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Scaling in Cohesive Self-gravitating Aggregates

By means of extensive three-dimensional contact dynamics simulations, we analyse the strength properties and microstructure of a granular asteroid, modelled as a self-gravitating cohesive granular aggregate composed of spherical particles, and subjected to diametrical compression tests. We show that, for a broad range of system parameters (shear rate, cohesive forces, asteroid diameter), the behaviour can be described by a modified inertial number that incorporates interparticle cohesion and gravitational forces.

Contact Dynamic Method: We will use the Contact Dynamic Method [1,[START_REF] Moreau | Novel approaches in civil engineering[END_REF][START_REF] Jean | [END_REF], that is a type DEM, originally developed by J.-J. Moreau in Montpellier, in which particles are assumed to be perfectly rigid and to interact through mutual exclusion and Coulomb friction. The frictional contact interactions are described as complementarity relations between the relative velocities between particles and the corresponding momenta at the contact points. The condition of geometrical contact between two particles is expressed by the following mutually exclusive alternatives, known as "Signorini's conditions":

f n ≥ 0 and u n = 0, f n = 0 and u n > 0.

(

) 1 
where f n is the normal contact force and u n the relative normal velocity. u n is counted positive when the particles move away from each other. In the same way, the Coulomb friction law involves the following three mutually exclusive conditions:

f t = -µf n and u t > 0, -µf n ≤ f t ≤ µf n and u t = 0, f t = µf n and u t < 0, (2) 
where u t is the sliding velocity at the contact, µ is the friction coefficient and f t is the friction force. Notice that none of the relations 1 and 2 can be reduced to a (mono)valued functional dependence between the two variables as assumed in the more common Soft-Sphere DEM (SSDEM). Hence, the only material parameter required within the CD-method is the particle-particle coefficient of friction µ, whereas in SSDEM packings are also characterised by normal and tangential stiffnesses as well as viscous damping parameters.

Procedure: First, we build a large sample of 10000 spherical particles under isotropic compression inside a box. The particles have a diameter d ∈ [0.6d max , d max ], with a uniform distribution per volume fraction. Friction, cohesion and gravitational forces are not yet activated. Density ρ 0 of the parti- cles is fixed to 3200kg/m 3 . We extract spherical agglomerates of diameter D from this sample comprising nearly N p = 5000 particles. In order to analyse the effect of aggregate size, four aggregates were built, with d max ∈ [3, 6, 12, 18]m, so D is approximately [50, 100, 190, 375]m. Then, the friction coefficient is fixed to 0.4, cohesive forces, modelled as a constant reversible attractive force -f 0 with a short range action of the order of 0.01d, are activated. Gravitational forces are represented by F g0 = πd 3 ρ 0 g 0 r/(6D) acting on the centre of each particle at a distance r of the centre of the aggregate and pointing towards it. The aggregates are then subjected to diametrical compression between two platens, with a prescribed velocity V wall = γD (see Fig. 1(a)). I η and η were varied between [5.10 -4 , 0.1] and [0.1P a, .., 100M P a], respectively. We performed simulations for a broad range of combinations of these two parameters for both, nongravitational and gravitational aggregates. When gravitational forces are included, P 0 increases with D, from ∼ 0.48Pa, to ∼ 30Pa.

During diametrical compression, the vertical stress σ zz acting on an aggregate is given by 4F/πD 2 , where F is measured on the platen. strain (≈ 2%) before relaxing to a constant plateau (plastic behaviour) at larger strain. Deformations are localised in the vertical plane of the aggregate, where compressive force chains are mainly vertical and tensile force chains lie horizontally (see Fig. 1(b)). This ductile behaviour results from particle rearrangements, dissipation due to friction and the short-range action of cohesive forces. As I η increases, fluctuations in the stress-strain responses increase both in number and magnitude revealing a dynamical crisis. Thus, in the following we consider only results for I η < 0.035 for non-gravitational aggregates and I η < 0.1 for gravitational ones; the peak stress σ * zz is defined as an average stress around a deformation of 2%.

In the absence of gravitational forces, we naturally expect σ * zz to scale with η since cohesion is homogeneously distributed in all contacts. This is well observed in Fig. 3(a) for a wide range of values of I η , η and D. In contrast, when gravitational forces are active, the scaling with η is not verified (see Fig. 3(b)). This is because the effect of gravity is to increase the local stresses acting on the particles, so that interparticle tensile strength and interior stresses become additive. We can thus postulate that the mean pressure is p = η + αP 0 , where α is a weight parameter that represents the stress gradient produced by the radial variation of the gravitational field inside an aggregate. A similar approach has been used for the scaling of shear stresses in dense suspensions [4,5] and in cohesive granular flow [6], where the fluid or cohesive forces and grain stresses are responsible for the effective friction angle. Accordingly, the inertial number can be re-written as:

I ′ σ * zz η + αP0
I = γd ρ0 η + αP0 = Iη √ 1 + αλ -1 = Iη.Ig 0 I 2 g 0 + αI 2 η ( 3 
)
Figure 4 shows σ * zz normalised by (η + αP 0 ) as a function of I , for α = 0.48. We observe the collapse of all our simulation data with a pre-factor 0.9 for small I values. This pre-factor (and fluctuations around the mean) increases with I to 1.3 in the range of values tested here, evidencing the dynamical crisis resulting from the destabilising effect of particle inertia.
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 1 Figure 1: Snapshots of a simulated granular asteroid under diametrical compression for ε h = 0 (a) and ε h = 0.1(b). Forces chains are represented by lines joining the centres of two touching particles. Compressive forces in red, tensile forces in blue.
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 22 Figure 2: Typical curve showing the vertical strength as a function of the cumulative vertical deformation for η = 1P a, D = 50m and various values of Iη (gravitational forces are not activated). The inset shows the same curve for Ic = 5.10 -5 , η = {1, 3, 10, 30, 50}P a for D = 190m considering gravitational forces.
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 4 Figure 4: Peak stress σ * zz normalised by additive stress p = η + αP0 as a function of the modified inertial number I for the raw data (color coding as in Fig 3). Error bars represent the standard deviation around the peak state.