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Abstract 

 Cross-linked Polymer Microparticles (CPMs) with nanoscopic size were synthesized 

from the free radical polymerization of acrylate/diacrylate mixtures or of their methacrylate 

counterparts. The syntheses were carried out in solution, and the study of the influence of the 

solvent on the CPM characteristics led to the definition of reliable criteria for the obtention of 

true, soluble, individualized microgels and for avoiding macrogelation, when starting from 

any desired monomer combination. Two main parameters could be pointed out: first, the 

probability of propagation of the growing radicals, q, (or the kinetic chain length λ = 1/1 – q) 

that must be kept below a certain threshold value in order to prevent macrogelation; q may be 

adjusted by playing on the monomer, initiator and transfer agent concentrations. The second 

essential criterion is the ability of the copolymer for auto-stabilization in the chosen solvent 

(that may be adjusted by the use of a suitable stabilizing co-monomer in case the quality of 

the solvent would not be sufficient), in order to avoid flocculation and interparticular 

reactions. By controlling these two parameters, the preparation of CPMs becomes possible 

over a wide range of concentration and composition. 

Keywords: cross-linked polymer microparticle; microgel; solution free radical 

polymerization; auto-stabilization; kinetic chain length 
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Introduction 

Cross-linked Polymer Microparticles, CPMs, are defined as intramolecularly cross-

linked macromolecules [1]. Also commonly known as microgels (or sometimes nanogels) for 

many years, they can be viewed as a new, fourth class of polymers (besides linear, branched 

macromolecules and macroscopic polymer networks), on the border between molecules and 

particles [1-3]. Due to their nanoscopic size and compact structure, CPMs now find 

applications in numerous practical and/or industrial fields, for instance as components for 

binders in organic coatings, nanometric carriers for numerous dyes, pharmaceutical or 

biochemical compounds used in immuno assays and controlled drug delivery systems [4], or 

high performance fillers in plastics, thermosetting polymers or coatings [5,6]. 

These special macromolecular objects are based on at least one monomer with a 

functionality greater than 2, as a crosslinking agent. But polymerizing such systems can 

obviously and very easily lead to macrogelation. Therefore the numerous methods now 

available for the synthesis of micro- and nanogels mainly rely on two distinct general 

concepts in order to avoid macrogelation: either the use of reactors with micro/nanoscopic 

sizes (i.e. the droplets of an emulsion, of a miniemulsion or of a dispersion), or the very high 

dilution of the reacting medium. 

The first examples used the emulsion (oil/water) free radical polymerization of 

styrene/divinylbenzene [1,7], unsaturated polyesters/comonomers [1,8,9] or methacrylic 

systems, with or without surfactant [3,10]. More recent works were devoted to the free radical 

polymerization of the same or of other systems in miniemulsion [11,12], logically leading to 

much smaller particles. Numerous studies were also focused on the preparation of polymer 

particles by dispersion polymerization, but most of them were non-cross-linked and of 

micron-size [13-16]. A few years ago, even polyadditions in micro-sized dispersions were 

developed for the synthesis of polyurethane micro/nanospheres, for example by reacting 
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dispersed diols with tolylene diisocyanate dissolved in a non-polar continuous phase 

(typically cyclohexane or supercritical CO2) in the presence of a functional stabilizer, but 

usually the resulting particles were not cross-linked either [17-20]. 

Other techniques are simply based on the use of ultra dilute conditions in solution: 

internal cyclization is then favored vs. intermolecular crosslinking. Historically, the very first 

example of CPM synthesis was indeed the preparation of microgels by the free radical 

polymerization of divinylbenzene under highly dilute conditions by Staudinger [21]. Later on, 

these experimental conditions were used either directly for the polymerization reaction 

[1,22,23] or for post-self-crosslinking reactions of functional macromolecules [24,25]. Finally 

an elegant way of “virtually” diluting the system without adding more solvent is to use 

controlled radical polymerization, since in this case the instant radical concentration is much 

lower than under conventional free radical polymerization conditions. Both nitroxide-

mediated polymerization [26] and atom transfer radical polymerization [27] were used for 

that purpose. 

In solution, transfer agents can also be added in order to delay macrogelation [28,29]. 

More generally, Stöver et al. proposed a two-stage mechanism for CPM formation by solution 

polymerization [30]. The first stage would be the formation of highly swollen oligomers; and 

the second stage would be microgel growth through intermolecular reactions between 

oligomers, or between oligomers and growing microgels. Besides these reactions, cyclization 

should also be extensive whereas internal crosslinking should be limited by maximized 

solvent swelling. This would result in a limited diameter for the growing microgels, since 

cyclization would reduce the number of available double bonds at the microgel’s surface. This 

mechanism reveals the importance of the quality of the solvent for the growing polymer 

chains; the same parameter was also highlighted by Graham who showed that for a given and 

well-defined range of solubility parameters for the chosen solvent, it was possible to avoid 



 5

macrogelation and to obtain CPMs even at rather to quite high concentrations [2,22,31,32]. 

The same even holds when step growth polymerization is used instead of free radical 

polymerization, especially for the synthesis of polyurethane microgels [31]. According to 

Graham, primary, intramolecularly cross-linked particles would be formed at first and would 

gradually aggregate through covalent bonds. In a very good solvent, the chains formed at first 

would point out of the microparticles and act as auto-stabilizers by creating repulsive forces 

between the particles, thus allowing to avoid macrogelation even at high concentration. 

The “microgels” described in the literature can have real nanometric sizes, but can also 

be rather micrometric particles, somewhat different from the definition given by Funke et al. 

[1]. In contrast, this paper is especially devoted to CPMs or microgels with very small 

diameters (below 50 nm). It describes the synthesis and characterization of new CPMs and of 

their homologous linear polymers, mainly prepared by the free radical copolymerization of 

lauryl acrylate (LA), butyl acrylate (BA) and cardura acrylate (CA), with hexanediol 

diacrylate (HDDA) as a crosslinking agent. The aim was to use solution polymerization, with 

as little solvent as possible. It was thus necessary to understand precisely the role of the 

solvent in these reactions. For comparison purposes, the use of analogous reacting systems 

based on methacrylates was also addressed. 

 

Experimental Part 

Materials 

Several acrylate monomers and their methacrylate counterparts were used for cross-

linked microparticle synthesis. Their structures and suppliers are shown in Table 1, together 

with their solubility parameter calculated according to Fedor’s group contribution method 

[33]. The free radical polymerizations were carried out in solution using three different 

solvents: heptane (SDS, 95% n-heptane + 5% branched isomers), isopropanol, iPrOH (SDS, 
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99.7%) and methylethylketone (SDS, 99.0%). The initiator was 2,2’-azobis(2-

methylbutyronitrile), AMBN (Vazo 67, DuPont) whereas 1-dodecanethiol (RSH, Aldrich, 

98%) was sometimes used as a transfer agent. All these materials were used without 

purification. 

Monomers based on glycidyl neodecanoate (Cardura E10) 

Cardura acrylate and methacrylate are two monomers often used for automotive 

coatings [34,35]. In our case, they were synthesized by Cray Valley using acrylic or 

methacrylic acid and glycidyl neodecanoate (or Cardura E10, Hexion Specialty Chemicals) 

[36], with tin bis(ethylhexanoate), Sn(Oct)2, as a catalyst. Cardura E10 is the product of the 

reaction between epichlorohydrin and versatic (tert-decanoic) acid and is a mixture of 

isomers. A quick 
1
H NMR analysis of this precursor revealed that only 85% of the versatic 

chains were actually linked to an epoxide group (I). In the literature [37], this compound was 

shown to also often contain the corresponding diol (II) and diester (III), as represented in 

Figure 1. 

The synthesis of CA is depicted in Figure 2. Two main products should be obtained, 

bearing one hydroxyl group either in primary (IV) or secondary position (V). Although the 

reaction between an epoxide and a carboxylic acid was sometimes found to lead to high 

amounts of secondary alcohol [38], in this particular case the 
1
H NMR spectrum revealed a 

majority of the primary OH derivative, IV. The molar proportion between these two isomers 

(IV/V) is about 80/20. This is generally observed when the synthesis is carried out at low 

temperature without catalyst or with Sn(Oct)2, whereas higher temperatures and other 

catalysts usually lead to major amounts of the secondary alcohol that could indeed be the 

thermodynamically stable product [34]. 

However, this mixture was obtained from a precursor with only 85 mol% of the 

epoxide derivative. Therefore the non-reactive impurities initially contained in Cardura E10 
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should still be present (since esterification between the alcoholic impurities, II and III, and 

(meth)acrylic acid is unlikely to occur under the used experimental conditions). Nevertheless, 

a chemical titration of the hydroxyl groups of CA (reaction with excess acetic anhydride, then 

back titration with potassium hydroxide) led to a global value (IOH = 185 [± 1.5%] mgKOH/g) 

very close to that expected (IOH = 187 mgKOH/g) for the pure product (IV or V). The presence 

of the diol, II, almost exactly compensates for the lack of OH groups brought by the diester, 

III. Therefore, the overall molar composition of the “cardura acrylate”, CA, used in this study 

should be: 

* 70 mol% CA with a primary OH group (IV) 

* 15 mol% CA with a secondary OH group (V) 

* 15 mol% diol + diester (II and III) 

The SEC analysis of CA indeed showed a second peak with a lower retention time, 

that could correspond to the diester, III. The peak associated with the diol, II, cannot be 

detected since it presumably has about the same retention volume as CA (IV or V). 

II and III should not be reactive in the free radical polymerization, except if some 

transfer to the CA monomer or to its different impurities with rather similar chemical 

structures could exist (since isopropanol was also found to cause some transfer, see below). 

To check that, a model saturated molecule was synthesized from the reaction between 

Cardura E10 and propanoic acid, using exactly the same experimental conditions as for CA 

synthesis. Butyl acrylate was then polymerized in heptane solution (70°C), either alone or in 

the presence of the resulting Cardura propanoate, CP, added in amounts comparable with 

those used for CA in the copolymers and CPMs described below. Without CP, the obtained 

average molar masses were Mn = 47.9 kg/mol and Mw = 137 kg/mol, whereas in the presence 

of CP Mn = 49.2 kg/mol and Mw = 132 kg/mol were found. Therefore any transfer to Cardura-

derived molecules seems rather negligible. 
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Cross-linked microparticle synthesis 

Model linear copolymers were synthesized by a batch process, using an initial mixture 

of 75 wt% solvent and 25 wt% monomers; the temperature of the mixture was set to 70°C and 

the initiator, dissolved in the same solvent, was then added. 

In contrast, a semi-continuous process was defined and used for the preparation of 

cross-linked polymer microparticles, CPMs. In a first stage, 30% of the monomers, plus 

almost all the solvent, were put in the reaction vessel and heated up to 70°C. After that, the 

remaining monomers, together with the initiator solution, were added dropwise over 90 and 

40 min, respectively. 

In every case, the overall monomer amount lied between 0.4 and 0.5 mol, and the 

corresponding overall monomer concentration, between 1.0 and 1.5 mol/L. The initiator 

concentration was set to 10 mmol/L and the reaction was stopped after 6 hours, a time 

sufficient to reach a conversion beyond 95% for acrylate double bonds [39 and see below]. 

For methacrylates, the same criterion required longer reaction times (about 34 h at 70°C). 

In order to simplify the calculations for monomer mixtures, termination was always 

considered to occur only through disproportionation, although this can in fact depend on the 

nature of the monomer and on the temperature. 

Characterization 

Chemical structures were analyzed by 
1
H NMR in CDCl3, using a Bruker DRX 400 

spectrometer operating at 400 MHz. 

Molar masses of the linear polymers and of the CPMs were determined by Size 

Exclusion Chromatography using the principle of universal calibration (SEC-UC), as 

described in another paper [40]. This method allows the determination of molar masses of any 

type of copolymer, which cannot be achieved with conventional SEC, together with that of 

the Mark-Houwink-Sakurada exponent, a (the intrinsic viscosity, [η] = M
a
). Our previous 
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work [40] indeed showed that in a typical CPM synthesis, all the macromolecules have the 

same degree of crosslinking for their structure, whatever their size. The experimental 

conditions used for the synthesis lead only to a definite type of CPM molecules with a 

homogeneous density, and not to a mixture of linear, branched copolymers and cross-linked 

macromolecules, even though the molar mass distribution can be broad. In the same article 

[40], it was also shown that SEC-MALLS obviously overestimates radii of gyration of these 

small-sized particles, and that SEC-UC is thus more convenient to obtain accurate values. 

Here the SEC-UC method was processed in THF (1mL/min) with three Styragel HR 5E 

columns (mixed bed: extended range of porosity) from Waters in series, heated at 35°C. The 

chromatograph was equipped with a VE 3580 refractometer (RI) and T60A intrinsic viscosity 

detector from Viscotek. Polymer solutions were prepared with concentrations ranging from 1 

to 4 mg/mL in THF. 100 µL of solution was injected onto the columns for each measurement. 

The refractometer and viscometer were calibrated using different PS standards of known 

concentrations and viscosities. 

 

Results and discussion 

In his paper, Valette [39] described the synthesis of several CPMs by free radical 

polymerization in various organic media. Macrogelation was avoided by the use of a reactive 

surfactant comonomer, or “surfmer”, that displayed a very low solubility parameter and 

provided the microparticles with an auto-dispersing character. Several mixtures of heptane 

and isopropanol were used as solvent, and especially good results (microgels with z-average 

radius of gyration, Rz, as low as 20 nm) were obtained with a 50/50 weight ratio (solubility 

parameter, δ = 20.3 MPa
1/2

). This ratio, as well as the polymer overall composition and 

concentration, seemed to have a huge influence on the possibility to avoid macrogelation and 

on the microparticle characteristics. Therefore the question remains whether the formation of 
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true microgels is best achieved by dispersion (as stated by Valette) or solution free radical 

polymerization, and what is the exact role of the solvents used for the reaction. In this work, 

we tried to determine some reliable criteria in order to achieve microgelation, if possible 

using a single solvent and as high as possible monomer concentrations. 

Effect of the solvent 

Two different aspects should be considered when selecting a solvent for the synthesis 

of CPMs with a well-defined composition. Of course, its solubility parameter, δ, should have 

a great influence [2]. But one should also take into account the possible ability of this solvent 

to act as a transfer agent, when considering a free radical polymerization with a rather high 

amount of solvent. 

A monomer mixture with a simple composition, CA/BA/HDDA (20/75/5 mol%) was 

selected to study and compare the influence of these two parameters. An average solubility 

parameter can be calculated for CPMs with this composition using a group contribution 

method [33] leading to δ = 18.6 MPa
1/2

. Therefore both methylethylketone (δ = 19.0 MPa
1/2

) 

and heptane/iPrOH (50/50 wt%, δ = 20.5 MPa
1/2

) should be good solvents for this copolymer. 

Dissolution experiments with a model linear copolymer, based on CA/BA (20/80 mol%), 

indeed revealed that it was entirely soluble in both of them, but also in pure isopropanol (and 

despite its higher δ = 23.5 MPa
1/2

, denoting the limits of such an approach). In contrast, 

heptane (δ = 15.1 MPa
1/2

) turned out to be a poor solvent for this copolymer, although pure 

poly(butylacrylate) is entirely soluble in heptane. This different behavior can be attributed to 

the presence of cardura acrylate units, that bear OH groups able to establish hydrogen bonds 

with the solvent in the case of isopropanol, whereas it is not possible with heptane. 

The above mixture was then polymerized in each of the four solvents, and the results 

are displayed in Table 2. A macroscopic, solvent-swollen gel was obtained in 

methylethylketone (a good solvent), whereas the copolymer coagulated in heptane (a poor 
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solvent). In contrast, soluble CPMs (a < 0.5 in SEC-UC) were formed in pure isopropanol as 

well as in the mixture with heptane. Therefore solubility itself cannot account for the result 

obtained (micro- vs. macro-gelation). However, the molar mass obtained for CPMs in pure 

isopropanol is lower than that of the CPMs synthesized in heptane/iPrOH, suggesting that 

iPrOH might also act as a transfer agent in the free radical polymerization. Indeed when the 

CPMs are prepared in heptane/iPrOH mixtures with increasing proportions of heptane, 

increasing molar masses and polydispersities are obtained, until a threshold composition 

beyond which macrogelation always occurs. At this point, both Mw and Ip diverge. These 

results are depicted in Figure 3 and confirm iPrOH transfer. 

In order to have a more quantitative approach of this transfer, another experiment 

consisted in polymerizing butyl acrylate in heptane, adding small but increasing amounts of 

iPrOH, with the aim of determining the chain transfer constant for that simple system. After 

an analysis by SEC-UC, it was possible to determine the cumulative polymerization degree, 

(DPn)cum (which should correspond to a conversion equal to 95%, see above), then to plot 

1/(DPn)cum versus the initial transfer agent [iPrOH] concentration. This curve is represented in 

Figure 4, and can be described by eq. 1 (the equations used to obtain equation 1 are displayed 

in Appendix A): 

0

1 1 (1 )
[ ]

( ) [ ]

iPrOHC

n cum

K iPrOH
DP M

− −
= +

α

α
    eq. 1 

where α stands for the conversion and CiPrOH for the chain transfer constant. 

From the slope of the curve depicted in Figure 4 (α = 95%), k, it is possible to 

calculate CiPrOH using the following equation: 

0ln(1 [ ] )

ln(1 )
iPrOH

M k
C

−
=

−

α

α
     eq. 2 

Using [M]0 ≈ 1.42 mol/L, the value found for BA at 70°C is CiPrOH = 18.5.10
-4

. Of 

course this value is only an approximation, since the conversion, α  = 0.95, was only 
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estimated, and since other transfer reactions might also occur. But it is consistent with other 

data from the literature, i.e. CiPrOH = 14.1.10
-4

 for butyl acrylate at 80°C [41]. 

Effect of a transfer agent 

In order to dissociate solubility and solvent transfer effects, the synthesis was run once 

again in pure heptane (poor solvent), adding controlled amounts of an efficient transfer agent ; 

1-dodecanethiol, RSH, was selected for that purpose. First of all, the chain transfer constant 

was calculated for RSH in the same way as above for the polymerization of BA in heptane at 

70°C. The results are represented in Figure 5; from these data, it comes out that CRSH = 0.39. 

RSH should thus produce the same transfer effect as iPrOH, when used in amounts ∼200 

times lower. Attempts to synthesize CPMs (based on CA/BA/HDDA 20/75/5 mol%) in pure 

heptane or methylethylketone were then made by adding low, controlled amounts of RSH; 

these amounts were selected in order to induce a transfer equivalent to that provided by 

iPrOH in the mixtures used by Valette [39]. More precisely, and according to the chain 

transfer constant ratio determined just above, heptane/iPrOH (50/50 wt%) should correspond 

to an initial RSH concentration of about 0.025 mol/L in pure heptane. 

 These results are presented in Table 3. In this case, macrogelation was never observed, 

even in heptane. In methylethylketone + RSH or heptane/iPrOH (50/50 wt%), both good 

solvents, almost similar results were obtained. This tends to confirm our calculated rate 

constants and the fact that [RSH] = 0.025 mol/L is roughly equivalent to 50 wt% of iPrOH. 

However, the same amount of RSH in heptane, a poor solvent, was not sufficient to obtain a 

clear solution of CPMs. The polydispersity index and the gyration radius were also much 

higher in this solvent. Although the transfer agent lowers the length of the growing polymer 

chains and the probability of early intermolecular reactions, these particular CPMs remain 

insoluble in heptane and tend to flocculate; this finally enables some intermolecular 

crosslinks, hence the very high polydispersity and the final cloudy aspect of the mixture. 
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 A first criterion for microgelation can thus be deduced from these experiments: in a 

good solvent like methylethylketone, the probability of intermolecular reactions should be 

minimized, and under such conditions the addition of a transfer agent that limits the length of 

the growing polymer chains, especially at the moment when they become cross-linked, should 

allow to avoid macrogelation. In this respect, it should be particularly useful to lower the 

parameter 
p

p t tr

r
q

r r r
=

+ + Σ
 (depending on the propagation, termination by disproportionation 

and various transfer rates rp, rt and rtr) that represents the probability for a radical to propagate 

rather than to cause a transfer or termination reaction. In other words, one has to lower the 

kinetic chain length, 
1

1 q
λ =

−
. In contrast, in a poor solvent such as heptane, lowering the 

kinetic chain length is not sufficient to obtain soluble, individualized microgels. This is in 

good agreement with the results obtained by Graham on various polymerizing systems; for 

this author, a good solvent would be necessary to create repulsive forces between the 

microparticles, so that the polymer chains would present an auto-stabilizing character 

[2,22,31,32]. 

Effect of a stabilizing comonomer 

As said before, heptane is not a sufficiently good solvent for the above composition to 

allow the necessary auto-stabilization. However, the use of this particular solvent would 

present some practical advantages over that of methylethylketone in some applications. 

Instead of changing the solvent, the difference in solubility parameter between solvent and 

polymer could also be reduced by the addition of small amounts of a well-chosen comonomer 

that should play the role of a “stabilizer”. To verify this hypothesis, part of the amount of 

butyl acrylate was replaced by lauryl acrylate, LA, in the former CPM formulation. The idea 

was to add some long alkyl chains that would increase the overall solubility in heptane. Both 
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linear copolymers and CPMs were synthesized, in order to distinguish the effects of solubility 

from those of crosslinking. The results are displayed in Table 4. 

 Linear copolymers showed rather low molar masses; they were entirely soluble in the 

reaction medium at 70°C. However, all the samples with less than 7.5 mol% LA led to cloudy 

solutions once cooled to room temperature. This confirms that LA indeed increases the 

solubility in heptane, and that a minimum amount is required to achieve complete miscibility 

with this solvent at room temperature. 

 At 70°C, the presence of LA did not seem to modify any characteristics of the linear 

copolymers, as all the reacting systems were entirely soluble. Consequently, none of the 

reactions rates (initiation, propagation, transfer, termination) was altered, hence the same 

polymerization degree. 

 In contrast, increasing amounts of LA in the formulation had a strong effect on CPM 

characteristics. Two domains were observed: below 7.5 mol% LA, cloudy mixtures (even at 

70°C), large molar masses and polydispersity indexes, and high gyration radii were obtained. 

Above 7.5 mol%, clear mixtures, low and rather constant values were measured for Mw, Ip 

and Rz. 

 Solubility parameters can be evaluated for the different microgels based on LA, BA, 

CA and HDDA using Hoftyzer-Van Krevelen group contribution method [33]. As shown in 

Figure 6, a linear decreasing dependence of δ with x (LA molar fraction) is observed for the 

CPMs. This decrease in δ is rather small, but it is nevertheless sufficient to provide complete 

miscibility with heptane above a certain limit. This allows the particle auto-stabilization, 

whereas below this limit intermolecular reactions are more favored as particles tend to 

flocculate. This would tend to suggest that the influence of LA is more a surface than a bulk 

effect, and that this seems indeed the most important aspect to prevent particle aggregation. 

The phenomenon might also be emphasized by the partial deswelling of the particles once 
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they are cross-linked. But in any case, the comparison between Table 3 & 4 shows that 

heptane still leads to higher molar masses, even for soluble systems. 

Respective effects of the transfer agent and of the stabilizing comonomer 

Linear copolymers and CPMs were synthesized from LA/BA/CA/(HDDA) 

(20/60[respectively 55]/20/0[respectively 5] mol%) mixtures, using increasing amounts of 

RSH. The results are displayed in Table 5. 

 All the linear copolymers with 20 mol% LA were entirely soluble in heptane at room 

temperature. Moreover, increasing amounts of RSH logically led to decreasing values for Mn, 

Mw, Ip and Rz. From the (DPn)cum values obtained for 4 samples (see Figure 7), it was once 

again possible to evaluate an average chain transfer constant for RSH, in the same way as for 

pure butyl acrylate. In this case, using an average monomer concentration [M]0 ≈ 1 mol/L, a 

value of CRSH, 70°C = 0.31 was obtained, whereas CRSH, 70°C = 0.39 for pure BA. Both values 

are thus in good agreement. 

 In the case of CPMs, molar mass, polydispersity and gyration radius also decrease 

when [RSH] increases, but in a much more spectacular way as for linear copolymers. Without 

RSH, macrogelation occurs, whereas for low thiol amounts, the system is obviously still very 

close to macrogelation, since some macroscopic particles can be observed in the reaction 

medium, although the system remains transparent. Therefore a minimum amount of RSH is 

required to avoid both macrogelation and big particles. 

 A comparison between the respective effects of the amounts of LA, x, and of [RSH] 

on the main properties of the linear polymers or CPMs is shown in Figure 8. Contrary to 

RSH, the addition of LA does not modify the molar mass of the linear copolymers. Therefore 

in the case of CPMs, the length of the growing chains also remains the same; LA only 

stabilizes the particles against macrogelation by keeping them apart, thus avoiding 

flocculation and therefore interparticular reactions. In contrast, the transfer agent controls the 
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probability for a radical to propagate, 
p

p t tr

r
q

r r r
=

+ + Σ
, and thus the final 

1

1
n cum( DP )

q
= = λ

−
 

(where λ refers to the kinetic chain length). In the same way, 1/(DPn)cum = 1 – q can be 

viewed as the probability for a radical to stop growing (by termination or transfer). This 

length, λ, can be estimated for linear copolymers from the values the corresponding (DPn)cum, 

i.e. practically from the values measured for Mn . Most of them were synthesized and their Mn 

measured (see Table 5). But since the relationship found between 1/(DPn)cum and [RSH] is 

linear and can be written as 1/(DPn)cum = 0.6339[RSH] + 0.004, values of (DPn)cum and Mn can 

also be calculated for two additional linear polymers that were not synthesized: for [RSH] = 

0.0125 mol/L, (DPn)cum = λ = 83.87 and Mn = 15.5 kg/mol; and for [RSH] = 0.03 mol/L, 

(DPn)cum = λ = 43.45 and Mn = 8.0 kg/mol. It is then possible to plot Mw vs. λ for the linear 

polymer series, as well as for CPMs that must have almost the same values of λ as their linear 

counterpart. The resulting curves are depicted in Figure 9. It appears that while the 

relationship between Mw and λ is roughly proportional for linear copolymers, in the case of 

CPMs the mass average molar mass diverges for a critical value of kinetic chain length, λc. 

Above λc, macrogelation always occurs. In this particular case, λc = (DPn)cum c would be about 

95. Therefore the transfer agent, RSH, allows to keep the kinetic chain length λ below λc and 

thus to avoid macrogelation, whereas the stabilizer, LA, mainly creates repulsion between the 

growing particles and allows to avoid flocculation and interparticular reactions. The particle 

auto-stabilization and the kinetic chain length (or the probability of propagation, q) are thus 

the essential parameters that control micro- or macrogelation: this stated, it was then 

interesting to vary other parameters like monomer nature, reactivity or concentration to see if 

the preparation of CPMs was still possible. 
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Effect of the CPM composition 

Several attempts were made to replace Cardura acrylate by another but more common 

polar monomer, namely acrylic acid, AA, while keeping heptane as the solvent. The 

polymerization of the system (LA/BA/AA/HDDA, 10/65/20/5 mol%, heptane, 

monomers/solvent: 25/75 wt%, [RSH] = 0.025 mol/L) resulted in a milky white suspension 

with gelled, THF-insoluble macroparticles. In contrast, another composition based on 

(LA/BA/AA/HDDA, 10/80/5/5 mol%) led to a transparent CPM solution with the following 

characteristics: Mw = 100 kg/mol, Ip = 6.3; Rz = 9.5 nm; a = 0.33. The main difference 

between these two reacting systems can be found in the solubility parameter of the expected 

CPMs, i.e. δ = 18.7 MPa
1/2

 for the first one vs. δ = 18.3 MPa
1/2

 for the second. Keeping in 

mind that the system based on Cardura acrylate (LA/BA/CA/HDDA, 10/65/20/5 mol%) also 

led to soluble CPMs that displayed δ = 18.45 MPa
1/2

, it can be inferred that using heptane (75 

wt%) with [RSH] = 0.025 mol/L, a threshold value exists for the solubility parameter of the 

desired CPMs that must have δ < 18.5-18.6 MPa
1/2

 in order to avoid macrogelation in this 

solvent. 

Effect of the overall monomer concentration 

All the above experiments were carried out using the ratio monomers/solvent = 25/75 

wt%. Of course increasing the monomer concentration would be interesting from a practical 

point of view, but it should also increase the probability of intermolecular reactions. 

Moreover as this is done without modifying the initiator concentration, the increase in 

monomer concentration will lead to an increase in the propagation rate, rp, therefore in 

p

n

t tr

r
DP

r r+
≃  and λ, and it will logically be necessary to increase the amount of transfer agent 

in order to maintain the same result as under more dilute conditions, with an aim to keep the 

kinetic chain length, λ, below its critical value λc. 
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 In the case of CPMs, λ can here again be estimated from the number average molar 

masses of the corresponding linear copolymers. Since not all of them were synthesized, an 

estimation can be made using the kinetic constants available for butyl acrylate [42] and the 

equations given in Appendix B. 

 For every concentration, the value of (DPn)cum can be calculated for α = 0.95 and then 

used as an estimation of the kinetic chain length, λ, associated with the corresponding linear 

copolymer. These calculated values were then compared with those found for a series of 

CPMs (LA/BA/CA/HDDA, 10/65/20/5 mol%), obtained in solution with increasing monomer 

concentration; the results are given in Table 6. 

The transfer agent concentration, [RSH], had to be adjusted accordingly in order to 

avoid macrogelation. When comparing the results obtained using the same [RSH] but 

increasing values of [M]0 (and consequently of λ), increasing values of Mw are indeed 

obtained. A small increase in λ thus results in a huge increase in Mw, especially as the system 

gets closer to the critical value, λc, above which macrogelation occurs. However, the CPMs 

obtained with 25 wt% monomers ([RSH] = 0.025 mol/L) and 50 wt% monomers ([RSH] = 0.1 

mol/L) display the same mass average molar mass, whereas the corresponding λ values are 

quite different (51 vs. 29); polydispersity is also higher in the second case. Therefore λ is not 

the only important parameter for the characteristics of the final system. Increasing the 

monomer concentration from 25 to 50 wt% results in dividing by 3 the overall heptane 

amount; under such conditions macromolecules grow much closer to one another and 

intermolecular reactions occur more easily, hence the increase in Ip. 

Moreover, the increase in [RSH] can end up having a non-negligible effect on the 

overall CPM composition. In the same way as LA, a dodecanethiol molecule brings an 

additional lauryl moiety to the microgel. Still comparing the samples obtained with 25 and 50 

wt% monomers ([RSH] = 0.025 and 0.1 mol/L, respectively), it comes out that 1/7 of the C12 
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chains are provided by RSH in the first case, whereas this proportion reaches 1/4 for the more 

concentrated conditions with a higher RSH amount. For 100 LA units, 16 additional C12 

chains are brought by RSH for the first sample, and 30 for the second; in other words, the 

microgels synthesized under dilute conditions contain 11.4 mol% of C12 chains, whereas this 

amount increases to 12.6 mol% for those obtained in a more concentrated medium. Therefore 

RSH not only limits the length of the growing chains, but also participates in the particle auto-

stabilization process in heptane. 

Synthesis of polymethacrylate CPMs 

All the conclusions drawn from the above experiments were dealing with the synthesis 

of polyacrylate CPMs. However most of the prepared particles contained a non-negligible 

amount of lauryl units in order to maximize their auto-stabilizing character, especially when 

heptane was used as solvent. This resulted in rather soft microgels (Tg ≈ -10°C) that, even 

after being thoroughly dried, flowed at room temperature. In order to obtain rigid particles, 

the use of other monomers, among which methyl methacrylate would obviously be the 

simplest and cheapest, should thus be considered. 

The criteria defined to avoid macrogelation while maximizing the molar mass and 

crosslinking degree of polyacrylate microparticles should also apply for methacrylates. 

However, a first and important difference lies in their much lower reactivity. The reaction 

conditions had thus to be somewhat adapted to take this parameter into account. A rough 

estimation of the difference in reactivity between both types of monomer can be obtained by 

comparing the data displayed in Appendix B for butyl acrylate (Table 1B) with the 

corresponding results associated with butyl methacrylate (see Table 2B). According to the 

results, the radical polymerization of the methacrylate systems was carried out for 40 hours 

instead of 6 hours for acrylates, using the same reaction temperature (70°C). 
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A first transposition of the well-controlled reacting system (LA/BA/CA/HDDA, 

20/55/20/5 mol%, heptane, monomer/solvent: 25/75 wt%, [RSH] = 0.025 mol/L) was then 

attempted simply by replacing all acrylate monomers by their methacrylate counterpart. The 

resulting methacrylate system (LMA/BMA/CMA/HDDMA, 20/55/20/5 mol%) should lead to 

a copolymer with a lower solubility parameter, δ = 18.00 MPa
1/2

, than the corresponding 

acrylate combination (δ = 18.35 MPa
1/2

). As δ < 18.5 MPa
1/2

, macrogelation should not occur 

and CPMs should be obtained from the radical polymerization of the methacrylate system in 

heptane (70°C, monomers/solvent: 25/75 wt%) using [RSH] = 0.025 mol/L. This was indeed 

observed, with the resulting microgels displaying Mw = 58 kg/mol; Ip = 4.1 and a = 0.40 

(polyacrylate CPMs: Mw = 101 kg/mol; Ip = 4.4; a = 0.39). 

Using the same experimental conditions, further attempts were then made with 

replacing BMA by MMA. A rapid calculation of the solubility parameters expected for these 

new CPMs are somewhat higher than those of the polyacrylate-based CPMs (Figure 10). 

Referring to this theoretical curve and to the criteria determined with polyacrylates, this 

means that if the synthesis must be carried out in heptane ([RSH] = 0.025 mol/L), the 

proportion of LMA used should be over ~23% in order to ensure δ ≤ 18.5 MPa
1/2

, and thus to 

avoid macrogelation. This was confirmed by three experiments with increasing amounts of 

LMA; the results are displayed in Table 7. 10 mol% LMA led to macrogelation, and 20 mol% 

to gelled macroparticles. In contrast, CPMs could be obtained from the mixture 

(LMA/MMA/CMA/HDDA, 30/45/20/5 mol%) in heptane (70°C, monomers/solvent: 25 wt%, 

[RSH] =0.025 mol/L). This would tend to confirm once again the threshold value, δ = 18.5 

MPa
1/2

 below which microgels can be systematically obtained under the conditions stated 

above. However in this case the amount of fatty C12 side chains becomes so important that 

once again the obtained particles are soft. Therefore in order to prepare rigid CPMs, one 



 21

definitely has to change from heptane to a better solvent in which the particle auto-

stabilization is sufficient, without requiring the incorporation of a stabilizing co-monomer. 

Experiments were thus finally run in a good solvent, methylethylketone (δ = 19.0 

MPa
1/2

). Using this solvent, the radical polymerization of the system (MMA/CMA/HDDMA, 

85/10/5 mol%) should allow the preparation of CPMs with an expected δ = 18.9 MPa
1/2

, and 

hopefully a much higher Tg. The propagation and termination rate constants at 70°C being 

available in the literature for methyl methacrylate [42], calculations were made to evaluate the 

time to reach a conversion α = 95% for this pure monomer in MEK under our usual 

experimental conditions; the results are given in Appendix B (Table 3B). It appears that about 

123000 s, or 35 hours are necessary to complete the reaction. After this time, a rigid foam was 

easily obtained by evaporating the solvent and could finally be ground into a powder of CPMs 

with a high molar mass and Rz < 100 nm. 

 

Conclusion 

 In this work, the synthesis of various polyacrylate CPMs was described using solution 

free radical polymerization of reacting systems based on mono- and di-functional monomers. 

It was shown that the preparation of solutions of nanoparticles was possible in almost any 

solvent, however good or bad for the growing polymer, provided that three key parameters 

were controlled: the monomer concentration, the parameter 
1

1
n cum

q
( DP )

= −  or the kinetic 

chain length, λ, and the ability of the forming particles for auto-stabilization. For any given 

system, it is possible to define a critical value of the kinetic chain length above which 

macrogelation will always occur. The first criteria for microgelation are thus directly linked to 

the possibility of keeping λ below this threshold value, and this can be achieved either by 
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playing on the monomer or initiator concentrations, or by the use of well-defined amounts of 

a transfer agent. 

 Moreover, even a sufficiently low value of λ (low value of q) can still result in non-

soluble final systems if the formed nanoparticles tend to flocculate; this happens when the 

quality of the solvent for the growing polymer is insufficient, whereas in the case of a good 

solvent, some chains point out of the particles, creating repulsive forces between them and 

thus contributing to their auto-stabilization. This limits the extent of interparticular reactions 

and finally avoids macrogelation. In contrast if this phenomenon does not occur (if the solvent 

is not sufficiently good), then it has to be compensated for by the incorporation of stabilizing 

units specifically adapted for the used solvent (e.g. in our case, long alkyl units for heptane). 

Therefore for a given solvent, and a well-adapted value of λ, a threshold value can always be 

pointed out for the solubility parameter of the formed polymer, beyond which cloudy 

suspensions of aggregated nanoparticles are formed rather than clear solutions. 

 Knowing all this, for any polymerizing system it seems possible to define the 

experimental conditions (solvent, concentration, transfer agent…) that will allow the synthesis 

of true cross-linked nanoparticles solutions, even at high concentration or using less reactive 

monomers such as methacrylates; or when the nature of the solvent is fixed, to predict the 

small variation in formulation that will definitely allow the preparation of CPMs. This can be 

an attractive way of preparing versatile microgels to be used as functional or non-functional 

additives in various polymer materials or coatings. 
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Appendix A 

 

Considering iPrOH as a transfer agent, it can be classically written that: 

0

2 0 2 0

[ ] [ ]
( )

2
([ ] [ ]) [ ] [ ]

1

n cum

M M
DP

f
I I iPrOH iPrOH

b

−
=

− + −
+

   eq. 1A 

where [M] and [I2] stand for the monomer and initiator concentrations, respectively. 

If 0

0

[ ] [ ]

[ ]

M M

M
α

−
=  stands for conversion, then for a given conversion: 

2 0 2 0
0

0 0

2
([ ] [ ]) [ ] [ ]

[ ] [ ]1 1

( ) [ ] [ ]
n cum

f
I I iPrOH iPrOH

iPrOH iPrOHb K
DP M M

− + −
−+= = +

α α
 eq. 2A 

Since [I2] depends only on α . K is thus a constant that depends only on initiation and 

conversion. The propagation rate is given by: 

[ ]
[ ][ ]

p p

d M
V k M M

dt

•= − =      eq. 3A 

and the transfer rate by: 

[ ]
[ ][ ]

tr tr

d iPrOH
V k M iPrOH

dt

•= − =     eq. 4A 

therefore: 

[ ] [ ] [ ]

[ ] [ ] [ ]

tr
iPrOH

p

kd iPrOH d M d M
C

iPrOH k M M
= ⋅ = ⋅      eq. 5A 

and thus isopropanol concentration can be expressed as: 

0 0[ ] [ ]
ln ln

[ ] [ ]
iPrOH

iPrOH M
C

iPrOH M

   
=   

   
    ⇒    0[ ] [ ] (1 ) iPrOHC

iPrOH iPrOH α= −  eq. 6A 

Combining eq. 2A and eq. 6A results in equation 1. 
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Appendix B 

 

Using kinetic values from the literature, calculations can be made to estimate the 

instant, (DPn)i, and the cumulative polymerization degree, (DPn)cum, from the conversion, α, 

and the initial monomer ([M]0) and transfer agent ([RSH]0) concentrations, using the 

following equations: 

0[ ] (1 )[ ]M Mα= −         eq. 1B 

0[ ] 1
ln ln

[ ] 1
RSH

RSH
C

RSH α

   
=   

−  
       eq. 2B 

2 2 0[ ] [ ] dk t
I I e

−=         eq. 3B 

1
2

2 0

2 1 1
ln 1 ln

2 [ ] 1

d te

d p

k k
t

k k f I α

     = − −     −   

     eq. 4B 

1
2

2[ ]1 2 [ ]

( ) 1 [ ] [ ]

d te
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n i p

fk k I RSH
C

DP b k M M
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+
     eq. 5B 
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2
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n cum

n cum
k t C

M M
DP
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I I RSH RSH

b

M
DP

f
I e RSH

b

−

−
=

− + −
+

=

− + − −
+

α

α

     eq. 6B 

The values obtained for the model system, butyl acrylate at 70°C, assuming that f = 

0.6 and termination occurs only through disproportionation (b = 0), are summed up in Table 

1B. The calculations were made using for AMBN kd = 2.10
-5

 s
-1

, and for butyl acrylate kp = 

13927 L.mol
-1

.s
-1

 and kte = 1.87.10
8
 L.mol

-1
.s

-1
, i.e. values deduced from those given at 30°C 

in the literature (kp30°C = 1237 L.mol
-1

.s
-1

, kte30°C = 6.18.10
6
 L.mol

-1
.s

-1
, Ep = 52.3 kJ.mol

-1
 and 

Ete = 73.7 kJ.mol
-1

 [42]). In this example (Table 1B), the initial monomer concentration was 

taken equal to that of the system (LA/BA/CA, 10/70/20 mol%) in heptane 
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(monomers/solvent: 25/75 wt%, [RSH] = 0.025 mol/L). The same calculations were repeated 

for all the studied concentrations. The value of CRSH is that determined in this work for BA at 

70°C (CRSH = 0.39). 

 These calculations were made assuming a batch process. Under such conditions it 

appears that α = 95% is reached within about 9000 s, or 2.5 hours. Using our semi-continuous 

process, the monomers are added during the first 90 minutes, and the reaction is carried out 

for 6 hours. It is thus reasonable to consider that a conversion over 95% has been reached at 

the end of our process. 

These calculations were repeated for the polymerization of butyl methacrylate initiated 

by AMBN at 70°C, using kp = 940 L.mol
-1

.s
-1 

and kte = 1.7.10
7
 L.mol

-1
.s

-1
, i.e. values deduced 

from those given at 30°C in the literature (kp30°C = 362 L.mol
-1

.s
-1

, kte30°C = 10.2.10
6
 L.mol

-1
.s

-

1
, Ep = 20.6 kJ.mol

-1
 and Ete = 10.8 kJ.mol

-1
 [42]). CRSH was arbitrarily taken equal to that 

determined for butyl acrylate (CRSH = 0.39). It appears that the time necessary to reach α = 

95% with butyl methacrylate using a batch process at 70°C is roughly 48000 s, or about 13.5 

hours instead of 2.5 hours for butyl acrylate; i.e. the reaction is about six times slower. 

Therefore, and taking into account our semi-continuous process, we decided to carry out the 

radical polymerization of the methacrylate systems for 40 hours instead of 6 hours for 

acrylates, using the same reaction temperature (70°C). 

 Finally, the same calculations have been made for the free radical polymerization of 

methyl methacrylate initiated by AMBN at 70°C. The values of the various rate constants are 

in this case directly available from the literature [42]: kp = 640 L.mol
-1

.s
-1

 and kte = 27.5.10
6
 

L.mol
-1

.s
-1

. Once again CRSH was taken equal to 0.39. 
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Figure captions 

 

Figure 1. Chemical structure of Cardura E10 and of two byproducts 

Figure 2. Synthesis of cardura acrylate 

Figure 3. Mass average molar mass and polydispersity index for CPMs (CA/BA/HDDA, 

20/75/5 mol%) prepared at 70°C in heptane/isopropanol mixtures with varying composition; 

� : Mw; � : Ip. 

Figure 4. Evaluation of the iPrOH chain transfer constant for the free radical polymerization 

of BA in heptane at 70°C. 

Figure 5. Evaluation of the RSH chain transfer constant for the free radical polymerization of 

BA in heptane at 70°C. 

Figure 6. Solubility parameter calculated for CPMs based on (LA/BA/CA/HDDA, x/75-

x/20/5 mol%) for various molar fractions of LA, x (calculated by Hoftyzer - VanKrevelen 

method) 

Figure 7. Evaluation of the average RSH chain transfer constant for the free radical 

polymerization of LA/BA/CA (20/60/20) in heptane at 70°C. 

Figure 8. Mass average molar masses of linear copolymers and CPMs as a function of : a) LA 

molar fraction (LA/BA/CA x/80-x/20 mol% or LA/BA/CA/HDDA x/75-x/20/5 mol%, [RSH] 

= 0.025 mol/L); b) [RSH] (LA/BA/CA 20/60/20 mol% or LA/BA/CA/HDDA 20/55/20/5 

mol%); heptane, 70°C, monomers/solvent: 25/75 wt% 

Figure 9. Mass average molar masses of linear copolymers and CPMs as a function of kinetic 

chain length, λ. (LA/BA/CA/HDDA 20/60-55/20/0-5 mol%); heptane, 70°C, 

monomers/solvent: 25/75 wt%. λ was taken equal to the cumulative polymerization degree, 
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(DPn)cum, of the linear copolymers and was calculated either from the measured values of Mn 

([RSH] = 0.01, 0.02 or 0.025 mol/L) or from the experimental linear relationship between 

1/(DPn)cum and [RSH] ([RSH] = 0.0125 or 0.03 mol/L). 

Figure 10. Solubility parameter calculated for CPMs based on polymethacrylates 

(LMA/MMA/CMA/HDDMA, x/75-x/20/5 mol%). Comparison with polyacrylates 

(LA/BA/CA/HDDA, x/75-x/20/5 mol%) for various molar fractions of L(M)A, x (calculated 

by Hoftyzer - VanKrevelen method) 
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Table 1. Monomers used for the synthesis of cross-linked polymer microparticles: chemical 

structure and solubility parameter 

 

Name & 

acronym 

Structure M 

(g/mol) 

Supplier / 

Purity 
δ 

(MPa)
1/2

 

Butyl acrylate, 

BA 

O

O  
 

128 
Aldrich, 

99% 
18.0 

Lauryl acrylate, 

LA 

O

O  240 
Aldrich, 

90% 
17.0 

Cardura 

acrylate, CA 
O O

O O

OH

 

300 

Cray 

Valley 

(CN152), 

98% 

21.3 

Acrylic acid, 

AA O

OH

 72 
Aldrich, 

99% 
24.6 

Hexanediol 

diacrylate, 

HDDA 

O

O

O

O  

226 
Aldrich, 

90% 
19.6 

Butyl 

methacrylate, 

BMA 

O

O

 

142 
Aldrich, 

99% 
17.8 

Methyl 

methacrylate, 

MMA 

O

O

 

100 
Aldrich, 

99% 
18.5 

Cardura 

methacrylate, 

CMA O O

O O

OH

 

314 
Cray 

Valley 
21.0 

Lauryl 

methacrylate, 

LMA 

O

O

 

254 
Aldrich, 

96% 
17.4 

Hexanediol 

dimethacrylate, 

HDDMA 

O

O

O

O  

254 

 

Cray 

Valley 
19.1 
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Table 2. Attempts to synthesize CPMs (CA/BA/HDDA 20/75/5 mol%) in different solvents 

(monomers/solvent: 25/75 wt%) 

 

solvent δ 

(MPa
1/2

) 
aspect 

Mw
(a)

 

(kg/mol) 
a

(a,b) 

heptane 

isopropanol 

heptane/isopropanol (50/50 wt%) 

methylethylketone 

15.1 

23.5 

20.3 

19.0 

coagulated 

CPM (clear) 

CPM (clear) 

macrogel 

- 

14 

25 

- 

- 

0.40 

0.38 

- 

a) measured by SEC-UC 

b) a: Mark-Houwink-Sakurada exponent 
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Table 3. Free radical polymerization of the system CA/BA/HDDA (20/75/5 mol%) in 

heptane or methylethylketone (70°C; solvent/monomers: 75/25 wt%) using iPrOH or RSH 

(0.025 mol/L) as transfer agent 

 

 

solvent δsolvent 

(MPa
1/2

) 

final 

aspect 

Mw
a)

 

(kg/mol) 
Ip

a)
 Rz (nm)

a)
 a

a)
 

heptane/iPrOH 50/50wt% 

methylethylketone + RSH 

heptane + RSH 

20.3 

19.0 

15.1 

clear 

clear 

cloudy 

25 

26.5 

775 

2.6 

2.3 

47 

5.0 

5.5 

31.0 

0.38 

0.42 

0.35 

a) from SEC-UC measurements; a: Mark-Houwink-Sakurada exponent 
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Table 4. Synthesis of linear copolymers (LA/BA/CA, x/80-x/20 mol%) and of the 

corresponding CPMs (LA/BA/CA/HDDA, x/75-x/20/5 mol%) in heptane + RSH (0.025 

mol/L) at 70°C (solvent/ monomers: 75/25 wt%) 

 

% LA, x 

Linear copolymers CPMs 

final 

aspect 

Mw
a)

 

(kg/mol) 
Ip

a) 
Rz

a)
(nm) 

final 

aspect 

Mw
a)

 

(kg/mol) 
Ip

a) 
Rz

a)
(nm) 

0 

2.5 

5.0 

7.5 

10.0 

20.0 

clear 

clear 

clear 

clear 

clear 

clear 

16.5 

16.0 

16.0 

16.5 

16.5 

15.5 

1.7 

1.8 

1.8 

1.7 

1.7 

1.6 

4.5 

4.2 

4.2 

4.2 

4.2 

4.0 

cloudy 

cloudy 

cloudy 

clear 

clear 

clear 

775 

123 

272 

82 

124 

101 

47 

7.9 

11.8 

5.9 

7.5 

4.4 

31.0 

11.4 

16.2 

9.0 

11.0 

9.6 

a) determined by SEC-UC 

 



Table 5. Synthesis of linear copolymers and CPMs with varying amounts of transfer agent, RSH. Formulation: LA/BA/CA/HDDA, 

20/60[55]/20/0[5] mol%, heptane, 70°C, solvent/monomers: 75/25 wt% 

 

 

[RSH] 

(mol/L) 

Linear copolymers CPMs 

Final 

aspect 

Mn
a)

 

(kg/mol) 

Mw
a)

 

(kg/mol) 
Ip

a)
 

Rz
a)

 

(nm) 
Final aspect 

Mw
a)

 

(g/mol) 
Ip

a)
 

Rz
a)

 

(nm) 

0 

0.010 

0.0125 

0.020 

0.025 

0.030 

clear 

clear 

- 

clear 

clear 

- 

51.5 

17.0 

15.5
b)

 

11.0 

9.5 

8.0
b)

 

357 

34 

- 

19 

15.5 

- 

6.9 

2.0 

- 

1.7 

1.6 

- 

25 

6.3 

- 

4.5 

4.0 

- 

macrogel 

clear+some macroparticles 

clear+some macroparticles 

clear 

clear 

clear 

- 

950 

565 

165 

101 

44.5 

- 

40 

27 

8 

4.4 

2.7 

- 

34.0 

24.5 

12.8 

9.6 

6.8 

 
a) from SEC-UC 

b) these samples were not synthesized ; Mn was calculated from the linear relationship between [RSH] and 1/(DPn)cum 

 

 

 

 

 

 

 



Table 6. Synthesis of CPMs (LA/BA/CA/HDDA, 10/65/20/5 mol %) in heptane (70°C) using 

increasing monomer concentrations. [RSH] was adjusted accordingly in order to avoid 

macrogelation. 

 

Monomer 

wt% 

[M]0 

mol/L 

[RSH] 

mol/L 

[ ]

[ ]

0
M

RSH
 λ 

a)
 

Mw
b)

 

(kg/mol) 
Ip

b)
 

25 

30 

33 

40 

50 

1.025 

1.25 

1.35 

1.70 

2.15 

0.025 

0.025 

0.05 

0.05 

0.10 

41 

50 

27 

34 

21.5 

51 

62 

35 

44 

29 

124 

287 

88.5 

487 

127 

7.5 

12.8 

6.3 

19.1 

9.1 

a) calculated from (DPn)cum (α = 95%) using equations 1B-6B for the corresponding linear copolymer (see also 

Table 1B) 

b) determined by SEC-UC 
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Table 7. Free radical polymerization of the system LMA/MMA/CMA/HDDMA (x/75-x/20/5 

mol%) in heptane (70°C; solvent/monomers: 75/25 wt%) using RSH (0.025 mol/L) as 

transfer agent 

 

 

% 

LMA 
δCPMs 

(MPa
1/2

) 
final aspect 

Mw
a)

 

(kg/mol) 
Ip

a)
 Rz (nm)

a)
 a

a)
 

10 

20 

30 

18.75 

18.60 

18.40 

macrogel 

macroscopic coagulated particles 

cloudy 

- 

- 

114 

- 

- 

7.1 

- 

- 

10 

- 

- 

0.36 

a) from SEC-UC measurements; a: Mark-Houwink-Sakurada exponent 
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Table 1B. Concentrations and polymerization degrees as a function of conversion. The 

values were calculated for the free radical polymerization of butyl acrylate at 70°C, using 

CRSH = 0.39, kd = 2.10
-5

 s
-1

, kp = 13927 L.mol
-1

.s
-1

 and kte = 1.87.10
8
 L.mol

-1
.s

-1
 [42]. The 

initial monomer concentration was taken equal to the overall monomer concentration of 

the system (LA/BA/CA, 10/70/20 mol%) in heptane (monomers/solvent: 25/75 wt%, [RSH] 

= 0.025 mol/L). 

 

α 
[M] 

(mol/L) 

[RSH] 

(mol/L) 

[I2] 

(mol/L) 
t (s) (DPn)i (DPn)cum 

0.00 

0.20 

0.40 

0.60 

0.80 

0.95 

1.05 

0.84 

0.63 

0.42 

0.21 

0.0525 

0.0250 

0.0229 

0.0205 

0.0175 

0.0133 

0.0078 

0.01000 

0.00987 

0.00971 

0.00949 

0.00911 

0.00837 

0 

635 

1459 

2632 

4669 

8874 

101 

87 

73 

56 

36 

14 

101 

94 

86 

78 

66 

52 
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Table 2B. Concentrations and polymerization degrees as a function of conversion. The 

values were calculated for the free radical polymerization of butyl methacrylate at 70°C, 

using CRSH = 0.39, kd = 2.10
-5

 s
-1

, kp = 940 L.mol
-1

.s
-1

 and kte = 1.7.10
7
 L.mol

-1
.s

-1
 [42]. The 

initial monomer concentration was taken equal to the overall monomer concentration of 

the system (LMA/BMA/CMA/HDDMA, 20/55/20/5 mol%) in heptane (monomers/solvent: 

25/75 wt%, [RSH] = 0.025 mol/L). 

 

α 
[M] 

(mol/L) 

[RSH] 

(mol/L) 

[I2]  

(mol/L) 
t (s) (DPn)i (DPn)cum 

0.00 

0.20 

0.40 

0.60 

0.80 

0.95 

0.880 

0.704 

0.528 

0.352 

0.176 

0.044 

0.0250 

0.0229 

0.0205 

0.0175 

0.0133 

0.0078 

0.01000 

0.00944 

0.00875 

0.00781 

0.00634 

0.00385 

0 

2866 

6687 

12332 

22789 

47694 

69 

59 

49 

37 

23 

9 

69 

64 

58 

52 

44 

34 
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 Table 3B. Concentrations and polymerization degrees as a function of conversion. The 

values were calculated for the free radical polymerization of methyl methacrylate at 70°C, 

using CRSH=0.39, kd = 2.10
-5

 s
-1

, kp = 640 L.mol
-1

.s
-1

 and kte = 27.5.10
6
 L.mol

-1
.s

-1
 [42]. The 

initial monomer concentration was taken equal to the overall monomer concentration of 

the system (MMA/CMA/HDDMA, 85/10/5 mol%) in methylethylketone (monomers/solvent: 

25/75 wt%, [RSH] = 0.025 mol/L). 

 

α 
[M] 

(mol/L) 

[RSH] 

(mol/L) 

[I2]  

(mol/L) 

t (s) (DPn)i (DPn)cum 

0.00 

0.20 

0.40 

0.60 

0.80 

0.95 

1.590 

1.272 

0.954 

0.636 

0.318 

0.0795 

0.0250 

0.0229 

0.0205 

0.0175 

0.0133 

0.0078 

0.01000 

0.00897 

0.00773 

0.00614 

0.00384 

0.00085 

0 

5423 

12877 

24428 

47915 

123304 

103 

89 

73 

56 

36 

17 

103 

96 

88 

79 

67 

54 
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Figure 1. Chemical structure of Cardura E10 and of two byproducts 
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Figure 2. Synthesis of cardura acrylate 
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Figure 3. Mass average molar mass and polydispersity index for CPMs (CA/BA/HDDA, 

20/75/5 mol%) prepared at 70°C in heptane/isopropanol mixtures with varying 

composition; � : Mw; � : Ip. 
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Figure 4. Evaluation of the iPrOH transfer rate constant for the free radical polymerization 

of BA in heptane at 70°C. 
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Figure 5. Evaluation of the RSH transfer rate constant for the free radical polymerization 

of BA in heptane at 70°C. 
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Figure 6. Solubility parameter calculated for CPMs based on (LA/BA/CA/HDDA, x/75-

x/20/5 mol%) for various molar fractions of LA, x (calculated by Hoftyzer - VanKrevelen 

method) 
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Figure 7. Evaluation of the RSH transfer rate constant for the free radical polymerization 

of LA/BA/CA (20/60/20) in heptane at 70°C. 
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Figure 8. Mass average molar masses of linear copolymers and CPMs as a function of : a) 

LA molar fraction (LA/BA/CA x/80-x/20 mol% or LA/BA/CA/HDDA x/75-x/20/5 mol%, 

[RSH] = 0.025 mol/L); b) [RSH] (LA/BA/CA 20/60/20 mol% or LA/BA/CA/HDDA 

20/55/20/5 mol%); heptane, 70°C, monomers/solvent: 25/75 wt% 
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Figure 9. Mass average molar masses of linear copolymers and CPMs as a function of 

kinetic chain length, �. (LA/BA/CA/HDDA 20/60-55/20/0-5 mol%); heptane, 70°C, 

monomers/solvent: 25/75 wt%. � was taken equal to the final cumulated polymerization 

degree, (DPn)cum, of the linear copolymers and was calculated either from the measured 

values of Mn ([RSH] = 0.01, 0.02 or 0.025 mol/L) or from the experimental linear 

relationship between 1/(DPn)cum and [RSH] ([RSH] = 0.0125 or 0.03 mol/L). 
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Figure 10. Solubility parameter calculated for CPMs based on polymethacrylates 

(LMA/MMA/CMA/HDDMA, x/75-x/20/5 mol%). Comparison with polyacrylates 

(LA/BA/CA/HDDA, x/75-x/20/5 mol%) for various molar fractions of L(M)A, x (calculated 

by Hoftyzer - VanKrevelen method) 
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