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We prove that the resultant of two “sufficiently generic” bivariate polynomials over
a finite field can be computed in quasi-linear time.

KEYWORDS: complexity, algorithm, computer algebra, resultant, elimination, multi-
point evaluation

1. INTRODUCTION

The efficient computation of resultants is a fundamental problem in elimination theory
and for the algebraic resolution of systems of polynomial equations. Given an effective
field 𝕂, it is well known [9, chapter 11] that the resultant of two univariate polynomials
P,Q∈𝕂[x] of respective degrees d⩾e can be computed using Õ(d) field operations in 𝕂.
Here the soft-Oh notation Õ(E) is an abbreviation for E (log E)O(1), for any expression E.

Given two bivariate polynomials P,Q∈𝕂[x,y] of respective total degrees d⩾e, their
resultant Resy(P, Q) in y can be computed in time Õ(d2 e); e.g. see [14, Theorem 25].
If d= e, then this corresponds to a complexity exponent of 3/2 in terms of input/output
size. An important open question in algebraic complexity theory is whether this expo-
nent can be lowered.

In the present paper, we consider the case when P and Q are “sufficiently generic”.
If 𝕂 contains sufficiently many elements, and if the coefficients of P and Q are chosen
at random, then this will be the case with high probability. Under a suitable hypoth-
esis of “grevlex-lex-generic position” (defined below) and assuming the random access
memory (RAM) bit complexity model, our main result is the following theorem:

THEOREM 1. Let 𝜖 > 0 be a fixed rational number. Let P, Q ∈ 𝕂[x, y] be two polynomials of
respective total degrees d ⩾ e over a finite field 𝕂 = 𝔽q. If P and Q are in grevlex-lex-generic
position, then Resy(P,Q) can be computed in expected time

(de log q)1+𝜖 + Õ(d2 log q),

using a randomized algorithm of Las Vegas type.
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Figure 1. Illustration of the Gröbner stairs for P and Q in generic position with respect to <grevlex (left)
and <lex (right) in the case when d =5 and e =3.

A first result in a similar direction has recently been obtained by Villard [17]. For
a general effective field 𝕂, and under different genericity assumptions, he proposed an
algorithm that computes the resultant in y of two polynomials P,Q∈𝕂[x,y] of degree d
in x and degree e in y using (de2−1/𝜔)1+o(1) operations in 𝕂. Here 𝜔 is the usual exponent
for matrix multiplication (such that two n × n matrices over 𝕂 can be multiplied using
O(n𝜔) operations in 𝕂). Le Gall has shown in [13] that one may take 𝜔<2.373. If 𝕂=ℚ,
then the bit complexity of the bivariate resultant has been studied in [2, 15]. Over finite
fields, Poteaux and Schost [16] previously proved Theorem 1 in the very special case
when P or Q belongs to 𝕂[y].

Another recent related result [10] concerns the computation of a Gröbner basis for
the ideal I generated by P and Q. Before we state it, let us briefly introduce some ter-
minology. Throughout the paper, we assume that the reader is familiar with the basic
theory of Gröbner bases, as found in standard text books [4, 9].

Let 𝕂 still be a general effective field. Two common monomial orderings on the
polynomial ring 𝕂[x, y] are the lexicographical ordering <lex and the reverse graded
lexicographical ordering <grevlex defined by

xi y j <lex xk yl ⟺ j< l∨(j= l∧ i<k)
xi y j <grevlex xk yl ⟺ (i+ j<k+ l∨(i+ j= k+ l∧ j< l)).

We say that P and Q are in lex-generic (resp. grevlex-generic) position if the leading mono-
mials of the reduced Gröbner basis of I with respect to <lex (resp. <grevlex) coincide with
the ones that we would obtain when taking symbolic parameters for the coefficients of P
and Q; see Figure 1. We say that P and Q are in grevlex-lex-generic position when they are
both in lex-generic and grevlex-generic position. Notice that we do not require the ideal
(P,Q) to be radical over the algebraic closure of 𝕂.

The relationship between resultants and Gröbner bases is the following: if P and Q
are in lex-generic position, then the reduced Gröbner basis for I with respect to <lex con-
sists of a constant multiple of Resy(P, Q) and y − U(x) for some univariate polynomial
U ∈𝕂[x] with deg U <de; see section 3.1.

Assuming that P and Q are in grevlex-generic position, the main result from [10] is an
algorithm to compute a “terse Gröbner basis” for I with respect to <grevlex using Õ(d e)
operations in 𝕂. The actual Gröbner basis may require Θ(d2 e) storage and its compu-
tation is therefore too expensive. This explains why [10] uses a more compact “terse”
representation for the Gröbner basis, while conserving its main properties; see section 2.2.

If we were able to rapidly convert a Gröbner basis for <grevlex into a new one for <lex,
then this would allow us to compute resultants in softly linear time. Unfortunately,
known “change-of-ordering” algorithms such as the FGLM algorithm [6, 7] rely on linear
algebra, and do not run in softly linear time. For our proof of Theorem 1, we instead rely
on a bivariate counterpart of Kedlaya–Umans' algorithm for modular composition [12].
This technique does not work for general effective fields 𝕂, which explains the restric-
tion to the case when 𝕂=𝔽q is a finite field in Theorem 1.
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Let us briefly outline the structure of this paper and the proof of Theorem 1. In sec-
tion 2, we introduce further notations and recall the required results about terse Gröbner
bases from [10]. Assuming from there on that P and Q are in grevlex-lex-generic position,
we recall in section 3 how to reduce the computation of the resultant to the computation
of the minimal polynomial of the multiplication endomorphism by x+ I in 𝔸≔𝕂[x,y]/I,
where I ≔(P,Q). This minimal polynomial can be computed with high probability using
the usual Wiedemann algorithm (see for instance [9, chapter 12]), provided that we have
an algorithm for the transposed map of evaluating a univariate polynomial at x+ I in 𝔸.
Exploiting the fact that multiplication in 𝔸 is fast (thanks to the terse Gröbner basis),
we show in section 4 how to adapt Kedlaya–Umans' techniques to reduce this bivariate
modular composition problem to multivariate multipoint evaluation. At that point, we
can apply Kedlaya–Umans' algorithms for multipoint evaluation and its transpose (also
known as power projection); see section 5.

2. TERSE DESCRIPTION OF THE QUOTIENT ALGEBRA

2.1. Notations and conventions
Throughout this paper, 𝕂 is an effective field. Most of our algorithms work in the alge-
braic complexity models of straight-line programs (SLPs) or computation trees [3], in
which execution times correspond to the required number of field operations in 𝕂. The
genericity assumptions imply that non-trivial zero tests always fail, so the straight-line
program framework actually suffices.

In section 5, where we prove Theorem 1, we specialize 𝕂 to become a finite field 𝔽q.
From that point on, we assume a RAM bit complexity model and recall that field opera-
tions in 𝔽q can be performed in softly linear time Õ(log q).

Given indeterminates z1,…,z𝜈 and positive integers n1,…,n𝜈, we define

𝕂[z1,…,z𝜈]n1,…,n𝜈 ≔ {A∈𝕂[z1,…,z𝜈] :degz1 A<n1,…,degz𝜈 A<n𝜈}.

Consider a Gröbner basis G of an ideal I ⊆ 𝕂[z1, …, z𝜈] for some term ordering on
the set of monomials z1

ℕ ⋯ z𝜈
ℕ ≔ {z1

i1 ⋯ z𝜈
i𝜈 : i1, …, i𝜈 ∈ ℕ}. We write 𝕂[z1, …, z𝜈]G for the

𝕂-vector space of polynomials f ∈ 𝕂[z1, …, z𝜈] that are reduced with respect to G. The
reduced monomials in BG≔𝕂[z1,…,z𝜈]G∩z1

ℕ⋯z𝜈
ℕ form a basis for 𝕂[z1,…,z𝜈]G and cor-

respond to the monomials “under the Gröbner stairs”. We also write 𝜌G: 𝕂[z1, …, z𝜈] →
𝕂[z1,…,z𝜈]G for the map that computes the normal form of a polynomial f ∈𝕂[z1,…,z𝜈]
with respect to G. In particular, f −𝜌G( f )∈ I for all f ∈𝕂[z1,…,z𝜈].

Given a finite dimensional 𝕂-vector space V of 𝕂[z1, …, z𝜈] that admits V ∩ z1
ℕ ⋯ z𝜈

ℕ

as a basis, it is convenient to mentally represent elements of V as column vectors with
respect to this basis and linear forms 𝜆:V →𝕂 as row vectors. Linear maps between two
vector spaces V,W of this type correspond to matrices.

Writing V∗ for the set of linear forms 𝜆:V →𝕂, the transpose of a linear map L:V →W
is the linear map L∗:W∗→V∗ such that L∗(𝜆)( f )=𝜆(L( f )) for all f ∈V. If L can be com-
puted by a linear SLP over 𝕂 of length ℓ, then it is well-known [3, Theorem 13.20] that L∗

can be computed by an SLP of length ℓ + O(dim𝕂 V + dim𝕂 W). This “transposition
principle” can also be applied to more general programs [1]. In particular, in order to
transpose a program that computes L∘K, where K:U →V is another 𝕂-linear map, it suf-
fices to transpose the programs for K and L, and then apply the usual formula (L∘K)∗ =
K∗∘L∗.
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2.2. Terse Gröbner bases
In the remainder of this paper, let P,Q∈𝕂[x,y] be two polynomials of total degrees d⩾e,
in grevlex-lex-generic position. We write I ≔ (P,Q) for the ideal generated by P and Q,
and 𝔸≔𝕂[x,y]/I for the corresponding quotient algebra. Let us start by recalling sev-
eral facts from [10].
Gröbner basis. The reduced Gröbner basis G∗ of I with respect to the grevlex mono-
mial ordering consists of polynomials G0

∗,G1
∗,…,Ge

∗∈𝕂[x,y] with leading monomials ye,
xd−e+1 ye−1,xd−e+3 ye−2,…,xd+e−1; see [8], [10, section 2], and Figure 1.
Terse Gröbner basis. [10, section 4 and Theorem 28] Using Õ(d2) operations in 𝕂, one
may compute a terse Gröbner basis G = {G0, G1, …, Ge} of I with respect to the grevlex
monomial ordering. The leading monomials of Gi and Gi

∗ coincide for i = 0, …, e, but
G0,…,Ge are not necessarily reduced. Furthermore, G0,…,Ge are not explicitly written out
(since this typically requires Θ(d2e) coefficients in 𝕂); we rather represent G in a “terse”
way that is sufficient for our computational purposes.
Normal form. [10, section 5 and Proposition 31] Given a polynomial 𝜑 ∈ 𝕂[x, y] with
degx 𝜑⩽s and degy 𝜑⩽t⩽s, we may compute its normal form 𝜌G(𝜑)≔𝜑 rem G∈𝕂[x,y]G
with respect to G using Õ((s+d)(t+ e)) operations in 𝕂. Recall that 𝜌G(𝜑) is the unique
element in K[x,y]G=K[x,y]G∗ with 𝜑−𝜌x(𝜑)∈ I; in particular, 𝜌G and 𝜌G∗ coincide.
Checking the genericity assumption. [10, Remark 4, Theorem 28, and Proposition 31]
The condition that P and Q are indeed in grevlex-generic position can be checked
using Õ(d2) operations in 𝕂.
Multiplication in the quotient algebra. [10, section 6.2 and Theorem 33] We represent
elements in the quotient algebra 𝔸 by normal forms in 𝕂[x,y]G. Given 𝜑,𝜓∈𝕂[x,y]G, we
may compute 𝜑𝜓∈𝕂[x,y] using Õ(de) operations in 𝕂, since degx(𝜑𝜓)⩽2(d+e−2) and
degy(𝜑 𝜓) ⩽ 2 (e − 1). By what precedes, we may therefore compute 𝜌G(𝜑 𝜓) ∈ 𝕂[x, y]G
in time Õ(de). In other words, products in 𝔸 can be computed in softly linear time.

3. REDUCTION TO BIVARIATE MODULAR COMPOSITION

As above, P and Q are polynomials in 𝕂[x,y] in grevlex-lex-generic position, I ≔(P,Q),
and 𝔸≔𝕂[x,y]/I.

3.1. Resultants and minimal polynomials
Consider the 𝕂-linear multiplication map 𝜉: 𝔸 → 𝔸; a ↦ (x + I) a. It is known that the
characteristic polynomial 𝜒 ∈𝕂[t] of this map equals 𝛼Resy(P(t,y),Q(t,y)) for some 𝛼∈
𝕂; see for instance [5, Proposition 2.7] applied with n= 1 and r= 1. (Notice that I is not
assumed to be radical over the algebraic closure of 𝕂, so a direct comparison of the sets
of roots of 𝜒 and of Resy(P(t,y),Q(t,y)) cannot replace the use of [5, Proposition 2.7].) On
the other hand, since P and Q are in grevlex-generic position, we have

deg 𝜒 =dim𝕂 𝔸=de.

Once 𝜒 is known and assuming that the cardinality of 𝕂 satisfies |𝕂| >de, we may find
a 𝜆 ∈ 𝕂 such that 𝜒(𝜆) ≠ 0 using Õ(d e) operations in 𝕂, by means of fast multi-point
evaluation. Then 𝛼 can be computed using Õ(d2) further operations, as

𝛼= 𝜒(𝜆)
Resy(P(𝜆,y),Q(𝜆,y)) .

From 𝜒 and 𝛼, we deduce Resy(P(t,y),Q(t,y))=𝜒/𝛼.
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The minimal polynomial 𝜇 ∈ 𝕂[t] of 𝜉 is the monic polynomial of minimal degree
such that 𝜇(𝜉)=0, or, equivalently, 𝜇(x)∈I. In particular, 𝜇(x) coincides with the unique
element of the lexicographical Gröbner basis for I that belongs to 𝕂[x]. We always
have 𝜇 | 𝜒. The polynomials 𝜇 and 𝜒 coincide whenever deg 𝜇 = deg 𝜒 = d e; this is the
case if and only if P and Q are in lex-generic position.

Assuming that P and Q are in grevlex-lex-generic position, the above discussion
shows that the computation of Resy(P,Q) reduces to the determination of 𝜇.

3.2. Wiedemann's algorithm
We use Wiedemann's algorithm for the computation of 𝜇 (see for instance [9, chapter 12]),
as follows:
• We first select a random linear form 𝜆: 𝕂[x, y]G →𝕂. More precisely, assuming that

|𝕂|⩾4de, we select a finite subset S⊆𝕂 of size |S|⩾4de and take 𝜆 to be a row vector
with random entries from S.

• Taking N ≔2de−1, we define the map

Ex,G:𝕂[t]N ⟶ 𝕂[x,y]G

𝜑 ⟼ 𝜑(x) rem G,

and compute the sequence

(𝜆∘Ex,G)(1), (𝜆∘Ex,G)(t),…, (𝜆∘Ex,G)(tN−1). (1)

This task is an extension of the usual “power projection” problem to the bivariate
case. We will explain how to evaluate Ex,G efficiently in section 4. Then, in section 5,
the latter sequence will be obtained by transposing this evaluation algorithm.

• Using the fast variant of the Berlekamp–Massey algorithm [9, chapter 12, Algo-
rithm 12.9 combined with the extended half-gcd algorithm], we determine the linear
recurrence relation of smallest order m⩽de satisfied by the sequence (1). Stated oth-
erwise, this means that we compute the monic polynomial 𝜇∗ of minimal degree m⩽
de such that

(𝜆∘Ex,G)(𝜇∗)=(𝜆∘Ex,G)(t𝜇∗)=⋯=(𝜆∘Ex,G)(tN−1−m 𝜇∗)=0.

• The set of polynomials 𝜑 for which (𝜆 ∘ Ex,G)(t i 𝜑) = 0 for i = 0, …, N − 1 − deg 𝜑 is
closed under gcds and clearly contains 𝜇. This implies that we always have 𝜇∗ | 𝜇.
If deg 𝜇∗ =d e, then we are sure that 𝜇∗ = 𝜇= 𝜒 = 𝛼Resy(P(t, y),Q(t, y)). We conclude
this section with the reminder why this happens with high probability.

3.3. Probability analysis
The above polynomials 𝜇 and 𝜇∗ coincide if, and only if, 𝜆(Ex,G(𝜇/𝜓)) ≠ 0 for any irre-
ducible factor 𝜓 of 𝜇. Now given an irreducible factor 𝜓 of 𝜇, we have Ex,G(𝜇/𝜓) ≠ 0.
A random linear form 𝜆: 𝕂[x, y]G →𝕂 as above annihilates a fixed non-zero element of
𝕂[x, y]G with probability at most 1/|S|. The probability that 𝜆 annihilates Ex,G(𝜇/𝜓)
is therefore bounded by 1/|S|. We conclude that the probability 𝒫 success that none of
the ⩽de irreducible factors 𝜓 of 𝜇 annihilates Ex,G(𝜇/𝜓) is at least

𝒫 success ⩾ �1− 1
|S|�

de ⩾ �1− 1
4de�

de > 3
4.
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4. REDUCTION TO MULTIPOINT EVALUATION

In this section, we show how to efficiently reduce the evaluation of Ex,G to multivariate
multipoint evaluation.

4.1. Kronecker segmentation
Given an integer 𝜈 that will be specified later, let 𝛿 ≔ ⌈(2 d e)1/𝜈⌉ be the smallest integer
such that 𝛿 𝜈 ⩾2de. We define the Kronecker map

K:𝕂[z1,…,z𝜈]𝛿,…,𝛿 ⟶ 𝕂[t]𝛿𝜈

zi ⟼ t𝛿 i−1, i=1,…,𝜈,

as the restriction to 𝕂[z1, …, z𝜈]𝛿,…,𝛿 of the unique morphism Ǩ: 𝕂[z1, …, z𝜈] → 𝕂[t] of
𝕂-algebras that sends zi to t𝛿 i−1 for i= 1, …, 𝜈. Notice that K is bijective and that both K
and its inverse can be computed in linear time with respect to the monomial bases.

Let Dx ≔d + e− 2, Dy ≔ e− 1, and gi ≔ 𝜌G�x𝛿 i−1� for i= 1,…, 𝜈. We may compute g1,…,
g𝜈 ∈ 𝕂[x, y]Dx+1,Dy+1 using binary powering. By what has been said in section 2, this
requires Õ(d2𝜈 log 𝛿) operations in 𝕂. For any 𝜙∈𝕂[t]𝛿𝜈 and f =K−1(𝜙), we notice that

𝜌G(𝜙(x)) = 𝜌G( f (g1(x,y),…,g𝜈(x,y))).

Let Nx ≔𝜈 (𝛿 −1)Dx +1, Ny ≔𝜈 (𝛿 −1)Dy +1, and

Eg:𝕂[z1,…,z𝜈]𝛿,…,𝛿 ⟶ 𝕂[x,y]Nx,Ny

f ⟼ f (g1(x,y),…,g𝜈(x,y)).

It follows that

Ex,G = 𝜌G ∘Eg ∘K−1. (2)

4.2. Evaluation-interpolation
We will compute the map Eg using evaluation-interpolation. Assume for the time being
that |𝕂|⩾Nx and let 𝛼1,…,𝛼Nx∈𝕂 be pairwise distinct points. Define 𝛽i≔𝛼i for i=1,…,Ny.
Setting Α≔{𝛼1,…,𝛼Nx}, Β≔{𝛽1,…,𝛽Ny}, consider the evaluation map

EΑ×Β:𝕂[x,y]Nx,Ny ⟶ 𝕂Α×Β

h ⟼ (h(𝛼i,𝛽j))(𝛼i,𝛽j)∈Α×Β,

which is a 𝕂-linear bijection. Using traditional univariate evaluation-interpolation in
each coordinate [9, chapter 10], both EΑ×Β and its inverse EΑ×Β

−1 can be evaluated using
SLPs of length Õ(NxNy) over 𝕂. In particular, we can compute Γi ≔EΑ×Β(gi)∈𝕂Α×Β for
i=1,…,𝜈 in time Õ(𝜈 NxNy). We next define the map

EΓ:𝕂[z1,…,z𝜈]𝛿,…,𝛿 ⟶ 𝕂Α×Β

f ⟼ ( f ((Γ1)(𝛼i,𝛽j),…,(Γ𝜈)(𝛼i,𝛽j)))(𝛼i,𝛽j)∈Α×Β.

Then we have

Eg = EΑ×Β
−1 ∘EΓ.

Combined with (2), this yields

Ex,G = 𝜌G ∘EΑ×Β
−1 ∘EΓ ∘K−1. (3)
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5. FAST COMPUTATION OF RESULTANTS

We have reduced the computation of bivariate resultants to the evaluation of Ex,G
∗ . In

view of (3), it remains to be shown how to compute EΓ and EΓ
∗. We first recall how to do

this using algorithms by Kedlaya and Umans. We then prove our main result.

5.1. Fast multipoint evaluation
Kedlaya and Umans designed various algorithms for modular composition and mul-
tipoint evaluation [12]; see also [11]. They also gave algorithms for the transposed opera-
tion, called power projection. For the computation of Ex,G and its transpose, we will rely on
the following result, which is a direct consequence of [12, Corollary 4.5 and Theorem 7.6]:

THEOREM 2. Let 𝜖 > 0 be a fixed rational number. Given f ∈ 𝔽q[z1, …, z𝜈]𝛿,…,𝛿 and evaluation
points 𝛾1,…,𝛾ℓ∈𝔽q

𝜈 such that 𝜈 =𝛿 o(1), there exists an algorithm that outputs f (𝛾i) for i=1,…,
ℓ, and that runs in time

((𝛿 𝜈 +ℓ) log q)1+𝜖.

The transpose of the linear map f ↦( f (𝛾i))1⩽i⩽ℓ can be computed with the same complexity.

5.2. Proof of the main theorem
We are now in a position to prove our main result. Let 𝜖>0 be a constant, thought to be
small, and take

𝜈 ≔⌈log log (d+3)⌉.

Let q′=O(qd2) be the smallest power of q such that q′⩾4de and q′⩾Nx. If q<q′, then we
replace 𝕂 by the extension field 𝔽q′ in order to ensure that both the hypotheses |𝕂|⩾4de
and |𝕂|⩾Nx from sections 3.2 and 4.2 are satisfied. We next verify the following bounds:

𝛿 = O�(de)1/loglog d�
𝛿 𝜈 ⩽ (2(2de)1/𝜈)𝜈 = 2𝜈+1de = (de)1+o(1)

ℓ= |Α| |Β| ⩽ 𝜈 2 𝛿 2 DxDy = O�(log log d)2(de)1+2/loglogd� = (de)1+o(1)

log q′ = O(log q+log d).

The construction of 𝔽q′ takes bit complexity (log d)O(1) Õ(log q), e.g. by using [9, Corol-
lary 14.39]. Altogether, Theorem 2 therefore implies that EΓ and EΓ

∗ can be computed in
time (de log q)1+𝜖.

In the previous sections, we have already shown that 𝜌G, EΑ×Β
−1 and K−1 can be com-

puted using (de)1+o(1) operations over 𝔽q′, provided that the terse Gröbner basis G and
Γ1, …, Γ𝜈 have been precomputed. Using our genericity assumptions, we also observed
that these computations can be carried out by linear SLPs over 𝔽q′. In view of the afore-
mentioned transposition principle, it follows that 𝜌G

∗ , (EΑ×Β
−1 )∗ and (K−1)∗ can also be com-

puted using (de)1+o(1) operations over 𝔽q′. Combining this with (3), it follows that

Ex,G
∗ = (K−1)∗∘EΓ

∗ ∘(EΑ×Β
−1 )∗∘𝜌G

∗

can be computed in time (d e log q)1+𝜖. We use this algorithm for the computation of
the sequence (1). With probability >3/4, this allows us to recover the resultant of P
and Q. Altogether, this gives a probabilistic Las Vegas algorithm to compute Resy(P,Q)
in expected time (d e log q)1+𝜖. Adding the cost Õ(d2 log q) of the precomputation of G
and Γ1,…,Γ𝜈, this completes the proof of Theorem 1.
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5.3. Variants
Our method admits variants that we briefly outline now.
• With more work, it should be possible to relax the lex-genericity assumption some-

what, e.g. to the case when the Gröbner basis for <lex consists of polynomials of
degree O(log d) in y. Indeed, using linear algebra techniques inspired by Wiedemann's
algorithm, the idea is to recover the characteristic polynomial from the minimal poly-
nomial by determining the multiplicities of the square-free factors.

• Similarly, and as already noticed in [10], it should be possible to relax the grevlex-
genericity assumption somewhat, e.g. to the case when the Gröbner basis for <grevlex

consists of Q and polynomials with leading monomials of the form xd−e+i+O(log d)ye−i.
• In [12, section 6], Kedlaya and Umans proposed an algebraic algorithm for mul-

tivariate multipoint evaluation (and its transpose, in virtue of the transposition prin-
ciple). These algorithms are mainly interesting in small characteristic, in which case
they can be used instead of the ones from Theorem 2. These algebraic algorithms
can also be generalized to more general finite fields, provided that one has an oper-
ation for the Frobenius map and its inverse.

• Through appropriate use of the Chinese remainder theorem, Theorem 1 can also be
used for the quasi-optimal computation of generic bivariate resultants with integer
coefficients. Using the technique of rational number reconstruction [9, chapter 5],
a similar remark holds for coefficients in ℚ.

• Unfortunately, we are not aware of any efficient implementations of Kedlaya–Umans'
algorithms; see [11] for a discussion. For the time being, we therefore do not expect
Theorem 1 to induce faster practical implementations of bivariate resultants. Nev-
ertheless, it should be noticed that the maps Ex,G and EΓ can both be regarded as
black boxes for our algorithm: whenever a faster algorithm for one of these maps
does become available, our method might be relevant for practical applications.
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