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GALOIS IRREDUCIBILITY IMPLIES
COHOMOLOGY FREENESS FOR KHT
SHIMURA VARIETIES
by

Boyer Pascal

Abstract. — Given a KHT Shimura variety provided with an action of
its unramified Hecke algebra T, we proved in [5], see also [11] for other
PEL Shimura varieties, that its localized cohomology groups at a generic
maximal ideal m of T, appear to be free. In this work, we obtain the
same result for m such that its associated galoisian F;-representation pm
is irreducible.
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Introduction

From Matsushima’s formula and computations of (&, K, )-cohomology,
we know that tempered automorphic representations contribution in the
cohomology of Shimura varieties with complex coefficients, is concen-
trated in middle degree. If you consider cohomology with coefficients
in a very regular local system, then only tempered representations can
contribute so that all of the cohomology is concentrated in middle
degree.

For Z;-coefficients and Shimura varieties of Kottwitz-Harris-Taylor
types, we proved in [9], whatever is the weight of the coefficients,
when the level is large enough at [, there are always non trivial torsion
cohomology classes, so that the F;-cohomology can’t be concentrated in
middle degre. Thus if you want a F;-analog of the previous Q,-statement,
you must cut some part of the cohomology.

In [5] for KHT Shimura varieties, and more generally in [11] for any
PEL proper Shimura variety, we obtain such a result under some gener-
icness hypothesis which can be stated as follows. Let (Shg)xcga=) be
a tower, indexed by open compact subgroups K of G(A*), of compact
Shimura varieties of Kottwitz type associated to some similitude group
G: we denote by F' its reflex field. Let then m be a system of Hecke
eigenvalues appearing in H™ (Shx x zF,F;). By the main result of [17],
one can attach to such m, a mod [ Galois representation

where F is the reflex field of Shi which, by assumption, contains some
imaginary quadratic extension F/Q. From [11] definition 1.9, we say
that m is generic (resp. decomposed generic) at some split p in E, if
for all places v of F' dividing p, the eigenvalues {1, -, A\, } of pm(Frob,)
satisfy \;/\; ¢ {¢'} for all i # j (resp. and are pairwise distincts), where
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v is the cardinal of the residue field at v. Then under the hypothesis
that there exists such p with m generic at p, the integer ny above is
necessary equals to the relative dimension of Shy. In particular the
H'(Shg x pF, 7)) are all torsion free.

In this work we consider the particular case of Kottwitz-Harris-Taylor
Shimura varieties Shx of [15] associated to inner forms of GL,. Exploit-
ing the fact, which is particular to these Shimura varieties, that the non
supersingular Newton strata are geometrically induced, we are then able
to prove the following result.

Theorem — We suppose there exists a place v of F' with residue field of
order q,, such that the order of q, modulo [ is strictly greater than d. Let
then m be a system of Hecke eigenvalues such that py, is irreducible, then
the localized cohomology groups of Shx with coefficients in any Z;-local
system Vg, are all free.

Remark. The hypothesis about the existence of v such that ¢, € F is of
order > d, is used three times in the proof:

— first to prove the isomorphism (2.4.1). It is tempting to think that
this is still true without this hypothesis.

— Secondly for such a place v there is no irreducible cuspidal represen-
tation m, of GLy(F,) with g > 1 such that its modulo [ reduction
has a supercuspidal support made of characters, cf. the remark af-
ter 1.1.4. This simplification is completely harmless and if one want
to take care about these cuspidal representations, it suffices to used
the proposition 2.4.2 of [7] which is recalled in proposition 2.2.6.

— With this hypothesis we also note that the pro-order of GL4(O,) is
invertible modulo [ so that, concerning torsion cohomology classes,
we can easily pass from infinite to maximal level at v, cf. for example
the lemma 3.1.11.

As we can reasonably hope that these three points can be overcomed in
the future, we write this paper without taking into account simplifications
coming from these hypothesis, except when, for the moment, we really
need it as explained above.

Note also that if there exists such v then there exists an infinity of
density strictly positive.

(W1In their new preprint, Caraiani and Scholze explained that, from an observation
of Koshikawa, one can replace decomposed generic by simply generic, in their main
statement.



4 BOYER PASCAL

Roughly the proof relies on the fact that, cf. [6] theorem 3.1.1 which
follows easily from [18] theorem 5.6, if p, is absolutely irreducible, then as
a T¢ ,[Galps]-module, where Galp, is the Galois group of the maximal
extension of [’ unramified outside S:

Hy o(Shi X pF, Vez )m > Tem @15 Peam,

where

— Tem IS @ Tslm—module on wich Galp g acts trivially,

—and pgm @ Galpg — GLd(Tgm) is a Galois representation un-
ramified outside S such that, cf. [17] V.4.4, for all u ¢ S, then
det(1 — X Frob, |pem) is equal to the Hecke polynomial, cf. the end
of §1.3.

The idea is then to prove, using the geometric induced structure of
Newton strata and the monodromy operator, that if there were non trivial
torsion cohomology classes, then the previous decomposition of the global
lattice as a tensorial product could not be possible. See the introduction
of §3 to have more details about the main steps of the proof.

The author would like to thanks Koshikawa for helpful conversations
about a previous work on the same theme, where he pointed me a major
mistake. He then explained me some of his ideas which was very inspiring.

1. Recalls from [5]

1.1. Representations of GL4(K). — We fix a finite extension K/Q,
with residue field F,. We denote by | — | its absolute value.
For a representation 7 of GLy(K) and n € 17, set

7T{7’L} = 7T®q—nvalodet‘

1.1.1. Notations. — For m and my representations of respectively
GL,,(K) and GL,,(K), we will denote by

GLn1 +ng (K)

. 12 n
m X my o= indp "N Wl{?} ®7T2{—7},

the normalized parabolic induced representation where for any sequence
r=0<mr <ry<---<r,=d), we write P, for the standard parabolic
subgroup of GL4 with Levi

GL,, x GLyy_y, X --- x GL

Tk—Tk—1"
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Recall that a representation o of GL4(K) is called cuspidal (resp.
supercuspidal) if it’s not a subspace (resp. subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincides, but this is no more
true for F,.

1.1.2. Definition. — (see [21] §9 and [3] §1.4) Let g be a divisor of
d = sg and 7 an irreducible cuspidal Q,-representation of GLy(K). The
induced representation

ﬂ{lgs}xm{ggs}x--~xw{8—1

}

holds a unique irreducible quotient (resp. subspace) denoted Sts(m) (resp.
Spehy(m)); it’s a generalized Steinberg (resp. Speh) representation.
Moreover the induced representation Sty(m{='}) x Speh,.(m{%) (resp.

of Sti—1(m{=52}) x Speh, 4 (7{5)) owns a unique irreducible subspace

(resp. quotient), denoted LT, (t —1,r).

Remark. These representations LT, (t — 1,r) appear in the cohomology
of the Lubin-Tate spaces, cf. [2].

1.1.3. Proposition. — (cf. [20] 111.5.10) Let 7 be an irreducible cus-
pidal representation of GL,(K) with a stable Z-lattice® | then its modulo
[ reduction s irreducible and cuspidal but not necessary supercuspidal.

The supercuspidal support of the modulo [ reduction of a cuspidal rep-
resentation, is a segment associated to some irreducible Fj-supercuspidal
representation o of GL,_,(,)(F,) with g = g_1(0)t where ¢ is either equal
to 1 or of the following shape ¢ = m(p)l* with u > 0 and where m(p) is
defined as follows.

1.1.4. Notation. — We denote by m(p) the cardinal of the Zelevinsky
line of o if it is not equal to 1, otherwise m(p) = L.

Remark. When o is the trivial representation then m(1,) is either the
order of ¢ modulo [ when it is > 1, otherwise m(1,) = [. We say that
such 7, is of p-type u with u > —1.

(2)We say that = is entire.
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1.1.5. Notation. — For o an irreducible F;-supercuspidal representa-
tion, we denote by Cusp, (resp. Cusp,(u) for some u = —1) the set of
equivalence classes of irreducible Q;-cuspidal representations whose mod-
ulo | reduction has supercuspidal support a segment associated to o (resp.

of o-type u).
Let u > 0, m,, € Cusp,(u) and 7 = 7, ,[s]p. Let then denote by ¢ the
image of Speh,(¢) by the modulo [ Jacquet-Langlands correspondence

defined at §1.2.4 de [13]. Then the modulo ! reduction of 7 is isomorphic
to

L{_m(T;—1}@%_%}@...@4%} (1.1.6)

where t{n} := 1 ® ¢ "valonrd,

We want now to recall the notion of level of non degeneracy from [1]
§4. The mirabolic subgroup My(K) of GL4(K) is the set of matrices
with last row (0,---,0,1): we denote by

%(K) = {(mw- € Pd(K> my = 51',]‘ fOI‘j < n}

its unipotent radical. We fix a non trivial character ¢ of K and let 6
be the character of V;(K) defined by 6((m;;)) = ¢(mg—14). For G =
GL,.(K)or M,(K), we denote by Alg(G) the abelian category of algebraic
representations of G and, following [1], we introduce

U™ s Alg(Mo(K)) — Alg(GLg (K), @7 : Alg(My) — Alg(Mq-1(K))

defined by ¥~ = ry,; (resp. &~ = 1y, ) the functor of V,;_; coinvari-
ants (resp. (Vy_1,0)-coinvariants), cf. [1] 1.8. We also introduce the
normalized compact induced functor

U=y Alg(GLg 1 (K)) — Alg(My(K)),
DT =iy : Alg(My-1(K)) — Alg(Ma(K)).

1.1.77. Proposition. — (1] p451)

— The functors V=, U &~ and ®* are exact.

— O oVt =P 0dT = 0.

— U™ (resp. @) is left adjoint to ¥* (resp. ®~) and the following
adjunction maps

d— & 0",  Tro —1d,
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are 1somorphisms meanwhile
0—®"®" —Id— T~ — 0.
1.1.8. Definition. — For 7 € Alg(My(K)), the representation
78 = o (O7)E L (7)

is called the k-th derivative of 7. If T® # 0 and 7™ =0 for all m > k,
then 7% s called the highest derivative of T.

1.1.9. Notation. — (cf. [21] 4.3) Let m € Alg(GL4(K)) (or m €
Alg(My(K)). The mazimal number k such that (mar,e)® # (0) is
called the level of non-degeneracy of ™ and denoted by \(w). We can also

iterate the construction so that at the end we obtain a partition \(7) of
d.

1.1.10. Definition. — A representation m of GLq(K), over Q, or I,
is then said generic if its level of non degeneracy \(m) is equal to d.

Remark. Let m be an essentially square integrable irreducible represen-
tation of GL4(K') which is entire. Then its modulo [ reduction owns a
unique generic irreducible sub-quotient.

1.2. Shimura varieties of KHT type. — Let ' = FF'E be a CM
field where E/Q is quadratic imaginary and F*/Q totally real with a
fixed real embedding 7 : F'* — R. For a place v of F', we will denote by

— F, the completion of F' at v,

— O, the ring of integers of F,,

— @, a uniformizer,

— @, the cardinal of the residual field k(v) = O,/(w,).

Let B be a division algebra with center F, of dimension d? such that
at every place x of F', either B, is split or a local division algebra and
suppose B provided with an involution of second kind = such that «z is
the complex conjugation. For any § € B*~~! denote by #3 the involution
x> 1% = Br*B~! and G/Q the group of similitudes, denoted G in [15],
defined for every Q-algebra R by

G(R) ~ {(\,g) e R x (B” ®q R)* such that gg* = A}
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with B? = B®p,. F. If x is a place of Q split x = yy© in E then

G(Q,) = (BY) xQ =~Q; x [ [(BX)", (1.2.1)

2

where, identifying places of F'* over x with places of F over y, x = [ [, 2
in BT,
Convention: for x = yy° a place of QQ split in £ and z a place of F over
y as before, we shall make throughout the text, the following abuse of
notation by denoting G(F;) in place of the factor (B%)* in the formula
(1.2.1).

In [15], the authors justify the existence of some G like before such
that moreover

— if x is a place of Q non split in F then G(Q,) is quasi split;
— the invariants of G(R) are (1,d — 1) for the embedding 7 and (0, d)
for the others.

As in [15] bottom of page 90, a compact open subgroup U of G(A%) is
said small enough if there exists a place x such that the projection from
U" to G(Q,) does not contain any element of finite order except identity.

1.2.2. Notation. — Denote by I the set of open compact subgroups
small enough of G(A®). For I € I, write Shy,, — SpecF for the
associated Shimura variety of Kottwitz-Harris-Taylor type.

1.2.3. Definition. — Define Spl the set of places v of F such that
Py 1= vjg # 1 is split in E and B ~ GLq4(F,). For each I € T, write
Spl(I) for the subset of Spl of places which does not divide the level I.

In the sequel, v and w will denote places of F' in Spl. For such a place
v the scheme Shy ,, has a projective model Shy, over Spec O, with special
fiber Shy,. For I going through Z, the projective system (Shy,)ez is
naturally equipped with an action of G(A*) x Z such that any w, in the
Weil group W, of F, acts by —deg(w,) € Z, where deg = valo Art™!
and Art™' : W® ~ FX is Artin’s isomorphism which sends geometric
Frobenius to uniformizers.
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1.2.4. Notations. — For I € I, the Newton stratification of the geo-
metric special fiber Shy s, is denoted by
Shys, =:Shyl >Sh72 = > Sh7d

where Sh;gﬂ = Shig@ — Shi;‘jl is an affine scheme, smooth of pure di-
mension d — h built up by the geometric points whose connected part of
its Barsotti-Tate group is of rank h. For each 1 < h < d, write

in:Shih < Sh7L, 7" :Sh;? < Sh7l
and 7= =iy o j=".

Let 0y : E < Q, be a fixed embedding and write ® for the set of
embeddings o : F' < Q, whose restriction to £ equals oy. There exists
then, cf. [15] p.97, an explicit bijection between irreducible algebraic
representations & of G over Q; and (d+1)-uple (ag, (@5)se0) where ag € Z
and for all o € ®, we have a, = (a,1 < -+ < a,4). We then denote by

‘/ngzl
the associated Z;-local system on Shy Recall that an irreducible automor-
phic representation II is said £-cohomological if there exists an integer ¢
such that
HZ((LIQ GGR)) ®r C, U, Iy ®€v) # (0)7
where U is a maximal open compact subgroup modulo the center of G(R).
Let d¢(Tl,) be the dimension of this cohomology group.

1.3. Cohomology of the Newton strata. —

1.8.1. Notation. — For1 < h < d, let Z,(h) be the set of open compact
subgroups

o . 1, 0
U ) 5= Uity (o0
where K,(mi1) = Ker(GLg—,(O,) — GLy_n(O,/(wi™))). We then de-
note by [H'(h,&)] (resp. [H(h,&)]) the image of
lim H'(Sh7% |, Vegld—h])  resp. lim H'(Sh7% |, i7"V, g,[d—h])
I€Z, (h) IeZ, (h)

inside the Grothendieck Groth(v,h) of admissible representations of
G(AOO> X GLd—h(Fv) X L.
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Remark. An element o € W, acts through — deg o € Z and I1,,, o(Art (o).
We moreover consider the action of GLj(F,) through valodet
GLy(F,) — Z and finally P, 4(F,) through its Levi factor GLj(F},) x
GL4_n(F,), i.e. its unipotent radical acts trivially.

From [5] proposition 3.6, for any irreducible tempered automorphic
representation I of G(A) and for every i # 0, the II®"-isotypic compo-
nent of [H'(h,&)] and [H{(h,£)] are zero. About the case i = 0, for II
an irreducible automorphic tempered representation £-cohomological, its
local component at v looks like

Hv =~ Sttl (Wv,l) X oo X Sttu (Wv,u>7

where for ¢ = 1,--- ,u, m,; is an irreducible cuspidal representation of
est une GL,(F,).

1.3.2. Proposition. — (cf. [5] proposition 3.9) With the previous no-
tations, we order the m,; such that the first r-ones are unramified char-
acters. Then the TI®V-isotypic component of [H°(h,£)] is then equals
to

(L9 v ) (Y 1P evn's)
d el (I1%-v) 1<k<r: tp=h
where

— Ker'(Q, G) is the subset of elements H'(Q, G) which become trivial
in H'(Qy, G) for every prime p';
- Hg)k) = Sth (Xv,l) XX Sttk_1 (Xv,k‘—l) X Sttk_,.l (Xv,k-i-l) XX Sttu (Xv,u)

and )
-2:12 — 7, is defined by 2(1) =qd.

— Ug(TTI™V) is the set of equivalence classes of irreducible automorphic
representations I of G(A) such that (IT')*Y ~ 1%,

Remark. In particular if [H°(h, )] has non trivial invariant vectors under
some open compact subgroup I € Z,(h) which is maximal at v, then the
local component of II at v is of the following shape Sty (xv1) X Xwv2 X
-+ Xv,d—h Where the x,; are unramified characters.

1.3.3. Definition. — For a finite set S of places of Q containing the
places where G is ramified, denote by TS, := [ Logs Taabs the abstract
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unramified where Ty gps =~ Zy| X ™(T) W= for T, a split torus, W, the
spherical Weyl group and X*"(T,) the set of Zy-unramified characters of
T,.

FExample. For w € Spl, we have
ITw,abs = ZlI:,-Z“'w,i D= ]-7 to ad]a

where T, ; is the characteristic function of

; d—i

—
GLy(O) diag(For v, L 1)GLa(Oy) © GL4(F).

1.3.4. Notation. — Let ']T:g be the image of T, inside

2d—2 '
D tim H(Sh 1, Vo)
i=0 7
where the limit concerned the ideals I which are mazimal at each places
outside S.

Remark. In [5], we proved that if m is a maximal ideal of T such that
there exists 7 with H'(Shy, Ve 7 )m # (0) for I maximal at each places
outside S, then (T¢)n # (0), i.e. torsion cohomology classes raise in
characteristic zero.

The minimal prime ideals of ’]T:g are the prime ideals above the zero
ideal of Z; and are then in bijection with the prime ideals of ']I‘g ®z,
Q. To such an ideal, which corresponds to give a collection of Satake
parameters, is then associated a unique near equivalence class in the sense
of [19], denoted by I, which is the finite set of irreducible automorphic
cohomological representations whose multi-set of Satake parameters at
each place x € Unr([), is given by Si(z) the multi-set of roots of the

Hecke polynomial
d
Paw(X) = > (-1)'qu* TuiaX* e QX]

1.e.

Sa(w) :=={Xe T? ®7, Q;/m ~ Q; such that Py, (\) = 0}.
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Thanks to [15] and [19], we denote by
pi : Gal(F/F) — GL4(Q)

the galoisian representation associated to any II € IIz. Recall that the
modulo [ reduction of pz depends only of m, and was denoted above py,.
For every w € Spl(I), we also denote by Sy (w) the multi-set of modulo {
Satake parameters at w given as the multi-set of roots of

d i(i—1)
Pow(X) = (~1)'qu® T, X" e F[X]

1=0

le.
Swm(w) :=={X e ']I“g/m ~ [, such that Py, ()\) = 0}.

Using the arguments of [12] and following [17] V.4.4, we then deduce
the existence, for Galg g the Galois group of the maximal extension of I
unramified outside S, of

Pem : Galpg —> GLd((’Jrg)m)

interpolating the pg, so that in particular for all u ¢ S, det(1 —
X Frob, |pm) is equal to the Hecke polynomial.

Remark. In [17], the author constructs py : Galpg — GLg((T¢)wm/J)
where J is a nilpotent ideal but it seems from incoming work that on can
arrange J to be zero.

2. About the nearby cycle perverse sheaf

Our strategy to compute the cohomology of the KHT-Shimura variety
Shy; with coefficients in V; 7 , is to realize it as the outcome of the nearby
cycles spectral sequence at some place v € Spl.

Note that the role of the local system V, 7 associated to § is completely
harmless when dealing with sheaves: one just have to add a tensor prod-
uct with it to all the statements without the index £. In the following we
will sometimes not mention the index £ in the statements to make for-
mulas more readable. Of course when looking at the cohomology groups,
the role of V; 7 is crucial as it selects the automorphic representations
which contribute to the cohomology.
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2.1. The case where the level at v is maximal. — By the smooth
base change theorem, we have H'(Shy;,,Ve) ~ H'(Shys,, V). As for
each 1 < h < d — 1, the open Newton stratum Sh;?y is affine then
Hi(Shi% V. 7[d — h]) is zero for i < 0 and free for i = 0. Using this
property and the short exact sequence of free perverse sheaves

0—>Zh+1*V§Z |Sh>h+1[d h — 1] —>j' =h ; >h*V§Z |Sh>h [d—h]
— Vez, s [d— ] =0,

£Z17 1,54

we then obtain for every i > 0

0 — HY(Shz"  Viy [d— h]) — H{(ShZ" Vo [d—h - 1]) — 0,
(2.1.1)
and for i = 0,

0 — H7'(Sh7g, Vez,[d — h]) — H(Shi Vg ld — h = 1]) —

HO(Sh7y 37" 57" Ve z,[d — h]) — H°(Shi% Vg, [d — h]) —
(2.1.2)

In [5], arguing by induction from h = d to h = 1, we prove that for a
maximal ideal m of T? such that Sy (v) does not contain any subset of the
form {a, g,a}, all the cohomology groups H i(ShI?,];w Ve 7,)m are free: note
that in order to deal with ¢ > 0, one has to use the Grothendieck-Verdier
duality.

Without this hypothesis, arguing similarly, we conclude that any tor-
sion cohomology class comes from a non strict map

HY (SUEE Vg d— b= ) — HOSHTE 27V, 2, [d — W)
(2.1.3)
In particular it raises in characteristic zero to some free subquotient of
HOShZ" 72"V, 7. [d — h]).
We argue by absurdlty and we suppose there exists I € Z such that
there exists non trivial torsion cohomology classes in the m-localized
cohomology of Shyz, with coefficients in V; 7 . Fix such finite level I.

2.1.4. Proposition. — Consider as m 5], ho(I) maximal such that
there exists i € Z with H4~hoU “(Sh%10 Ve 7z, )mior # (0). Then we have
the following properties:
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—1=0,1;
— forall1 <h < ho(I) and i < h — ho(1),

Hd_hH(ShI?,gv Vg,Z)m,tor = (0)
while for i = h — ho(I) it’s non trivial.

Remark. Note that any system of Hecke eigenvalues m of Tf inside the
torsion of some H'(Shy;,, Ve 7,) raises in characteristic zero, i.e. is asso-
ciated to a minimal prime ideal m of ']I‘SU{U}. More precisely, using the
remark following the proposition 1.3.2, there exists m < m such that the

local component at v of Tz =~ Sty (1)+1(Xo) X Xu1 X -+ X Xu,d—ho(1)—1 Where

Xov> Xv,1>" " * s Xv,d—ho(I)—1 are characters of F*.
2.2. Harris-Taylor perverse sheaves over Z;. — Consider now
the ideals [Y(n) := I"K,(n) where K,(n) := Ker(GL4O,) —

GLy(O,/M2)). Recall then that Shﬁ}zn)jg is geometrically induced
under the action of the parabolic subgroup P, 4(O,/ M2 ), defined as the
stabilizer of the first h vectors of the canonical basis of F4. Concretely
this means there exists a closed subscheme Sh7" stablhzed by the

Hecke action of P, 4(F),) and such that
Shlzvhtn)ysv Sh[’uhin SU lh Ph,d(OU/Mg)GLd(O/U/M;L)'

2.2.1. Notation. — For any g € GLg(O,/ M2)/Ppa(O,/M™), we de-
note by ShI:vh(n)g the pure Newton stratum defined as the image of

Sh?vhn),gv by

Iv(n),5

v,9

Let then denote by m” the multiset of Hecke eigenvalues given by m
but outside v and introduce for II, any representation of GL(F,)

H'(Sh7| Vez)me @y = lm H'(Sh7 ) o - Vez, Jme ® 1,

Iv (X))S 1h
n

as a representation of GL,(F,) x GL4_(F,), where g € GL,(F,) acts
both on II;, and on H Z'(Shihn e , Ve7,)me through the determinant map
det : GLn(F,) — F). Note moreover that the unipotent radical of
P, 4(F,) acts trivially on these cohomology groups and introduce the
induced version

H(Sh7ll ) 5 T ® Vez e = indG 40 HI(SHZE Vi 7 e @I,
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More generally, with the notations of [2], replace now the trivial rep-
resentation by an irreducible cuspidal representation m, of GL,(F),) for
some 1 < g < d.

2.2.2. Notations. — Let1 <t < s:=|d/g| and I1; any representation
of GL4—t4(F,). We then denote by

tg—d

HT,(m,, 11,) := L(my[t]p)r @TL @ 2

the Harris-Taylor local system on the Newton stratum Shlztf’ = where
ySv,ltg

— L(m, [t]D)E is defined thanks to Iqusa varieties attached to the rep-
resentation m,[t|p of the division algebra of dimension (tg)? over F,
associated to Sty(m,) by the Jacquet-Langlands correspondence,

- =: %Z — le defined by E(%) — ¢'/2.

We also introduce the induced version

HT (7, 11) = (L(ma[t]p)r; ® L @) xp, () GLa(F),

where the unipotent radical of Py 4(F,) acts trivially and the action of
o (% )0 € G < PR X W,
1S grven

tg—d

— by the action of g5 on 11, and deg(o,) € Z on =272 |, and
— the action of (g™, g<*, val(det g¢)—deg 0,,) € G(A™")x GLg—14(F,) x
—tg—d
Z on Ly (mu[tlp)r; ® =77 .
We also introduce

HT(m,, 1)y, := HT(r,, I1,)

7 1d — tg],
and the perverse sheaf
P(t, o)1, = Jr HT (7, Ste(m) )1, ® L),
and their induced version, HT (m,,I1;) and P(t,m,), where
§=" =" 0 j7" : Shi? — Shi? — Shy;

and I, the dual of 1L, is the local Langlands correspondence. Finally we
will also use the indice & in the notations, for example HT¢(m,,11;), when
we twist the sheaf with V7 .
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With the previous notations, from (1.1.6), we deduce the following
equality in the Grothendieck group of Hecke-equivariant local systems

m(o)l" []Fﬁgzl (m,,u[t]D)] - [mz(m_l[tm(g)zu]D)]. (2.2.3)

We want now to focus on the perverse Harris-Taylor sheaves. Note first
that over Z;, there are two notions of intermediate extension associated
to the two classical {-structures p and p+. So for every m, € Cusp, of
GL,(F,) and 1 <t < d/g, we can define:

PiZYHT(m, , TL,) <y P HT (1, I0,), (2.2.4)

the symbol <, meaning blmorphlsm, i.e. both a monomorphism and
epimorphism, so that the cokernel for the ¢-structure p (resp. the kernel
for p+) has support in Shy tg“. When 7, is a character, i.e. when
g = 1, the associated blmorphlms are isomorphisms, as explained in the
following lemma, but in general there are not.

2.2.5. Lemma. — With the previous notations, we have an isomor-
phism

‘71 |*HT<XU7Hh> p+j1>h|*HT<X1)7Hh>-
Proof. — Recall that Sh>h . is smooth over SpeCIF As, up to a modi-
fication of the action of tﬁevfondamental group through the character y,,
we have

HT(Xva Hh) [h d] (Zl>|5h>fj I ® 11y,
Then HT(x., 1)1, is perverse for the two t-structures with
z”llf“’*HT(Xv, 1) € D= and z%f“"HT(XU, I,); € "D
O

Remark. One of the main result of [7], is to prove that the previous
lemma holds for any 7, € Cusp,(—1).

As explained in the introduction, with the hypothesis on the order of
¢, modulo [ which is supposed to be strictly greater than d, for p the
trivial representation, we do not need to bother about the 7, € Cusp,(u)
for u = 0, cf. the remark after 1.1.4. However the next proposition
tells us that you can easily express the cohomology of the Harris-Taylor
perverse sheaves associated to these m, € Cusp,(u) for u = 0, in terms of
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those of associated to characters. So the hypothesis on the order of ¢, is
not really crucial to overcome this difficulty, see for example the lemma
3.1.13.

2.2.6. Proposition. — (cf. proposition 2.4.2 of [7]) Let F(e) := o ®Hi,
F; be the modulo | reduction functor. We then have the following equality
in the Grothendieck group of Hecke-equivariant perverse sheaves

F( ijgu HT(Wv,u,Ht)) = m Z P *tgu )+rg—1(0)

HT(Q, ()% V,(r, < @)) ® ET%,

where V,(r, < @)) 18 defined in loc. cit. as the sum of irreducible consti-
tuants of the modulo | reduction of St,(m, —1) of o-level strictly less than
0y = (0,---,0,1,0,---), cf. §A.2 of [7]

Remark. The proof only uses the fact that F and ?j; commutes and the
property that the bimorphism (2.2.4) is a isomorphism for 7, a character.
Note moreover that the equality of the previous proposition remains true
if we replace 75,99 HT (r,.4,11,) by any perverse sheaf P such that

Jr;tgu( )HT(Wv,u’Ht) oy Py p+j!:tgu(g)HT(7Tv,uaHt)-

When we look at FP for such P, they differ from each of others only in

the order of the Jordan-Holder factors: for example they appears in the

increasing (resp. decreasing) order of the dimension of their support for
Pi O HT (L) (vesp. for P45 O HT (m,,, 11,)).

2.3. Filtrations of the nearby cycles perverse sheaf. — Let de-
note by
Ury = R, (Zi[d - 1])(——)

the nearby cycles autodual free perverse sheaf on the geometric special

fiber Sh; 5, of Sh;. We also denote by W;¢, = ¥, ® V&Z.
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Using the Newton stratification and following the constructions of [8],
we can define a Z;-filtration Fill*(W¥; ) whose graded parts are free, iso-
morphic to some free perverse Harris-Taylor sheaf. Moreover in [7] propo-
sition 3.1.3, we proved the following splitting

d
qjl,v =~ @ @ \Ijl,m

9=1 geScuspg, (9)

where Scuspg, (g) is the set of inertial equivalence classes of irreducible ;-
supercuspidal representations of GLy(F,), with the property that, with
the notations of [2], the irreducible sub-quotients of

\11179 ®Zl @l = @ \III,TK'U

ﬂ'vECuSpg

are exactly the perverse Harris-Taylor sheaves, of level I, associated to
an irreducible cuspidal Q,-representations of some GL,(F,) such that
the supercuspidal support of the modulo [ reduction of 7, is a segment
associated to the inertial class o.

Remark. In [7], we proved that if you always use the adjunction maps
gt
to p-intermediate extensions. In the following we will only consider the

— Id then all the previous graded parts of ¥, , are isomorphic

case where g is a character in which case, cf. lemma 2.2.5, the p and
p+ intermediate extensions associated to character x, _; € Cusp,(—1),
coincides. Note that in the following we will not use the results of [7].

Denoting by grt*(U; ¢ ,) = Fill*(U;¢,)/Fill* ! (¥;¢,), we then have
a spectral sequence

EYT = HP(Shy s, 9rr " (Vreo)) = HP(Shyg,, Vez,),  (2.3.1)
where we recall that

1—t+2
2

P i P HT (0, Ste(m))(

Pji  HT (0, Ste(m))( ) = gt (Wre,) =

1—t+2
2

for some irreducible cuspidal representation m, of GL,(F,) with 1 <t <
d/g and 0 <i < |d/g| — 1.

), (2.3.1)
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Let consider now the filtration of stratification of W;, , constructed

using the adjunction morphisms 5= 5=%* as in [4]

Fil) (U7 ,) > Fill (U1 ¢,) = FilF (Vre,) > - > Filf (P e ,)

where Fil{ (W ¢,) is the saturated image of ji='j="* W ., —> Ure,. We
then denote by gr’}@ o1 the graded parts and

Ef;{l = Hp+q(Sh[’§v, grzgg’!) = Hp+q(Sh[’77v, \Ij]é"g). (232)
2.4. Local behavior of the monodromy over F;. — We suppose

now [ > d so that® the nilpotent monodromy operator N, at v is defined
over 7

We moreover suppose that the order of ¢, modulo [ is strictly greater
than d so that for any Fj-character g of F)*, the irreducible sub-quotients
of Uy ,®z, Q, are Harris-Taylor perverse sheaves associated to a character
Xv € Cusp,(—1). In Iwahori level, i.e. when I, is upper triangular modulo
w,, from the Rapoport-Zink description of the nearby cycles, cf. [10]
lemma 3.1.7, N, induces isomorphisms

No: Pyt x)(50) — Pyt (g
for all characters y, € Cusp,(—1),all I <t<dandall 3—t<r<t-1
with r =t —1 mod 2.

Note that with our hypothesis that the order of g, is > d, then as for
any 1 <t < d, the modulo [ reduction of St;(,) is irreducible, then the
Harris-Taylor local systems HT'(t, St;(x.) have, up to isomorphism, only
one stable Z;-lattice. In particular whatever is the level I, then N, in
(2.4.1), induces a homothety which should have to be an isomorphism as
it is for Iwahori level at v.

) (2.4.1)

Remark. It is tempting to conjecture that (2.4.1) is always an isomor-
phism so that it should be possible to remove the hypothesis on [ in the
main theorem of this paper.

(3)Note that in the Taylor serie of In(1 — z) applied to a nilpotent operator x with
z¢ = 0, only the first d terms contribute where all the denominator are inversible in
7.
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3. Irreducibility implies freeness

Recall that we argue by absurdity by assuming that there exists non
trivial cohomology classes in some of H*(Sh; g, VEZ)“" The strategy is
then to choose a place v € Spl; such that the order of ¢, modulo [ is
strictly greater than d, and to compute the middle cohomology group
Hd’l(ShL,—],Vng)m through the spectral sequence of vanishing cycles.
This spectral sequence gives us in particular a filtration of the free quo-
tient of H%'(Shy g, Ve7,)m where we can easily read the action of the
monodromy operator N, at v. We will in fact consider different sorts of
level I relatively to the place v and another one denoted w verifying the
same hypothesis as v:

— either with infinite level at v or with I, some particular Iwahori
subgroup;
— either maximal or infinite at w.

By hypothesis, there exists non trivial torsion cohomology classes in level
I with I, and I,, maximal. As moreover we supposed the order of both
¢, and g, to be strictly greater than d, then the functors of invariants by
any open compact subgroups either at v or w, is exact. Thus this allows
us to argue similarly with all the mentioned level, cf. lemma 3.1.11. Let
now explain the main steps of the following sections.

— We first analyse, following the arguments of the previous section,
torsion cohomology classes of Harris-Taylor perverse sheaves and we
deduce, cf. lemma 3.1.13, that, as [F,-representations, irreducible
sub-quotients of [-torsion of their cohomology with higher non de-
generacy level, appears in degree 0, 1.

— In §3.2, we analyse, following the previous strategy, the torsion
cohomology classes of the graded parts grj(¥,) of the filtra-
tion of stratification constructed using the adjunction property
Jitj=t* — Id. We then deduce, cf. lemma 3.2.5, that the [-torsion
of H i(Sh[u(oo)7gv, szl)mv does not have any irreducible generic
subquotient whose supercuspidal support is made of characters.

— In section 3.3, we obtain two fondamental results.

e First, cf. lemma 3.3.2, under the hypothesis that there
exists non trivial torsion cohomology classes, we show that
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the graded pieces I'y of the filtration of the free quotient

of H O(Shlv(oo)’gv, ngl)mu are not always given by the lattice

of H(Shys,, P(t, xs)(*522))m ®z, Q given by the entire
cohomology of P(t,x,). Roughly there exists some k with

I' :=I'}, and a short exact sequence I'y < I' — T" where I'j is

the lattice given by the entire cohomology of the associated
Harris-Taylor perverse sheaf, and 7" is non trivial and torsion.

e We then play with the action of GL4(F,,) by allowing infinite
level at w. The main observation at the end of the section, cf.
proposition 3.3.8, is that as a F;-representation of G Ly(T,), all

the irreducible sub-quotients of the I-torsion of 7', up to mul-
tiplicities, are also sub-quotients of the [-torsion of the global
cohomology. In particular, as v and w are playing symmetric
roles, these sub-quotients are not generic, cf. corollary 3.3.9.

— Finally in §3.4, using theorem 3.4.1 which is a direct general-
ization of a classical result of Carayol, and playing with the

monodromy operator, we prove that the [-torsion of some of

the cokernels T of the actual lattices of the free quotient of
H O(Shlw(oo),ﬁ,VZhg)mv,w relatively to the natural lattices given by
the H°(Shrv.w(e)z, Pe(t, Xo))mew, should contain an irreducible

generic sub-quotient as a Fy[G Lq(F,,)]-module.

The last point gives us the expected contradiction so that H°(Shy g, Vzl,g)m
has to be torsion free.

3.1. Torsion cohomology classes of Harris-Taylor perverse
sheaves.— We focus now on the torsion in the cohomology groups
of the Harris-Taylor perverse sheaves Pe(x,,t) when the level at v is
infinite.

8.1.1. Notation. — We will denote by I*(c0) € T a finite™ level out-

{v}

side v, and let m¥ be the maximal ideal of T?U associated to m. We

also denote by

H'(Shro(eo) 5, Zt)we = lim H*(Shr g, , Zy) e,
Iy

(Hand morally infinite at v
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which can be viewed as a Zy[GLy(F,)]-module.

Start first from the following resolution of ?j,." HT (x,, IT;)

L2591 x Spehy_, (xo{t/21) ®EF — -

— G HT (X0, TL{—1/2} % xoft/2}) @ 2
g HT (X0, 1) — PiR  HT (X0, 11) — 0. (3.1.2)

0 — jr HT (x, TL{

N|=

—

Remark. This result is proved in full generality over Q; for any irreducible
cuspidal representation in replacement of y,. Over Z;, it’s proved in [7]
for any irreducible representation cuspidal representation. In the case
of a character, the argument is trivial as we just have to notice that
the strata Shﬁ,}fgml are smooth so that the constant sheaf, up to shift,
is perverse and so equals to the intermediate extension of the constant
sheaf, shifted by d — h, on Sh[:v}fgv,l. The previous resolution is then just
the induced version of this.
By the adjunction property, the map

— —0 =
ST HT (0, Tl ) % Spelay({t/2) © =72

1-9 61

T (0 TS 0) ¢ Speby (o {t/2) @2 (3.13)
is given by
HT (v T 2 % Soehy (v, (1/2))) @ 25 —
P (x, T 0) x Spehy, (ft/2)) © 7 (3.1.4)

From [7], we have

1-9 51

}) x Spehy_ (xo{t/2})) ® =3

) (Spehy s (u-1/2)) % ol o) /2 )@=
(3.1.5)

pit-i-(s,!j!:t-l-(s—lHT(XU’ Ht{

~ HT(XU,Ht{

Fact. In particular, up to homothety, the map (3.1.5), and so those
of (3.1.4), is unique. Finally as the map of (3.1.2) are strict, the given
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maps (3.1.3) are uniquely determined, that is if we forget the infinitesimal
parts, these maps are independent of the chosen ¢ in (3.1.2).
We want now to copy the arguments of §2.1.

3.1.6. Notation. — For every 1 < h < d, let denote by ifv(h) the
smaller index i such that H'(Shyo(oo) 5,, P HTe (Xos IIn) Jme has non triv-
ial torsion: if it doesn’t exists then set ijv(h) = +o0.

Let first state two remarks.

— By duality, as Pj;;" = P75~ for Harris-Taylor local systems associ-
ated to character, note that when i;(h) is finite then is.(h) < 0.

— Using the classical determinant map, it is in fact independent of the
character y,. Note also that we do not really need this fact in the
following.

3.1.7. Notation. — Suppose there exists [ € I such that there exists
1 < h < d with ips(h) finite and denote by ho(I") the bigger such h.

3.1.8. Lemma. — For 1 < h < ho(I") then ipo(h) = h — ho(1").

Proof. — Note first that for every ho(I") < h < s, then the cohomology
groups of j7"HT¢(x., 1) are torsion free. Indeed there exists a filtration

(0) = Filo(xv, h) — Fil_d(XU, h)«— .- — Fil_h(xv, h) = jlzhHT(Xv,Hh)

with graded parts

h—k h—k

@St lh/2) ()

gr " (X, h) =~ PiFHT (xo, 11§

The &-associated spectral sequence localized at m” is then concentrated
in middle degree and torsion free. Then the spectral sequence associated
to (3.1.2) has all its £ terms torsion free and degenerates at its £} terms.

Consider then the spectral sequence associated to the resolution
(3.1.2): its Ej terms are torsion free and it degenerates at Ey. As by
hypothesis the aims of this spectral sequence is free and equals to only
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one F5 terms, we deduce that all the maps

— —0 -
HO(Shpj(oo)’gv,j,‘h+6HT§(XU,Hif{?}) x Spehg(x,{t/2})) ®:6/2)mv -
196

=)
61
x Spehs_ (xo{t/2}) @277 ) . (3.1.9)

are strict. Then from the previous fact stressed after (3.1.5), this property

HO (Shl"(oo),gv 9 j!:h+6_1HT§ (XU7 Hh{

remains true when we consider the associated spectral sequence for 1 <
h < hy.

Consider now h = ho(I") where we know the torsion to be non trivial.
From what was observed above we then deduce that the map

—ho(I" -1 . _
HO (Shrvgeey " HTE 060 Mgy {5 1) <X tho(1°)/2) @)

— H°(Shyoy s s HT e (X Wig())) o (3.1.10)

has a non trivial torsion cokernel so that i;(ho(I")) = 0.
Finally for any 1 < h < hg, the map like (3.1.10) for h+§ —1 < hg are
strict so that the H(Shyv(w) 5, PJiz HTe (Xo, 1) Jmv are zero for i < h—hy
while when h+d —1 = hy its cokernel has non trivial torsion which gives
then a non trivial torsion class in H" " (Shyo (o) 5., Piin HTe (Xos k) v
[

3.1.11. Lemma. — With the notation of 2.1.4, we have ho(I) =
ho(I).

Proof. — Consider the previous map (3.1.10) by replacing ho(I") by
ho(I). As by hypothesis the order of ¢, modulo [ is strictly greater than
¢, then the pro-order of the local component I, of I at v, is invertible
modulo [, so that the functor of invariants under I, is exact. Note then
that, as the [,-invariants of the map (3.1.10) when replacing ho(I") by
ho(I), has a cokernel which is not free, then the cokernel of (3.1.10), for
ho(I), is also not free.

O

From the previous proof, we also deduce that all cohomology classes of
any of the H'(Shv(s),s,, Pe(t, Xo))me comes from non strictness of some
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of the map (3.1.10) where II, := St;(x,). In the following we will focus
on H'(Shyv(e) 5, Pe(t, Xo))me[l] as a Fj-representation of GL4(F,). More
precisely we are interested in irreducible such sub-quotients which have
maximal non-degeneracy level at v.

3.1.12. Notation. — Let first fix such non degeneracy level A\ for
GL4(F,) in the sense of notation 1.1.9, which is mazximal for torsion
classes in H°(Shyv(w)s,, Pe(t, Xo))me[l] for various 1 < t < d and
Xv € Cusp,(—1).

Remark. As mentioned after 3.1.6, for the definition of A, you could also
consider any fixed x,, € Cusp,(—1).

3.1.13. Lemma. — Let o be a Fi-character of F* and T, € Cusp,.
Then all Fy[G Lq(F,)]-irreducible sub-quotients of H'(Shyv(o0),5,, Pe(t, ) Jme [ 1],
fori # 0,1, have a level of non degeneracy strictly less than \.

Remark. Recall that we only know, a priori, that the P(t, m,) only verify
pj!ztgHT(va Ste(my)) =4 P(t,m) =4 p+j!:tgHT(7Tva Ste(,))-

Proof. — If m, € Cusp,(—1) is a character then the result follows from
above. In particular, as the m-localized ;-cohomology is concentrated
in middle degree, the result remains true for 5 ' HT, (o, II;)[d — ], i.e.
if H*(Shyv(w)s,, Pdi HT 5,(0, T1;)[d — t])me has an irreducible subquotient
with level of non-degeneracy greater or equal to A then i = 0,1.) We
then conclude using the equality of proposition 2.2.6 and its following

remark. O

3.2. Global torsion and genericity. — Recall that v € Spl is such
that the order of ¢, modulo [ is strictly greater than d. Let denote by
IV the component of I outside v. We then simply denote by ¥, and
U, ¢, the inductive system of perverse sheaves indexed by the finite level
1Y1, € T for varying I,,.

For 7, € Cusp,, let denote by

Fill, (V,) - Fil} (¥,)

(®)Recall that the @,-cohomology groups localized at m are concentrated in degree
i =0.
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such that Filj, (¥,) ®z, Q ~ Fil} (U, ) where W is the direct factor of
U, ®z, Q associated to m,, cf. [4].
Remark. In the following, we will mainly be concerned with the case
where 7, is a character y,. We will then write the main statement in
this case.

From the main result of [7], which can also be deduced easily from [16]
and the comparison theorem of Faltings-Fargues cf. [14], we have then
the following resolution of Filixv(\lf)

0 — j "HT (xv, Spehy(xv)) OL(xu(——)) —
g d—2
J!ﬁd 1HT<XU7 Spehd—l(Xv)) ®L(XU(T)) -
c— J " HT (X0, Xo) ® L(xo) — Fili,, (¥) - 0 (3.2.1)

0} associated

As in notation 3.1.1, let m” be the maximal ideal of ']T?U
to m. We can then apply the arguments of the previous section so that
Hi(Shp(oo)ygv,Filin(\Ilv,g))mv has non trivial torsion for i = 1 — t; and
with free quotient zero for ¢ # 0. Clearly we can also repeat the same

arguments for the other gri (V) - gr{(¥,) with

— d—2t+1
0 — JHT (o, Ty (¢ = 1,d — 1)) ® L{xa () —
P T, T (=1, — £ = 1) @ L5 0) —

- i HT (X, Ste(x0)) ® L(xw) — et (¥) — 0. (3.2.2)

Finally all the torsion cohomology classes of the H*(Shyv (o) 5, , grﬁxv (U)o
come from the non strictness of the maps

HO(ShI”(OO),Ev ) j1=h+1HT(Xva 1)) me — HO(ShI”(oo),EU ) jlzhHT(Xva I15) )

(3.2.3)

where (ITj, ITj,11) is of the shape <LTXU (t—1,h—t), LT, (t—1,h+1 —t)) :

We can then copy the proof of lemma 3.1.8 which gives us the following
statement.
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3.2.4. Lemma. — For every 1 < h < hy, the number i;(h) = h —
ho of notation 3.1.6, is also the lowest integer i so that the torsion of
H'(Shyv(o0) 5,5 gr!’fXU(kIfg))mv is non zero.

3.2.5. Lemma. — As a Fi[GLy(F,)]-module, for every i, the I-torsion
of H'(Shyv(oo) 5, ‘/§7Zl>mv’ does mnot have an irreducible generic sub-
quotient whose cuspidal support is made of characters.

Remark. Note that when the order of ¢, modulo [ is strictly greater than
d, then there is no difference between cuspidal or supercuspidal support
made of characters.

Proof — Recall first that, as by hypothesis py is irreducible, the Q-
version of the spectral sequence (2.3.2) degenerates at E; so that in
particular all the torsion cohomology classes appear in the FE; terms.
As we are only interested in representations with cuspidal support made
of characters, we have only to deal with the perverse sheaves P(t, x,) so
that the result follows from the previous maps (3.2.3) and the fact that
for any r > 0, the modulo [ reduction of LT, (t — 1,r) does not admit
any irreducible generic sub-quotient. O

Remark. We could also prove the same result without restriction on the
cuspidal support but then we would have to deal with the problem men-
tioned in the remark after lemma 3.1.13 which is the main subject of

[7].

3.3. Torsion and modified lattices. — Before studying the filtra-
tion of the free quotient of H®(Shyv () s, Ve 7, )me given by the spectral
sequence of vanishing cycles, we focus in this section on the cohomology
of gr,ho(lv)(\llgé). To do so, consider first a filtration of it with successive
graded parts gri(gr!houv)(\lfg)) which are Z;-structures of the following
Qj-perverse sheaf

, 1 — 2t(0) + t(7)
D D Pal) ) 5 )
E: gix(0)lho+i mueCusp, (k)
ho+i=gx ()t (i)

for 7 > 0. To be more precise, note that gr?O(IU)(\IIQf)) —» gro(gr?om)(\lf@’g)),
and its kernel has grl(gr!}z(’(lu)(\l/@{)) as a quotient and so on.
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Remark. As it might be disturbing and irrelevant in the following, we
decide not to write anymore the shifts ( w) in our formulas.

For any finite level I € Z, we then now introduce two Z;-lattices of

@D @  H°(Shrs,, Pe(t(i), m))me ®7 Q.

k: gi(0)lho+i myeCusp, (k)
ho+i=gi ()t (7)

— The first one denoted by I'¢ ,(I, ho + %) is given by the free quotient
of HO(Shy s, er'(gr" "™ (¥,)) -

— The spectral sequence associated to the previous filtration of

ho(IV) . . 0 _ ho(IV)

gr, (Ve ,), provides the free quotient of H°(Shy s, , gr, (Ve o)) me
with a Z;-filtration. One of its graded part is such that its tensor
product with ®g Q; is isomorphic to H(Shy s, , gri(grf*") (v 2)))m®z,
Q. We then denote by ¢ ,1(1, ho,4) the associated graded part.

3.3.1. Notation. — Let denote by

Iw(ho) 1= {g € GL4(O,) such that
(9 mod w,) € Pia... nya(k(v)); }

3.3.2. Lemma. — With the previous notations, there exists a finite
level I € T with I, ~ Iw(ho(I")), and a short exact sequence
2 — ho(1")

0 — L o(L, ho(I%) + 1)( ) — Leon(L, ho(LY),1) — T —0

2

where every irreducible sub-quotient ofT(W) #(0), as a ']I‘gmu ®ZE-

module, can be obtained as a sub-quotient of the torsion submodule of the
cokernel of some

HO(ShI,Eu ) j!:hO(Iv)JrlHTE(Xv: SthoU”)-&-l(Xv)))m”
— H(Shy 5, 57" HTe (X, Stagre) (o)) mes  (3.3.3)
for x, € Cusp,(—1).

Proof. — For simplicity denote ho(IV) by hgy. Consider the I”(co0)-version
of (3.3.3). Note then that it is non strict if and only if the same is
true for its non induced version in the next formula, whatever is II;, a
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representation of G Ly, (F,)

HD(ShIU( sm]l h0+1HT1h 5(Xv7 Hho ® Xv))m”
s HO (S0 oy T2 H T O Tl e (3:3.4)

where we denote by Sh Ivh?;)l, T as the disjoint union of the pure strata,
cf. notation 2.2.1, Sh7, h0+)18 contamed in Sh/ —. As usual the
g v (00),8v,1p

ho+1
((X)) Sﬂylho

ShilOO ) o In particular, as a Z;[ Py, p(F,)]-module, for II;, a character,
we know

— by definition of hqy in §2.1,

— and using the fact that ¢, modulo [ is of order > d so that the

notation jl =hot1 Jesignates the closed embedding of Shi, in

functor of P, 4(O,)-invariants is exact,

that the cokernel of (3.3.4) has non trivial vectors invariant under
Pry.a(Oy), so that the cokernel of the IV(oo)-version of (3.3.3) has non
trivial vectors invariant under Iw(hy).

We then compute the m*-localized cohomology of gry® (¥, ,) in level
I”(o0) having non trivial invariant under I with I, ~ Iw(hg). Recall that

grzho(q’@)@Zl@lﬁ P g (v

m,eCuspQ

so that we can find a filtration of gr®(¥,) whose graded parts are free
and isomorphic, after tensoring with Q;, to grlho(\If ,). For any i > 0 and
m, € Cusp,(i), then grf* (W, ) has trivial cohomology in level I° Tw(hg)
so we can restrict ourselves with characters y, € Cusp,(—1).

By maximality of hg, note that for hg < t < d, the cohomology groups
of Pe(t, xv) and j=" HT¢(m,, I1;), are all free after localization by m". Us-
ing the same argument as before through the spectral sequence associated
to (3.2.2), we then deduce that H?(Shyes,,gr®(Ve.,))me are all free for
1 # 0,1 while for ¢ = 0 the torsion is non trivial given by the non strict-
ness of

HO(Shyo(on) s, 0 T HTe (X, LTy, (ho — 1, 1)) o
— H(Shre(ooy s, i HTe(Xos Stho (X)) e~ (3.3.5)
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Concerning  H®(Shyv(e0) 5., Pe(Xv, h0))me, 1ts torsion submodule is
parabolic induced, so that beside those coming from the non strict-
ness of (3.3.5), there is also the contribution given by the non strictness
of (3.3.3), which contains in particular a subquotient, denoted i
such that T[l] is of level of non degeneracy strictly greater than those
appearing in (3.3.5).

Consider then the cohomology of grffo(‘lfmv) computing through its
filtration of stratification with graded parts, up to Galois torsion, the
HO(Shyv(o0),5,, Pe(ho+k, Xo))me, for 0 < k < d—hg, and more particularly
the induced filtration of the free quotient of H°(Shyu (o) s, , g1 (Ve v, )
as before. As the level of non degeneracy of T [1] is higher than those
of the I-torsion of H°(Shyo(e)s,, Fil' (Ve . ))me, computing through the
spectral sequence associated to (3.2.2), we then have a filtration of this
free quotient where both appears

— torsion modules such as f,

— and the free sub-quotients are given by the lattices I'¢ ,, (1", ho + 1)
of the free quotient of the localized cohomology of Pe¢(xy, ho + %) for
0<i<d—ho

We know go back to level I = I"Iw(hg): as ¢, modulo [ is of order
strictly greater than d, the functor of Iw(hg)-invariants is exact. As only
contributes the cohomology of Pe(x, ho+1) for i = 0,1 the result follows
from the fact that 7' has non trivial invariant under Iw(hg). O

Arguing as in the proof of lemma 3.1.8, using (3.2.3), we have the
following result.

3.3.6. Lemma. — For every 1 < t, let j(t) be the minimal integer j
such that the torsion of H7(Shyv(w)s,, 811 (Ve p))me is non trivial. Then

T Z U 1= ho(I?) for 1 <t < ho(I).

Moreover as a Te¢ne ®z, F,-module, up to multiplicities, the irreducible
sub-quotients of HI®(Shro (e 5,, 81 (Ve o))me are independent of t.
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3.3.7 — Important fact: Note that, up to multiplicities, the irreducible
Teme @z, [F;-sub-quotients(® of the [-torsion of the cohomology of

gr!’f;’gv)(\ll) and P(ho(IV), x») are the same, given by the non strictness
of the maps (3.2.3).

The idea is now to increase the level at another place w € Spl([) ver-
ifying the same hypothesis than v, i.e. ¢, modulo [ is of order strictly
greater than d. When the level at w is infinite, i.e. for I“(o0) with
I, ~ Iw(ho(I")), using again the exactness of invariant with GL4(O,,),
from the previous observation we deduce that considering irreducible
F;-representations of GLg(F,,), the sets, i.e. without multiplicities, of ir-
reducible sub-quotients of the [-torsion of the cohomology of respectively
P(ho(I"), x») and grff;gv)(\ﬁ[!), are the same.

3.3.8. Proposition. — Up to multiplicities, the set of wrreducible
F;[G Ly(F,)]-sub-quotients of the l-torsion of H(Shyw(s) 5, gr!hO(I )(\IJ&Q))mv,
are the same as those of H4"U")(Shyu () 5, , Vez,)me-

Proof. — We compute H4 U (Shyw(p 5., Ve 7, )me using the filtration
Fil} (W¢,,) through the spectral sequence (2.3.2). Recall that for every
p+q # 0, the free quotient of £, are zero. By definition of the
filtration these Ef ’Q‘fl are trivial for p > 0 while, thanks to the previous
lemma, for any p < —1 there are zero for p + ¢ < j(p) := p — ho(I").
Note then that £ 91’,1]' (F1 which is torsion and non zero, according to the

previous lemma, is equal to E,]Sgo ~ H¥I) (Shyuw () 5,4 Ve, )mo- O

Consider as before I"(o0) such that its local component at v is
Iw,(ho(1")). Then combining the result of lemma 3.3.2 in level I*(0),
with the previous proposition, we then deduce that the cokernel T
of 3.3.2 verifies the following property. As a F,-representation of
GL4(F,), every irreducible sub-quotient of T'[{] is also a sub-quotient of
H U (S (o) 5, Ve 7, )me- Then applying lemma 3.2.5 at the place w
playing a symmetric role as v, we then deduce the following result.

©)i.e. if one forget the action of GL4(F,)
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3.3.9. Corollary. — As a Fj-representation of GL4(F,,), the I-torsion
of the cokernel T' of lemma 3.3.2 in level I (0) as above, does not con-
tain any irreducible generic sub-quotient with cuspidal support made of
characters.

The aim of the following section is then to prove that if all the cokernel
of maps (3.3.3), are such that, in infinite level at w, their [-torsion does
not contain any irreducible generic sub-quotient with cuspidal support
made of characters, then they should all be equal to zero, so that the
torsion of every H'(Shyz,, Ve 7,)m is necessary trivial.

3.4. Global lattices and generic representations. — Start first
with the following formal generalization of a previous result of Carayol
in [12].

3.4.1. Theorem. — (cf. [6] theorem 3.1.1 and [18] theorem 5.6)
If D is absolutely irreducible, then as a Tg  [Galps]-module,

d—1
Hfree(ShLﬁ? ngl)m = T¢m ®T:§7m Pgms
where

— Tem 15 G Tsm-module on wich Galgg acts trivially,

—and pem @ Galpg — GLd(Tgm) 1s a Galois representation un-
ramified outside S such that, cf. [17] V.4.4, for all u ¢ S, then
det(1 — X Froby, |pem) is equal to the Hecke polynomial, cf. the end
of 81.5.

Recall that
Tgs,m ®Zl Q ~ H (Tgs ®Zl Ql)ﬁ

so that p¢ . is a stable lattice of
Pem @z, Q= P pe -

mcm
For each m < m, denote by I's 1= pem M pes and I'™ := P T
Remark. We could also choose any numbering of the set of m < m and
define I'y, := Fniu, then I'z, as the intersection of pg g, with pew/I'1 and
so on. Note then, as p; , is supposed irreducible, then for all i, we have

Iz, ~ F'ﬂ:ll .



GALOIS IRREDUCIBILITY IMPLIES FREENESS OF COHOMOLOGY 33

3.4.2. Definition. — Choose some basis of 'y, ; as all the T'y are ho-
mothetic, this gives a basis of I'". We then denote by My, the matrix
of the nilpotent monodromy operator N, in this basis. Note that My,
is diagonal by d x d-blocks, where the modulo | reduction of the nilpotent
monodromy operator N, on each block, are the same.

Recall that we can also compute H%~!(Sh; 5, Ve 7, )m through the spec-
tral sequence of vanishing cycles. More precisely we want to construct a
filtration of its free quotient, using the filtration

Fill(¥,) - - > Fil{~ () <} Fil{(¥,) <} ¥,

With the notations of the previous sections, we will consider the
level T = I"Iw,(ho(I")) such that, arguing by absurdity, the tor-
sion of Hd_l(ShlvGLd(o,u),ﬁ,Vg,zl)m is non trivial. For the definition of
ho := ho(I"), cf. notation 3.1.7. In the following, we will pay special
attention to lattices of

‘/&m(ho + 1)(5) = @ HZ’(Sth, ,Pg(ho + 1a Xv)(5)m“ ®Z Qh

XvECusp,(—1)

for various 4.

— Note first that the H'(Shjg, We,/Fil!*™ (W ,))qe are all zero.
Indeed the torsion free graded parts grr®(¥,) of any exhaustive
filtration of W,/ Fil*™*(¥,), up to Galois torsion, are such that
gt (V,) ®z, Q; =~ P(t, ,) whith m, € Cusp, an irreducible cuspidal
representation of some GLy(F,) with tg > ho + 1. Then every
irreducible constituant of Hi(Shpj(oo),gv,grrk(\If&g))mv ®z, F,, as a
F;-representation of G'Ly(F,) is a sub-quotient of an induced repre-
sentation r;(St,(m,)){6/2} x 7 for some irreducible F;-representation
7 of GL4_1y(F,). In particular such a representation does not have
non trivial invariants under Iw,(hg), so that, as the functor of
Iw, (ho)-invariants is exact, there is no cohomology in level I as
stated.

— Recall the following short exact sequence

—h
KXv(hO + 1) L’_) gr!}l0+1(\Iij) - P(h‘o + ]‘7XU)<TO)
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where the irreducible sub-quotients of K, (ko + 1) are, up to Galois
torsion, the P(t, x,) with ¢ > hy + 1. Arguing as before on the
Iw(hg)-invariants, we then conclude that H*(Shys, g/ (Ve ,))me
is some lattice of Vg m(ho + 1)(=22), denoted by

—h
F&Q(‘L hO + 1)(70)

in the previous section. Note also that
e as recalled in lemma 2.2.5, there is only one notion of inter-
mediate extension for Harris-Taylor local systems associated
to characters,
e and, by definition of hy, all these cohomology groups are tor-
sion free and concentrated in degree zero.
— Similarly the kernel K, (ho) of gr*(¥,,) — P(ho, xu)(152), veri-
fies the same property as before, i.e.
2 — hy

Ly, (ho) > Ky, (ho) = P(ho +1,x0)(—5—)

where L, (ho) does not have non trivial cohomology in level I when

I, ~ Iw,(ho). With the notation of the previous section, we then
have a short exact sequence

0— F&g’!(l, ho, ].) I HO(Sthv, grfm(\llg))mv
1—hg

s Te (L ho) (—52) = 0, (3.4.3)

where as before
Leor(1, ho, 1)

is a lattice of Ve w(ho + 1)(2522).

— For every 1 < h < hg, we can write
0 - Kh;'(\Iij) - gr'h(‘IIX'u) - Qh7'(\DXv) - 07

with

ho —2h + 2
2

where the irreducible sub-quotients of KKj(¥,,) ®z, Q, (resp.
Qn, (\IIXU)®Z@Z) are up to Galois torsion, the P(t, x, ) with ¢ > ho+1

0 - KKhyl(\Iij) - th!(\IJXv) - P(ho + 17 X'U)( ) - 07
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(resp. t < hg). As before K Kj,(W,, ) has trivial cohomology in level
I with I, ~ Iw,(hg). We then denote by

Leoi(L, ho,ho+1—h)

the lattice of Ve m(ho + 1)(2=22+2) given by the associated filtration
of the free quotient of H°(Shys,, gr’e(¥y,))m-

Recall that for any k < hg + 1, the nilpotent monodromy operator N,
induces a map

Filf(qlg) - Fﬂf_l (W,)

| :

grf(@g) - = grfil(qjgy

We then obtain a map on the cohomology groups

F&Q,!(I,ho,hg +1-— /{I) - = >F§7g7!([,h0,h0 +1—k+ 1)

HO(ShI,Em gr{%m&g))m” - HO(ShI,ém grfil(‘y&@))m“

|

Q

where the right arrow is exact. As the image of I ,,1(1, ho, ho+1—k)®7 Q,
n Q®gz, Q, is zero, and @ is free by construction, then N, induces a map

F&&[(I, ho,hg + 1 — k) — F&g,!(], ho,ho +1 —k + 1),

which is an embedding as it is so over Q. As by definition T¢ , (I, kg, 0) :=
T o(1, ho + 1)(—%2), then N, induces the following embeddings

h
Le (L, ho + 1)(—50) = Leoi(d ho 1) = Tegi(1, ho,2) — - -
— F£7Q7Q(I, ho, ho — 1) (343)
3.4.4. Lemma. — The previous embeddings of (3.4.3) induce

h
Z'F§797!([7 h’O? ho — 1)(_50) — Fg,g([, ho + 1)
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Proof. — Recall (2.4.1) that N, induces isomorphisms

- 2—r
Ny PI,Z@?X”)(?) - PI,Z<t7Xv>( 9 )7

for all characters x, € Cusp,(—1),all 1 <t <dandall3—t<r<t-1
with r =¢ —1 mod 2. In particular N] induces

h 2r —h
Peo(T o+ 1)(=5) > Teol1 by + 1)(=——

) = D¢ pu(L, ho, 7).

Recall moreover that the cokernel T of
2r — ho

F&Q(Iw(oo)v hO + 1)( ) - F&Qﬂ([w(oo)» h07r) - T7

is given by the torsion of the E, terms of the spectral sequence associated
to the filtration Fil} (W¢ ,). Explicitly, there exists a filtration of 7" such
that each of its graded part is a subquotient of some of the EY"™" =
HO(Shro (o) 5,5 811 " (Ve 0) o

From the property stated after corollary 3.3.9, we then deduce that
T[l] as a Fj-representation of G Ly(F,), does not contain any irreducible
generic sub-quotient. So as I'¢ ,(1"(0), ho + 1) ®z, F, has an irreducible
generic sub-quotient, we then deduce that [.I¢,,(I*(©),ho,7) <
Te o(1°(o0), ho+1)(2522). As before the same is then true in level I. [

Remark. As stressed in the previous proof, the cokernel
T, 1w (00) (N ho) i= Te 1 (I(0), ho, ho — 1) /T o(1*(0), ho + 1) (3.4.4)

of the image of N; in Ker N, ®z, Qy, has a filtration such that its graded
pieces are sub-quotients of the cokernels of the maps (3.2.3) for various
h and II,. So as before Ty jw()(Ny, ho)[l], as a Fj-representation of
GL4(F,), verifies the property of the corollary 3.3.9, i.e. it does not have
any irreducible generic sub-quotient made of characters.

Consider then m < m such that 75 has non trivial invariants under I =
I Iw,(ho). The multi-set of Jordan block of the nilpotent monodromy
operator N are then all of size < hg+ 1 and we denote by r the number
of these Jordan blocks of size hg + 1.

Remark. As noticed in the remark following proposition 2.1.4, we can
choose such m such that r > 0.

3.4.5. Lemma. — The rank of Ng" ®z, F, is equal to r > 0.
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Proof. — Fix any ordering of the set {m < m} and let define the corre-
sponding filtration of ¢ w ®7, Q; ~ @y, Te.m such that its graded parts
are the me 5, for i = 1,--- ,u. We then obtain a filtration of m¢, which
graded parts are stable lattices Ag, of 7, which depend of the choice
of the previous ordering. By theorem 3.4.1, we then obtain a filtration of
H},oo(Shyw) 5,5 Ve 7, Jme with graded parts Ag, ® I',. Using the Hecke
equivariance and denoting by K the kernel of Tem @ Pem = A, OL s,

we then deduce that the image of K,(nu) under N,Z?n, remainss in K,Ef‘):

LT

T¢m ® Pem i Tem ® Pem > Q

e b

As, ®Tq, —> Az, ®@Tx, — Q.

If the rank of . go were not maximal, then the torsion 7}, of (), would be
non trivial. More precisely T[], as a Ty, I[GLd(Fw)]®ZE—module, would
have, as a sub-quotient, any irreducible sub-quotients of the modulo [
reduction of Ag,.

Consider then the free quotient Q)¢ of () and Qgcu) its sub-module com-
ing from K" ®z, @Q,. The image of Nﬁ?n(QSc“)) C Tem®pPem in Aj, @,
by Hecke equivariance of N, , is zero so that Q;u) maps to zero in Q.
We then deduce that T, is a quotient of the torsion submodule T" of (). In
particular with the previous notations, the I-torsion of Ty jw(oe)(Ny, ho)
would have, as a Ty 1[G La(F)]®7, F;-module, a sub-quotient for each of
the irreducible sub-quotient of the reduction modulo [ of Az,. This would
contradicts the previous remark as the modulo [ reduction of Ag , as a
F;-representation of GLy4(F,,), has a generic irreducible sub-quotient. [

We then conclude that all the embeddings in (3.4.3) are isomorphisms.
Meanwhile we proved in lemma 3.3.2 that, if there were non trivial torsion
cohomology classes in any of H*(Shys,, Ve 7 )m then T¢ ,(1, ko + 1)(Eo)
and I'¢ ,1(I, ho, 1) could not be isomorphic.
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