perverse sheaves over Z;. — Consider
now the ideals IV(n) := I'K,(n) where K,(n) := Ker(GL4(O,) —
GL4(O,/M?2)). Recall then that X;,’”(Ln%g is geometrically induced under
the action of the parabolic subgroup Py 4 p(O,/M?2), defined as the
stabilizer of the first h vectors of the canonical basis of F%. Concretely
this means there exists a closed subscheme X;}(‘nml stabilized by the

Hecke action of P, 4_5(F,) and such that
XI:”}(ln)j = XI:“}(Ln),E,l XPh,d—h(Ov/MZL) GLd(OU/MZ)

Let then denote m” the multiset of Hecke eigenvalues given by m but
outside v and introduce for II;, any representation of GLy(F})

Hi<XI>”f(LOO),§U,17 Vg,Z)m“ ® Hh = I(El H’L (X[Z’U}(Ln)’gv’li Vg,Z,)iﬂ” ® Hh7

I(n)
as a representation of GLj(F,) x GLq_p(F,), where g € GL,(F),) acts
both on II; and on Hi(Xﬁ’(‘n) 5,10 Vez, )me through the determinant map

det : GLn(F,) — F). Note moreover that the unipotent radical of
Py 4(F,) acts trivially on these cohomology groups and introduce the
induced version

H (X7 5 T ® Ve 7, e = indg,f ZE?Z

(00

) 17i/ v =h
V(X T 5000 Vez, Jme @1

More generally, with the notations of [2], replace now the trivial rep-
resentation by an irreducible cuspidal representation m, of GL4(F),) for
some 1 < g <d.

2.2.1. Notations. — Let1 <t < s:=|d/g| and I1; any representation
of GLy—t4(Fy). We then denote
tg—d

HT (7, 11,) := L(m[t]p)1 @ T, @ =

the Harris-Taylor local system on the Newton stratum XZ;f’l where
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— L(m,[t]p)1 is defined thanks to Iqusa varieties attached to the repre-
sentation m,[t]p of the division algebra of dimension (tg)* over F,
associated to Sty(m,) by the Jacquet-Langlands correspondence,

- = %Z — le defined by E(%) — ¢*2.

We also introduce the induced version
e — tg—d
HT (m,, I1;) := (ﬁ(m[t]D)g@) Q=2 ) X Prg.avg(Fo) GLa(F),

where the unipotent radical of Py a_iy(F,) acts trivially and the action of

= (B ) ) € G x Py (B < W,
1S given
tg—d

— by the action of g5 on 11, and deg(o,) € Z on =272 |, and
— the action of (g™, g, val(det g¢)—deg 0,,) € G(A™")x GLg14(F,) x
Z on Lg,(m[tlp) ® "

We also introduce

HT(m,, 1), = }—I\T(ﬂ'v, IL,)3,[d — tg],

and the perverse sheaf

P(t,my)1 = jlzngT(ﬂ'v, Sty(m,))1 ® L(m,),

*
and their induced version, HT (m,,11;) and P(t,,), where
JTh =it o P X X7 X
and LY is the local Langlands correspondence. Finally we will also use

the indice € in the notations, for example HT¢(m,,11;), when we twist the
sheaf with V. 7.

With the previous notations, from (1.1.5), we deduce the following
equality in the Grothendieck group of Hecke-equivariant local systems

m(g)l“[F]—"&Zl (t,m)] _ [Wgzl (tm(g)z“,m,l)]. (2.2.2)

We want now to focus on the perverse Harris-Taylor sheaves. Note
first that over Z;, there are two notions of intermediate extension for
the two classical t-structures p and p+, so that we can define for every
m, € Cusp, of GLy(F,) and 1 <t < d/g:

PicHT (1, 1) <y P75 9 HT (7, T1L), (2.2.3)
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the symbol <» meaning bimorphism, ie both a monomorphism and epi-
morphism, so that the cokernel for the t-structure p (resp. the kernel for
p+) has support in Xi;fj’“. When 7, is a character, i.e. when g = 1, it’s
trivial that there are in fact isomorphic but in general there are not.
Remark. One of the main result of [7], is to prove that the previous
bimorphism is an isomorphism for any 7, € Cusp,(—1), but as here we’ll
only deal with p the trivial representation, we don’t need the result of
[7].

We focus now on the case where g is a character and 7, € Cusp,(u)
for u > 0. Let F(e) := o ®Hi, F; be the modulo [ reduction functor.

2.2.4. Proposition. — (cf. proposition 2.4.2 of [7|) Let o be a char-
acter, i.e. g_1(0) = 1, we then have the following equality in the
Grothendieck group of Hecke-equivariant perverse sheaves

—tm(o)l*
F(pj!:tgu(g)HT(ﬂ-v7u7 Ht)) _ m(g)l“ Z pj:tgu(g)-‘r?”gfl(g)
r=0

HT (0, () XV, (r, < 8,)) @ Z"7,
where V,(r, < 8,)) is defined in loc. cit. as the sum of irreducible consti-
tuants of the modulo | reduction of St,(m, 1) of o-level strictly less than
5_u:: (07 a071707"')7 Cf' §A2 Of[7]

Remark. The proof only uses the fact that F and ?j; commutes and the
property that the bimorphism (2.2.3) is a isomorphism for 7, a character.
Note moreover that the equality of the previous proposition remains true
if we replace P j!:tg“(g) HT (7, 11;) by any perverse sheaf P such that

pj!:tgu(g)HT(ﬂ'v,u, Ht) — P . p+j!:tg“(g)HT<7TU’u, Ht)~

When we look at FP for such P, they differ from each of others only in
the order of the Jordan-Holder factors: for example they appears in the
increasing (resp. decreasing) order of the dimension of their support for
PO HT (1) (vesp. for 74O HT (m,,,, I1,)).

2.3. The infinite level case at v and w. — Recall that v and w are
places of Spl and we focus now on the torsion in the cohomology groups
with compact support of HT'(x,, II;) when the level at v and w is infinite.
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2.3.1. Notation. — We will denote I € I a finite level outside v
and w, and let m"* be the mazimal ideal of Trv.=(§) associated to m.

Start first from the following resolution of 75" HT (x,, I1;)

L= 51 x Speh,_, (xo{t/2}) ®EF — -

— GV HT (X0, TL{—1/2} % x0{t/2}) Q= —>
g HT (X0, 1) — Py  HT (0, Piy) — 0. (2.3.2)

0— j!:dHT(Xva Ht{

Remark. This result is proved in full generality over Q; for any irreducible
cuspidal representation in replacement of x,. Over Z;, it’s proved in [7]
for any irreducible representation whose modulo [ reduction is supercus-
pidal. In the case of a character, the argument is trivial as we just have
to notice that the strata ngml are smooth so that the constant sheatf,
up to shift, is perverse and so equals to the intermediate extension of the
constant sheaf, shifted by d — h, on ngml. The previous resolution is
then just the induced version of this.
By adjunction property, the map

o _5 =
G HT (x, Ht{T}) x Spehg(x,{t/2})) ® =0/

1-9 61

— j!=t+§_1HT(XmHt{ }) x Speh;_; (xu{t/2})) ®E2  (2.3.3)
is given by
__6 h =6/2
HT (x0, IT{ 5 } x Spehs(xo{t/2})) @ E* —
| .— _ 1-— -1
s et LT (g, T 0)) x Speby, (nft/21) ®2F (2.3.4)

From [7], we have

1-94 5-1

}) x Spehy_; (xo{t/2})) ®E 7
1) x (Spehs_y (xw{—1/2}) x X,U{d%l}) {t/2}> ®E9/2
(2.3.5)

Fact. In particular, up to homothety, the map (2.3.5), and so those
of (2.3.4), is unique. Finally as the map of (2.3.2) are strict, the given

pit+6’!j!=t+6_1HT(Xv, Ht{

~ HT(XU,Ht{
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maps (2.3.3) are uniquely determined, that is if we forget the infinitesimal
parts, these maps are independent of chosen ¢ in (2.3.2).

We want now to copy the arguments of §2.1. For every 1 < h < d, let
denote i(h) the smaller index i such that H'(Xew s, P " HTe (Xo, 1) )m
has non trivial torsion: if it doesn’t exists then set i(h) = +oo. By
duality, as Pj." = PTj-" for Harris-Taylor local systems associated to
character, note that when i(h) is finite then i(h) < 0. Suppose there
exists h with i(h) finite and denote hg the bigger such h.

2.3.6. Lemma. — For 1 < h <ty theni(h) = h — hy.

Proof. — Note first that for every hg < h < s, then the cohomology
groups of j7"HT¢(x,, ) are torsion free. Indeed there exists a filtration

(0) = Fil’(xu, h) <> Fil™(x0, h) > -+ > Fil ™" (xo, h) = ji"HT (x0, 1)

with graduates

h—k h—k

@St b ih/2D) ().

gr_k(va h) = pj!:kHT(Xva Hh{

The &-associated spectral sequence localized at m** is then concentrated
in middle degree and torsion free. Then the spectral sequence associated
to (2.3.2) has all its E terms torsion free and degenerates at its Ey terms.
As by hypothesis the aims of this spectral sequence is free and equals to
only one Fy terms, we deduce that all the maps

. —0 -
HO (XI“”“”,@U? j!_h+5HT§(XU7 Hh{T}) X Speh5 (Xv{t/2})) ® :‘5/2)“11),10 -
1-9
)
—0—1
x Speby;_ (o {t/2})) ®E ) 0 (23.7)

HO (X[”v“’,E,Ua j!:h-HS_lHTE(X’Ua Hh{

are strict. Then from the previous fact stressed after (2.3.5), this property
remains true when we consider the associated spectral sequence for 1 <

h < hyg.
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Consider now h = hy where we know the torsion to be non trivial.
From what was observed above we then deduce that the map

mo,w

— -1 —
HO (X037 H T O T 1) X Xoho/21) @ 5172)

— H(Xpow 5,0, 41 HTe (X0, 11y ) (2.3.8)

mv,w

has a non trivial torsion cokernel so that i(hg) = 0.

Finally for any 1 < h < hg, the map like (2.3.8) for h+ 0 — 1 < hg are
strict so that the H(Xvw 5, Pjis " HT¢ (X, 1) )mew are zero for i < h—hg
while when h+ 6 — 1 = hg its cokernel has non trivial torsion which gives
then a non trivial torsion class in H" (X v.w 5., Pji-" HTe (X, 11) )morw -

0

From the previous proof we also deduce that all cohomology classes of
any of the H'(Xjvws,, Pe(t, Xv))mow comes from non strictness of some
of the map (2.3.8) where II, := St;(x,). In the following we will focus on
HY (X pow 5,, Pe(t, Xo) Jmv-w [1] as a Fj-representation of G Ly(F,) x G Ly(F,).
More precisely we are interested in irreducible such sub-quotients which
have maximal non-degeneracy level either at v or w. Let first fix such
non degeneracy level A for GLy4(F,) in the sense of notation 1.1.8, which
is maximal for torsion classes in H°( X vw 5., Pe(t, Xo))mew[l] for various
1<t<d.

2.3.9. Lemma. — Let o be a Fi-character of FX and 7, € Cusp,. For
i # 0,1 all F;[GL4(F,)]-irreducible sub-quotients of H (X vw s, , Pe(t, m,) Jmvew []
have a level of non degeneracy strictly less than \.

Remark. Recall that we only know, a priori, that the P(t, m,) only verify
P CHT (1, Sty(m,)) <4 P(t,m0) <y PHILHT (my, Sty(m)).-

Proof. — If m, € Cusp,(—1) is a character then the result follows from
above. In particular the result remains true for ?j ' H T 5, (0, ;) [d — 1],
Le. if H'(Xpows,, )5 HT (0, 11;)[d —t])mow has an irreducible subquo-
tient with level of non-deneracy greater or equal to A then i = 0,1.) We

()Recall that the @,-cohomology groups localized at m are concentrated in degree
i =0.
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then conclude using the equality of proposition 2.2.4 and its following
remark. O

3. Proof of the theorem

3.1. Filtrations of the nearby cycles perverse sheaf. — Let de-
note

V1, = R, (Zld - 1))

the nearby cycles autodual free perverse sheaf on the geometric special
fiber X5, of X;. We also denote Uy, == V7, ® VEZ.

Using the Newton stratification and following the constructions of [8],
we can define a Z-filtration Fil*(¥;,) whose graduates are free, isomor-
phic to some free perverse Harris-Taylor sheaf. Moreover in [7] proposi-
tion 3.1.3, we prove the following splitting

d
‘III,U &~ @ @ leI,g

g=1 geScuspﬁl (9)

where Scuspg, (g) is the set of inertial equivalence classes of irreducible
F-supercuspidal representation of GLy(F,), with the property the irre-
ducible constituant of ¥ , ®z, Q, are exactly the perverse Harris-Taylor
sheaves, of level I, associated to a irreducible cuspidal Q;-representations
of some GL,(F,) such that the supercuspidal support of the modulo !
reduction of 7, is a segment associated to the inertial class o.

Remark. In [7], we proved that if you always use the adjunction maps

j'=hj=h,*

intermerdiate extensions. In the following we will only consider the case

— Id then all the previous graduates of U , are isomorphic to p-

where p is a character in which case the p and p+ intermediate extension
associated to character x, 1 € Cusp,(—1), coincides. Note that in the
following we will not use the results of [7].

We then have a spectral sequence

BV = HPY(X g o P (Wre,)) = HPY(X 5, Vez,)- (3.1.1)

Let consider now the filtration of stratification of W;, constructed

using the adjunction morphisms 5="5=%* as in [4]

Fill(U1,0) < Filly (¥1,5) | Fillf (U1,) > - > Fill{(¥r,,)
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where Fillj(¥;,) is the saturated image of j~*j=9*W¥;, — W;,. We
then denote gr’; o) the graduates and

Efgy = H™(Xp 5,80 7e ) = H (X1, Vie ). (3.1.2)
3.2. About torsion cohomology classes. — Recall we have fixed

two places v, w € Spl as well as a finite level """ outside v, w. We then
simply denote ¥ and W, the inductive system of perverse sheaves indexed
by the finite level IV*[,I, € L.

Fix some character x, of type ¢ and let denote Filf, (W) - Fil{(¥,)
such that Filf (V) ®g, Q, ~ Fil{(¥,,) where ¥, is the direct factor of
U ®z, Q; associated to x,, cf. [4]. From the main result of [7], which can
also be deduce easily from [16] and the comparison theorem of Faltings-
Fargues cf. [13], we have then the following resolution of Fil/, (W)

— d—1
0— J!_dHT(Xva Spehd(X@)) ®]L‘(Xv(—)) -

2
—d d—2
]!7d 1HT<X”U7 Spehd—l(Xv)) ®L(XU(T)) -

- — T HT (xu, Xo) ® L(x,) — Fill, (¥) >0 (3.2.1)

We can then apply the arguments of the previous section so that
Hi(XIv,wEv,Fﬂ!l’xu(\ljg))mv,w has non trivial torsion for ¢ = 1 — ¢y, and
with free quotient zero for ¢ # 0. Clearly we can also repeat the same
arguments for the other grj - gr{(¥,) with

— d—2t+1
0 — i HT (xo, LTy, (t = 1,d = 1)) @ L{xs (———)) —
I HT (o, LT, (t = 1,d = ¢ = 1)) ® Lxo(—5—)) —

- Jr HT (X0, Ste(xo)) @ L(xw) — Fill, (¥) — 0. (3.2.2)

Finally all the torsion cohomology classes of the H*(X 5, grf,xv)mv come
from non strictness of the maps

H_l (XISU ) j!:h+lHT(XU> Hh+1))m“ - HD(XI,ij!:hHT(Xva Hh))m”
(3.2.3)
where (IIj, ITj,11) is of the shape <LTXU (t—1,h—t), LT, (t—1,h+1 —t)) :
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3.2.4. Lemma. — As a F|[GLy(F,)]-module, for every i, the I-torsion
of Hi(XI,gv,Zl)mv does not have an irreducible generic sub-quotient.

Proof. — Recall first that, as by hypothesis p,, is irreducible, the Q-
version of the spectral sequence (3.1.2) degenerates at F; so that in
particular all the torsion cohomology classes appear in the E; terms.
The result then follows from the previous maps (3.2.3) and the fact that
for any r > 0, the modulo [ reduction of LT, (t — 1,r) does not admit
any irreducible generic sub-quotient. O]

Recall we argue by absurdity so there should exist non trivial cohomol-
ogy classes, so there should exist such h so that the cokernel of the map
(3.2.3) has torsion. We then denote hy the greatest such h. Then as the
Q;-cohomology groups localized at m¥* of the graduates of Fﬂ!}f‘;@ (W) are
concentrated in degree 0, we then have a filtration of the free quotient of
HY(Xpows,, Fil{f;v(\llg))mv,w whose graduate are lattices I'i,, (ho, ) of the

free quotients of H(Xyvw 5., Pe(ho + i, Xo) (2251) ) yoww.

3.2.5. Lemma. — Let denote I'(x,,t) the lattice of the free quotient
of H*(Xpvw 5, Pe(t, Xo))mvw. With the previous notations, there exists
1 <i<d— hg and a short exact sequence

0— F!7Xv (ho, Z) — F(XU, ho + Z) — T =0

where T is a sub-quotient of the torsion submodule of the cokernel of

HO(XI“*“’,EU ) j!:h0+1HT§ (Xva Stho+1 (X'z))))m”’“’
s HO(Xpese g J T (o St () e (3.26)

Proof. — By maximality of hg, note that for hy < t < d, the cohomology
groups of Pe(t, x,) and j'HT¢(m,, II;), are all free after localization by
m¥*. Using the same argument as before through the spectral sequence
associated to (3.2.2), we then deduce that H*(Xvw 5, Fll,h(;( (U¢))mow are
all free for ¢ # 0,1 while for ¢ = 0 the torsion is non trivial given by the
non strictness of

HO(XIU,CL‘7§U , j':h0+1HT£<XU7 LTXU (ho - 1, 1)))mv,w
— H(Xpow sy, 57" HTe (X, Sth (X)) e (3.2.7)
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Concerning  H®(Xjow 5, Pe(Xo, ho))mew, its  torsion submodule is
parabolic induced, so that beside those coming from the non strict-
ness of (3.2.7), there is also the contribution given by the non strictness
of (3.2.6).

In particular, when we compute the cohomology of Fil,’f;v (V¢) through
its filtration of stratification with graduate the Pe(ho + k,x,) with
0 < k < d — hg, this extra torsion part which appears as a quotient
of H°(Xjvws,, Pe(Xvs ho))mew, must be used to modify the lattice
I'(Xw, ho + %) in another one I'y ., (ho, ) well adapted to the free quotient
of HY(X v 5., Pe(Xuv, ho) Jmovw -

O

Arguing as in the proof of lemma 2.3.6, using (3.2.3), we have the
following result.

3.2.8. Lemma. — For every 1 < t, let j(t) the minimal integer j such
that the torsion of HY(Xvw s,, Filf,Xv(\Ifg))mv,w is non trivial. Then

(1) — +00 ift = ho + 1,
T =Vt —hy for1<t<he

Moreover in case 1 < t < hy, for the action of GL4(Fy), up to multi-
plicities, we recover the same irreducible sub-quotients in the l-torsion of

HO(X o 5, Fill' (We) oo

Fact: through the spectral sequence (3.1.2), we then deduce that the
I-torsion of H'™"(X w5, V7 )Jmew is non trivial and, for the action
of GL4(Fy), up to multiplicities, we recover the same irreducible sub-
quotients in the [-torsion of H(Xjv.w s,, Fill}f;U(\Ijg))mv,w.

3.3. Global lattices. — In lemma 3.2.4, we proved that the [-torsion
of any H'(Xvw 3,, Ve 7, Jmvaw, as a F;[G L4(F,)], never contains any generic
sub-quotient. In this section we want to prove the opposite, i.e. there
should exist generic sub-quotient which gives us our contradiction so
that our hypothesis there should exist non trivial torsion classes, is in
fact absurd. By symmetry between the places v and w, it suffices to do
it for the action of GL4(F,).
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3.3.1. Lemma. — With the notations of the previous section, the lat-
tices Iy 5, (ho, %) and I'(xy, ho + 1) are isomorphic.

Proof. — Recall that p,, is supposed to be absolutely irreducible. Fol-
lowing [18] §5 and especially theorem 5.6, see also [6] theorem 3.1.1, we
know that as a Tgn|[Galrs]-module,

d—1
H (levw,ﬁa ‘/gzl)m”v“f = Opvw ®Ts’mv,w Pmvw,

for some Tgmv.w-module oyew on wich Galp acts trivially. In particular
for TI*""" ® o(T0) a direct factor of H* ' (Xjww g, , Vg, Jmvw, and its
lattice given by the Z;-cohomology is a tensorial product I'¢ @ I'yy of a
stable lattice Ty (resp. T'w) of TI®™" (resp. of Ly(IL))).

With the notations of lemme 3.2.5, for any automorphic II which
appears in the m-cohomology of P(h + i, x,), we denote I',, (ho,,1I)
(resp. ['(Xu, ho +1,11)) the lattice I'y ,, (ho, ) "I @0 (resp. T'(xy, ho +
i) n 1! ® o) induces by 1! @ 0 — H(Xjow g, Fil{f;v(\:[jé)>mv,w (resp.
I @0 — HY(Xjow 5, Pe(h+1, xo) (2255 ) o). We then consider such
IT so that the map short exact sequence of lemma 3.2.5 induces a non
trivial map I, (ho, %, II) < I'(xs, ho + 4, 1I): as in loc. cit., the cokernel
T is non trivial, we know such II should exists.

Through the spectral sequence associated to the filtration Fill} (W ,),
we then obtain a filtration of the free quotient of H®(Xvw g, ngl)mv,w
and so of I ® o(I) as a submodule. Recall that for every h > hg, the
E, terms of the spectral sequence computing Fil!}fXU (W¢) are torsion free,
so that the lattices of the I ® ¢ parts of H*( X ow s, Filfva(\Ifg))mv,w,
are given by the associated lattices of H(Xjvw 5, Pe(h + 0))mow.

Now as the global lattice is a tensor product, we then conclude that
I, (ho,4,II) and I'(xw, ho + ¢, II) have to be isomorphic. O

In particular considering only the action of GL4(F),), the [-torsion of
the cokernel T" in lemma 3.2.5 should contains a generic representation.
So using the last fact of the previous section, we then deduce that as
a Fy[GL4(F,)]-module, the [-torsion of H" (X o 5,, Ve z, Jaow has a
generic sub-quotient.
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