
HAL Id: hal-02080222
https://hal.science/hal-02080222

Submitted on 26 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fast Multi-Layer Approximation to Semi-Discrete
Optimal Transport

Arthur Leclaire, Julien Rabin

To cite this version:
Arthur Leclaire, Julien Rabin. A Fast Multi-Layer Approximation to Semi-Discrete Optimal Trans-
port. Seventh International Conference on Scale Space and Variational Methods in Computer Vision,
Jun 2019, Hofgeismar, Germany. �hal-02080222�

https://hal.science/hal-02080222
https://hal.archives-ouvertes.fr

A Fast Multi-Layer Approximation to
Semi-Discrete Optimal Transport

Arthur Leclaire1 and Julien Rabin2

1 Institut de Mathématiques de Bordeaux, Université de Bordeaux
arthur.leclaire@math.u-bordeaux.fr, www.math.u-bordeaux.fr/∼aleclaire

2 Normandie Univ., ENSICAEN, CNRS, GREYC
julien.rabin@unicaen.fr, sites.google.com/site/rabinjulien

Abstract. The optimal transport (OT) framework has been largely
used in inverse imaging and computer vision problems, as an interest-
ing way to incorporate statistical constraints or priors. In recent years,
OT has also been used in machine learning, mostly as a metric to com-
pare probability distributions. This work addresses the semi-discrete OT
problem where a continuous source distribution is matched to a discrete
target distribution. We introduce a fast stochastic algorithm to approx-
imate such a semi-discrete OT problem using a hierarchical multi-layer
transport plan. This method allows for tractable computation in high-
dimensional case and for large point-clouds, both during training and
synthesis time. Experiments demonstrate its numerical advantage over
multi-scale (or multi-level) methods. Applications to fast exemplar-based
texture synthesis based on patch matching with two layers, also show
stunning improvements over previous single layer approaches. This shal-
low model achieves comparable results with state-of-the-art deep learning
methods, while being very compact, faster to train, and using a single
image during training instead of a large dataset.

Keywords: Optimal Transport · Texture Synthesis · Patch matching

1 Introduction

Optimal transport (OT) [21,16] provides a powerful tool to measure the dis-
tance between two probability distributions. It has found several applications in
image processing, for example feature matching [15] which requires comparing
histograms of gradient orientations, color transfer [13] where OT distances are
used to compare color distributions, texture mixing [14,22] which formulates as
computing barycenters of texture models for the OT distance, shape interpola-
tion [18] which uses OT distance on shapes identified on probability measures.
Here we will focus on exemplar-based texture synthesis, which consists in pro-
ducing a (possibly very large) image that has the same aspect as a given texture
sample while not being a verbatim copy.

A common way to formulate texture synthesis is to ask for an image which
is as random as possible while respecting a certain number of statistical con-
straints. Thus, texture synthesis can be addressed by exploiting OT distances to

www.math.u-bordeaux.fr/~aleclaire
sites.google.com/site/rabinjulien

2 A. Leclaire & J. Rabin

compare distributions of linear or nonlinear filter responses [19], or comparing
directly patch distributions [5,3]. In this paper, we build on the model proposed
in [3] which performs texture synthesis by applying a well-chosen OT map on
3×3 patches in a coarse to fine manner (starting from a white noise at the lowest
resolution). One limitation of this work is that the restriction to 3 × 3 patches
prevents the proper reproduction of geometric structures at larger scales. Com-
plementary to the multiresolution strategy, a common way of dealing with large
geometric structures is to work with larger patches as is usually done in popular
patch-based methods, as [8] (8×8 to 32×32 patches) or [2] (7×7 patches). But
then we must face the fact that OT maps are very difficult to compute in such
a high-dimensional setting.

Following [3] we are particularly interested in the semi-discrete OT case,
where one wishes to send an absolutely continuous probability measure µ onto
a discrete probability measure ν while minimizing a transportation cost. For
the semi-discrete case, as shown in [1,7], the OT map can be obtained as a
weighted nearest-neighbor (NN) assignment, which is parameterized by a finite-
dimensional vector v that solves a concave optimization problem. Several first
and second order schemes have been proposed to solve this problem, based on
exact gradient computations [11,6,9,7]. Unfortunately, these exact methods are
very difficult to apply in high dimension (or when the point set supporting ν is
large) where exact gradients computations are intractable. To cope with that, one
can use stochastic optimization techniques that rely on Monte-Carlo estimations
of the gradient, as proposed in [4,3]. But such a stochastic method has a very slow
convergence in high dimension, especially when the support of target measure
has a large cardinal. One can improve convergence speed by working in a multi-
scale framework, meaning that one precomputes a decomposition of the target
measure i.e. several simplified versions of the target discrete distribution (with
a clustering algorithm, for example K-means), and computes the OT map by
progressively refining the target distribution. It has been noted in [11,9] that the
approximate OT map obtained at one scale could be used to initialize the map
at the next finer scale.

Here we propose an alternative way of exploiting this multi-scale framework.
Indeed, we suggest to optimize a transport map having a parametric form which
combines several layers of weighted NN assignments. To distinguish from previ-
ous works, such a map will be called a multi-layer transport map. Thanks to its
inherent structure, during the iterative optimization algorithm, the multi-layer
map attains a near-optimal transport cost in a much faster way than previous al-
gorithm. But the price to pay is that we deviate from the truly optimal solution,
meaning that the precomputed decomposition of the target measure introduces
a bias that cannot be canceled (even at infinite time). As a byproduct, once
estimated, such a multi-layer map can be applied much faster because it trades
one NN projection on a large finite set by hierarchical NN projections on much
smaller sets. Such properties are very profitable for imaging applications, where
satisfying the marginal constraints is certainly more important than the true
optimality in terms of transportation cost.

Multi-Layer Semi-Discrete Optimal Transport 3

In Section 2 we first recall the framework of semi-discrete optimal transport.
In Section 3 we detail the construction of multi-layer transport maps and their
stochastic optimization. In Section 4, we propose numerical experiments that
illustrate the benefits of these multi-layer maps to realize approximate OT: first,
we illustrate on a one-dimensional example the gain in computational time to
optimize the parameters; and next, we use these multi-layer maps to tackle
difficult examples of OT in the space of large patches, which leads to remarkable
results in texture synthesis.

2 Semi-discrete Optimal Transport

Given two probability measures µ, ν on RD, the Monge formulation of OT writes

inf
T

∫

RD

‖x− T (x)‖2dµ(x), (OT-M)

where the infimum is taken over all measurable functions T : RD → RD for
which the push-forward-measure T]µ equals ν. General conditions for existence
and unicity of solutions can be found in [21] and [16]. In this paper we focus on
the semi-discrete case, meaning that µ is an absolutely continuous probability
distribution on RD with density ρ and that ν is supported on Y = {yj , j ∈ J}
finite with

ν =
∑

j∈J
νjδyj s.t.

∑

j∈J
νj = 1 and νi ≥ 0. (1)

As proved in [1,9,7], the solution of (OT-M) is a weighted NN assignment

TY,v(x) := argmin
yj∈Y

‖x− yj‖2 − v(j). (2)

This map is defined almost everywhere, and its preimages define a partition
of RD (up to a negligible set), called the Laguerre cells. The solution TY,v
is entirely parameterized by a vector v that maximizes the concave function
HY,ν(v) := EX∼µ [hY,ν(X, v)] where

hY,ν(x, v) =

(
min
j∈J
‖x− yj‖2 − v(j)

)
+
∑

j∈J
v(j)νj , (3)

so that we have for all v ∈ RJ and for almost all x ∈ RD,

∂v(j)hY,ν(x, v) = −1TY,v(x)=yj + νj , and ∂v(j)HY,ν(v) = −µ(T−1Y,v(yj)) + νj .
(4)

This important result has been used in [1,11,9,7] to optimize weights v when
distributions µ and ν are defined on RD for D = 2 or D = 3 dimensions, making
use of gradient descent or L-BFGS algorithm. But in higher dimension, exact
gradient computation is challenging, and thus following [4,3], one may turn to
the Average Stochastic Gradient Descent (ASGD) Algorithm 1 to solve it.

4 A. Leclaire & J. Rabin

Algorithm 1: ASGD to estimate OT map TY,v that solves (OT-M)

1: Inputs: source density µ, target discrete distribution ν,
initial assignment weight (e.g. ṽ = 0 and v = 0), and gradient step (e.g. C = 1)

2: for t = 1, . . . , T do
3: Draw a sample x ∼ µ
4: Compute the gradient g ← ∇vhY,ν(x, ṽ) (see Eq. (4))
5: Gradient ascent of weights: ṽ ← ṽ + C√

t
g

6: Average of updates: v ← t−1
t
v + 1

t
ṽ

7: return v

3 Multi-layer Approximation of the Transport Map

A classical approach in signal processing is to use multi-scale representation to
accelerate or handle large data. This strategy has recently gained some interest
to compute approximate or exact optimal transport maps in large discrete or
semi-discrete problems [11,12,17,9] to overcome some convergence speed issues.

3.1 Multi-scale Semi-Discrete Optimal Transport

The discrete target measure ν can be decomposed from fine (` = 0) to coarse
(` = L− 1) scales by setting

ν` =
∑

j∈J`

ν`jδy`j , supported by Y ` = { y`j , j ∈ J` }. (5)

Starting from ν0 = ν (and Y 0 = Y), the measure ν`+1 should be a close approx-
imation of ν` with a decreasing budget support composed of |J`+1| points.

In practice, following [11], we first extract (for example with the K-means
algorithm) a clustering Y ` =

⊔
j∈J`+1 C`j of the support Y ` of ν`, and we de-

note by Y `+1 = {y`+1
j , j ∈ J`+1} the corresponding cluster centroids. Next, we

compute the weights by gathering the mass in each cluster ν`+1
j = ν`(C`j). An

illustration of this multi-scale clustering is given in Figure 1.
The authors of [11,9] propose to estimate the optimal transportation map

TY,v from µ towards ν at the finest scale (` = 0) using a bottom-up strategy
(from ` = L − 1 to ` = 0) that sequentially estimates the maps TY `,v` that
realizes the OT between µ and ν`. The idea is to accelerate the optimization
of v` by starting from an initial estimate that is extrapolated from the solution
v`+1 computed at the previous scale. While this method computes an exact
solution, some heuristics is needed to extrapolate v` from v`+1 (for example
in [11], propagating the value v`+1(j) associated to centroid y`+1

j to the points

in the corresponding cluster C`j).
Let us also briefly mention that multi-scale strategies have been proposed

to deal with discrete OT problems (i.e. when both distributions are discrete)

Multi-Layer Semi-Discrete Optimal Transport 5

x
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

µ
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T (x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T 2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

T 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

| {z }
C2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Y 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Y 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Y 2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌫0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌫1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌫2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y1
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y0
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌫1
1 = 4

J
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C0
1z }| {

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ` = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

` = 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

` = 2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C0
2z }| {

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y0
j

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌫0
j = 1

J
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C0
j

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> C0
j+1z }| {

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

| {z }
C1

1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

| {z }
C1

2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y2
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y2
2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y0
J

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌫2
1 = 7

J
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y1
|J1|

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y2
|J2|

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

| {z }
C1

|J2|
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C0
|J1|z }| {

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 1. Illustration of the multi-scale approximation of the discrete target distribution
ν in the 1D case, and the multi-layer transport map T (x) applied sequentially with
L = 3 layers. See the text for more details about notation.

with very large data sets (yet in small dimension): an exact multiscale ap-
proach from [17], an approximation method in [12], and multi-level OT with
Wasserstein-1 [10].

3.2 Multi-layer Transport Map

In this work, we consider a different approach that approximates the OT map
with multi-layer transport maps to accelerate computation time for both the
estimation of the mapping (off-line) and the mapping itself (on-line). The main
difference with [11] is that the multi-scale representation of the target distribu-
tion (as illustrated in Figure 1) is used to sequentially estimate a hierarchical
Laguerre cell partitioning of the source distribution. This hierarchical clustering
induces a tree structure, and thus applying the multi-layer map consists in a
tree search which is faster than a direct global NN projection. More precisely,
the proposed approach is as follows:

– Training: We estimate simultaneously along the tree structure, a weight
vector v`j` defining the transport TC`

j`
,v`

j`
, which maps the corresponding La-

guerre cell indexed by j`+1 of the source distribution µ (defined itself at the

6 A. Leclaire & J. Rabin

previous layer `+ 1 by a centroid y`+1
j`+1) to the cluster C`j` of points from the

multi-scale target distribution ν`. The relationship between indices j` and
j`+1 depends entirely on the fixed hierarchical clustering that is performed
beforehand, and is detailed in the paragraph hereafter.

– Synthesis: To find the image T (x) ∈ Y of a point x, one should trace back
the hierarchy of Laguerre cells to which x belongs and then apply the finest
estimated transport map.

Eventually, the multi-layer map takes the form

T `(x) = TC`

j`
,v`

j`
(x) (6)

where j` indicates the index of the cluster the point x is assigned to at layer `.
These indices are recursively defined (starting from ` = L−1 where there is only
one root cluster CL−1. = Y L−1, as illustrated in Fig. 1), namely j`(x) (denoted
simply j` for the sake of brevity) is computed from the weighted NN for the
previous layer `+ 1

j` = argmin
j|y`+1

j ∈C`+1

j`+1

‖x− y`+1
j ‖2 − v`+1

j`+1(j) . (7)

Notice that the final value of the multi-layer map is T (x) = T 0(x), but its
evaluation requires to compute L transport maps T `(x) (actually the sequence
of indices j`+1(x)) from ` = L − 1 to ` = 0. In the experiments shown in this
paper, we restrict to the case of only two layers, which is illustrated in Fig. 2.

The weights v`j` (for all ` ∈ {0, . . . , L− 1} and j` ∈ J`) are optimized so that
it realizes the semi-discrete OT between the restriction of µ to the Laguerre cell
L`j` = (j`)−1(j`(x)) and the restriction ν`j` of ν` to C`j` . In other words, assuming

that T `+1 is fixed (i.e. for a given j`+1), we seek to maximize

H`(v`) =
∑

j`∈J`

∫

L`

j`

min
j

y`j∈C`

j`

(
‖x− y`j‖2 − v`j`(j)

)
dµ(x) +

∑

j

y`j∈C`

j`

v`j`(j)ν
`
j . (8)

Notice that this cost is composed of |J`+1| separate semi-discrete OT problems
with restrictions of µ and ν`. Indeed, the problem (8) is the dual convex of
the Kantorovich formulation of OT between those restricted measures. Writing
instead the Monge formulation of these separates sub-problems, and denoting
by S` the map that gathers the restrictions TC`

j`
,v`

j`
on the cells L`j` , we get that

S` minimizes the usual cost
∫

RD

‖S`(x)− x‖2dµ(x) =
∑

j`∈J`

∫

L`

j`

‖S`(x)− x‖2dµ(x) (9)

but with marginal constraints on each of the Laguerre cells L`j` . We can apply
ASGD to treat each of these sub-problems. It requires to sample the restricted

Multi-Layer Semi-Discrete Optimal Transport 7

Example patch in cluster k

Voronoi tessellation

Centroïd of cluster k
Sampled patch in power-cell k
Gaussian mixture model

Laguerre tessellation
Example patch in cluster k

Centroïd of cluster k

Voronoi tessellation

Sampled patch in power-cell k
Gaussian mixture model

Laguerre tessellation

First layer ` = 1: the coarse transport
map T 1 maps every points of a La-
guerre cell j of µ to the centroid of the
corresponding cluster C0

j in ν.

Second layer ` = 0: the fine mapping
T = T 0 is defined from the transport
maps TC0

j ,v
`
j
.

Fig. 2. Illustration of a multi-layer map (for L = 2 layers). Here the source dis-
tribution µ is chosen to be a Gaussian mixture model with 4 components (in graylevels).
For each layer `, the arrows illustrate T `(x) (arrows) the multi-layer mapping of samples
x drawn from µ (circle points on the left) to the points of the discrete distribution ν`

(diamonds for layer ` = 1 and square for layer ` = 0).

measure µ. But in practice, we treat simultaneously all the sub-problems in all
layers: at each new sample we update only the gradient relative to the current
active Laguerre cell of the hierarchy, which in the end is equivalent to sample all
restricted measures. This optimization procedure is summarized in Algorithm 2.

Algorithm 2: ASGD for the estimation of the multi-layer map TY,v.

Inputs: source density µ, target distribution ν, gradient step C, number of layers L
and number of iterations T

1: Hierarchical clustering {ν`, ` = 0, . . . , L− 1} of ν
2: Set v`j ← 0, ∀ `, j (weights initialization)
3: Set n`j ← 0, ∀ `, j (number of visits in cluster C`j)
4: for t = 1, . . . , T do
5: Draw a sample x ∼ µ
6: for ` = L− 1, . . . , 0 do
7: Compute the corresponding cluster index: j ← j`(x)
8: n`j ← n`j + 1
9: g ← ∇vhC`

j ,ν
`
j
(x, ṽ`j) (in Eq. (4))

10: ṽ`j ← ṽ`j + C√
n`
j

g

11: v`j ← v`j + 1

n`
j

(
ṽ`j − v`j

)
Outputs: {ν`}`≤L and {v`}`≤L

8 A. Leclaire & J. Rabin

4 Numerical Experiments

In this section we illustrate that multi-layer transport maps can be used to
approximate semi-discrete optimal transport, and that they can be computed
more efficiently. We start with a simple one-dimensional example (where the
true solution of optimal transport is explicit) and next turn to some imaging
applications in higher dimension.

4.1 One-dimensional Example

Here we consider the optimal transport problem when D = 1, between the nor-
malized Gauss distribution µ ∼ N (0, 1) and the discrete uniform distribution ν
on J = 103 (then J = 104) equally spaced points between −1 and 1 (see illus-
tration in Figure 1). We will compare the simple ASGD method (Algorithm 1)
to the proposed multi-layer scheme (Algorithm 2), and also to the multi-scale
approach of [11]. For the multi-layer scheme, we only consider two layers. For
that we use only one clustering of the target points, with 10 clusters (computed
with the K-means algorithm). For the multi-scale scheme of [11], except for the
finest scale, the transported measure is obtained by extrapolating the weights
to the corresponding cluster.

The comparison will focus on the distance between the transported mea-
sure T]µ and the target measure ν (which does not entirely reflect the optimality
in terms of transportation cost). We will use the Kolmogorov distance between
those two discrete measures, that is, the L∞ distance between the cumulative
distribution functions (cdf). The computation of the cdf for the mono-layer map
has already been explained in [3], and it can be extended to the multi-layer map.
Notice that the cost of one iteration is not the same for those three iterative al-
gorithms. Thus we will compare the evolution of the distance with respect to
the true computation time (in seconds) and not the number of iterations (ap-
proximately 105 iterations for J = 1000, and 106 for J = 10 000). The results
are reported in Figure 3.

One can observe that the multi-layer scheme quickly realizes a good ap-
proximation of the target distribution, much faster than the mono-scale. This
advantage is greater as the number of points increases, making this approach in-
teresting to estimate and approximate transport for large set of points. However,
one can observe that the limiting value for the multi-layer scheme is larger than
the one with the mono-scale version, which reflects the bias that is introduced
by imposing the multi-layer form of the transportation plan (associated to one
fixed decomposition of ν). The multi-scale approach does not perform well in
this scenario, where the error can increase when changing scale. One explana-
tion may be that the initialization from the previous scale should be handled
more carefully.

4.2 Texture Synthesis

To illustrate the interest of the proposed multi-layer approach, we use the multi-
scale patch-based texture synthesis framework proposed in [3], where the semi-

Multi-Layer Semi-Discrete Optimal Transport 9

0 50 100 150
time (in seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ko
lm

og
or

ov
 d

is
ta

nc
e

be
tw

ee
n

ta
rg

et
 a

nd
 s

ou
rc

e
af

te
r t

ra
ns

po
rt

Monoscale
Multiscale
multi-layer

0 200 400 600 800 1000 1200 1400 1600 1800
time (in seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ko
lm

og
or

ov
 d

is
ta

nc
e

be
tw

ee
n

ta
rg

et
 a

nd
 s

ou
rc

e
af

te
r t

ra
ns

po
rt

monoscale
multiscale
multilayer

J = 1000 points J = 10 000 points

Fig. 3. We monitor the evolution of the distance between T]µ and ν during the three
iterative algorithms explained in the text. The horizontal axis represents the compu-
tational time (in seconds) and the vertical axis the Kolmogorov distance between the
current transported measure T]µ and the target measure ν. The number of clusters for
the multi-layer approach is |J1| = J

10
. See the text for comments.

discrete OT is now estimated with Algorithm 2 instead of the single scale Algo-
rithm 1. This enables to use larger patches (7× 7 color patches instead of 3× 3
in [3], so that dimension is D = 147), as well as a larger number of points (up to
J = 16 000 instead of J = 1000 in [3]). Additionally, as the patches are larger, we
use Gaussian weighting for aggregation to avoid excessive blurring when averag-
ing patch, and we also use a final optimal transportation at the finest resolution
with 3 × 3 patches to restore fine details that are lost for the same reason. See
Figure 4 for an illustration.

Parameters for both methods are fixed through experiments: S = 4 reso-
lutions and a Gaussian mixture model with 10 components are used for the
texture model (see [3] for details); the patch size is w × w (w = 3 for 1-layer
OT and w = 7 for bi-layer OT); J = 1000 patches are randomly sampled from
the example image when using 1-layer OT, and J = 1000, 2000, 4000, 16 000
(resp.) patches (from coarse to fine resolution) when using bi-layer OT, using
|J1| = 10, 10, 20, 40 (resp.) clusters that are estimated by a K-means algorithm
at the first layer); a centered Gaussian weight is used for patch averaging of
patch with bi-level OT, with a standard deviation σ = w

2 ; Algorithm 1 and
Algorithm 2 are used with 106 iterations.

Figure 5 illustrates the interest of the multi-layer patch transportation over
the single-layer approach originally proposed in [3]. As already mentioned, the
latter is restricted to small patch dimension due to convergence issues. The use
of large patch makes it possible to capture and synthesize larger scale structures
from the example image.

Figure 6 shows a small comparison with the state-of-the-art Texture Net-
works [20] approach. This method first trains a convolutional network generator
using an example image and a deep neural network feature extractor (VGG-19)
that is trained separately on a very large classification dataset of natural images

10 A. Leclaire & J. Rabin

Example 3× 3 patches 7× 7 patches Gaussian weight Proposed

Fig. 4. Limitations of the 1-layer OT model of [3] for texture synthesis when using large
patches. Images are cropped to display small details, full images are shown in Fig. 5.
From left to right: example image, result from [3] (with 3 × 3 patches), result when
using 7× 7 patches without/with Gaussian weighting, and the proposed approach.

Example 1-layer OT [3] 2-layers OT Example 1-layer OT [3] 2-layers OT

Fig. 5. Texture synthesis comparison between the 1-layer OT model of [3] and our
2-layers OT model.

(ImageNet), and then performs fast texture synthesis by feeding the generator
with a random input. While both methods produce similar results on regular
pattern (first row of Fig. 6), it is not the case for other type of textures (second
row), where the method of [20] tends to generate pseudo-periodic images. Note
that, while our approach does not requires the use of a GPU for the training

Multi-Layer Semi-Discrete Optimal Transport 11

stage, both methods are completely parallel and achieve similar computation
time during synthesis (within a second on a GPU for 1024× 1024 images).

Examples 2-layer OT [20] Examples 2-layer OT [20]

Fig. 6. Texture synthesis comparison between the proposed approach (multi-layers
Optimal Transport of 7× 7 patches) and Texture Networks [20] (a feed-forward convo-
lutional neural network). Note that for the pumpkins example, S = 6 resolutions has
been used instead of S = 4 in the rest of experiments to capture large scale object
information.

5 Discussion and conclusion

We have described a new strategy to approximate the semi-discrete optimal
transport problem based on hierarchical multi-layer transport maps. A simple
stochastic algorithm has been proposed and shown to be effective with only
two layers. It allows for faster training and synthesis than previous multi-scale
approaches, and makes it also possible to deal with larger point sets in higher di-
mension. Its application to texture synthesis demonstrates its practical interest,
making it possible to compete with recent machine learning techniques (based
on deep convolutional neural networks).

In this preliminary work, we have only experimented with bi-layer transport
maps, but we expect the proposed model to be even more efficient when exploit-
ing its full multi-layer potential, as done by deep learning techniques. However,
as shown in experiments for the multi-scale approach, this raises the problem of
the optimal setting of the hierarchical structure (similarly to the importance of
network design in machine learning) to avoid strong bias in the approximation
of the optimal transportation map. Besides, the convergence of the stochastic
algorithm for estimating multi-layer transport maps remains to be investigated,
since it does not correspond to a convex problem anymore.

Acknowledgments

This project has been carried out with support from the French State, managed
by the French National Research Agency (ANR-16-CE33-0010-01).

12 A. Leclaire & J. Rabin

References

1. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-
squares clustering. Algorithmica 20(1), 61–76 (1998)

2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: A ran-
domized correspondence algorithm for structural image editing. ACM Transactions
on Graphics-TOG 28(3), 24 (2009)

3. Galerne, B., Leclaire, A., Rabin, J.: A texture synthesis model based on semi-
discrete optimal transport in patch space. SIAM Journal on Imaging Sciences
11(4), 2456–2493 (2018)

4. Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-
scale optimal transport. In: Proc. of NIPS. pp. 3432–3440 (2016)

5. Gutierrez, J., Galerne, B., Rabin, J., Hurtut, T.: Optimal patch assignment for
statistically constrained texture synthesis. In: Proceedings of SSVM (2017)

6. Kitagawa, J.: An iterative scheme for solving the optimal transportation problem.
Calculus of Variations and Partial Differential Equations 51(1-2), 243–263 (2014)

7. Kitagawa, J., Mérigot, Q., Thibert, B.: A Newton algorithm for semi-discrete op-
timal transport. Journal of the European Math Society (2017)

8. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-
based synthesis. ACM TOG 24(3), 795–802 (Jul 2005)

9. Lévy, B.: A numerical algorithm for L2 semi-discrete optimal transport in 3D.
ESAIM: M2AN 49(6), 1693–1715 (2015)

10. Liu, J., Yin, W., Li, W., Chow, Y.T.: Multilevel optimal transport: a fast approx-
imation of wasserstein-1 distances. arXiv preprint arXiv:1810.00118 (2018)

11. Mérigot, Q.: A multiscale approach to optimal transport. Computer Graphics Fo-
rum 30(5), 1583–1592 (2011)

12. Oberman, A.M., Ruan, Y.: An efficient linear programming method for optimal
transportation. arXiv preprint arXiv:1509.03668 (2015)

13. Rabin, J., Peyré, G.: Wasserstein regularization of imaging problems. In: ICIP
2011: 2011 IEEE International Conference on Image Processing (2011)

14. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its appli-
cation to texture mixing. In: Proceedings of SSVM. pp. 435–446 (2012)

15. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications
to image databases. In: Computer Vision, 1998. Sixth International Conference on.
pp. 59–66. IEEE (1998)

16. Santambrogio, F.: Optimal transport for applied mathematicians. Birkäuser, NY
(2015)

17. Schmitzer, B.: A sparse multiscale algorithm for dense optimal transport. Journal
of Mathematical Imaging and Vision 56(2), 238–259 (2016)

18. Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T.,
Guibas, L.: Convolutional wasserstein distances: Efficient optimal transportation
on geometric domains. ACM Transactions on Graphics (TOG) 34(4), 66 (2015)

19. Tartavel, G., Gousseau, Y., Peyré, G.: Variational texture synthesis with sparsity
and spectrum constraints. Journal of Mathematical Imaging and Vision 52(1),
124–144 (2015)

20. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-
forward synthesis of textures and stylized images. In: Proc. of the Int. Conf. on
Machine Learning. vol. 48, pp. 1349–1357 (2016)

21. Villani, C.: Topics in Optimal Transportation. American Math. Society (2003)
22. Xia, G., Ferradans, S., Peyré, G., Aujol, J.: Synthesizing and Mixing Stationary

Gaussian Texture Models. SIAM J. on Imaging Sciences 7(1), 476–508 (2014)

	 A Fast Multi-Layer Approximation to Semi-Discrete Optimal Transport

