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Several authors have suggested that mantle convection is primarily resisted by strong subduction zones, which if true implies small or even negative values of the exponent β in the Nusselt number/Rayleigh number relation Nu ∼ Ra β .

To evaluate this hypothesis, we use the boundary element method (BEM) to study the energetics of subduction in a two-dimensional system comprising two purely viscous plates, a subducting plate (SP) and an overriding plate (OP), immersed in an infinitely deep ambient fluid beneath a free-slip surface. The negative buoyancy of the slab is the only driving force. The principal quantity of interest is the fraction R of the total viscous dissipation that occurs in the upper convective boundary layer comprising the SP, the OP and the subduction interface (SI) between them. Scaling analysis and BEM solutions of the instantaneous flow driven by an isolated SP yield R ∼ St/[St + F(θ)], where St is the flexural stiffness of the SP and F (θ) is a function of the dip θ of the plate's leading edge. More realistic time-dependent solutions for the SP+OP case show that R(t) ≤ 0.4 for reasonable viscosity contrasts η SP /η ambient ∈ [250, 2500], indicating that the dissipation is dominated by the ambient mantle contribution. Finally, we formulate a parameterized model of mantle convection to evaluate the influence of subduction-zone dissipation on the effective value of

Introduction

In the simplest terms, thermal convection in the mantle can be described as a Rayleigh-Bénard instability in the limit of infinite Prandtl number and high Rayleigh number (e.g [START_REF] Davaille | Laboratory studies of mantle convection[END_REF]. This type of convection is associated with the scaling law Nu ∼ Ra β

(1)

where Nu = Q/Q C (the Nusselt number) is the ratio between the total heat evacuated from the top of the convecting layer (Q) and the heat which would be transported by conduction alone (Q C ), while Ra = gρα∆T H 3 /κη (the Rayleigh number) measures the vigor of convection in a fluid layer of thickness H across which a temperature difference ∆T is applied. The material properties ρ, α, κ, and η are, respectively, the density, thermal expansivity and diffusivity, and viscosity of the fluid and g is the gravitational acceleration. A critical parameter in (1) is the heat transfer scaling exponent β which quantifies the sensitivity of the surface heat flow to variations of the vigor of convection. For an isoviscous fluid bounded by free-slip surfaces, steady-state boundary-layer analysis predicts β = 1/3 (e.g Turcotte & Schubert, 2014). However, if we exploit eq. ( 1) with β = 1/3 to build a parameterized cooling model for the Earth, the comparison between geological observations and the model predictions reveals serious discrepancies. Indeed, geochemical and heat flow data for the presentday Earth indicate that the Urey ratio (Ur), defined as the ratio of radiogenic heat production to heat loss, is smaller than 0.50 [START_REF] Stacey | Physics of the Earth[END_REF][START_REF] Jaupart | Temperatures, Heat and Energy in the Mantle of the Earth[END_REF]. On the contrary, parameterized cooling models with β = 1/3 suggest Ur ≈ 0.75 [START_REF] Jaupart | Heat generation and transport in the Earth[END_REF][START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics[END_REF]. This translates into an unrealistically high mantle temperature during the Archean obtained by backward time integration of the Earth's global energy budget.

One possible explanation for the mismatch between geochemical and geodynamical investigations lies in the high value β = 1/3 which makes the rate of secular cooling of the Earth highly sensitive to mantle temperature fluctuations [START_REF] Christensen | Thermal evolution models for the Earth[END_REF][START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF][START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics[END_REF]. This means that one (or more) of the assumptions underlying the boundary-layer prediction might not be valid for mantle convection.

A characteristic element of mantle convection is the presence of a stiff lithosphere. Unlike the classical analysis in which the boundary layer is assumed to have the same viscosity as the ambient fluid, the lithosphere is much stiffer than the underlying mantle. This fact inspired numerous investigations of thermal convection in a fluid with temperature-dependent viscosity, a feature that radically changes the style of convection (e.g. [START_REF] Nataf | Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets[END_REF][START_REF] Solomatov | Scaling of temperature-and stress-dependent viscosity convection[END_REF]. However, if temperature-dependent viscosity is coupled with more realistic interplate weak zones, the classical Nu ∼ Ra 1/3 law is found to remain valid [START_REF] Gurnis | A reassessment of the heat transport by variable viscosity convection with plates and lids[END_REF]. A second crucial property of the terrestrial lithosphere that is not accounted for in classical boundary-layer theory is the generation of tectonic plates in relative movement. The most peculiar feature of the latter is one-sided subduction, whereby a highly viscous plate bends and slides along an inclined subduction interface separating it from the overriding plate. The resistance to this deformation could strongly affect thermal convection by partially decoupling the dynamics of the lithosphere from the convection beneath it. The plate speed and the corresponding surface heat flow would then be less sensitive to any variations in the properties of the mantle, thereby reducing the effective value of β.

This latter argument has been the object of considerable debate in the past 20 years and it is still unclear whether or not subduction dissipates a significant amount of energy (e.g. [START_REF] Irvine | Effect of plate thickness on bending radius and energy dissipation at the subduction zone hinge[END_REF][START_REF] Leng | Constraints on viscous dissipation of plate bending from compressible mantle convection[END_REF][START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF][START_REF] Davies | Effect of plate bending on the urey ratio and the thermal evolution of the mantle[END_REF][START_REF] Rose | Mantle rheology and the scaling of bending dissipation in plate tectonics[END_REF]Conrad & Hager, 1999b).

In the pioneering work of Conrad & Hager (1999a), the authors suggested that the bending of long and highly viscous plates at subduction zones dissipates most of the energy that drives mantle convection. On this view, the surface heat flux is nearly independent of the underlying mantle, implying β ≈ 0 (Conrad & Hager, 1999b). A key parameter in the model of Conrad & Hager (1999a) is the minimum radius of curvature R min of the subducting plate, which the authors take to be 200 km. Subsequently, [START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF] proposed a counterintuitive scaling law with β < 0, implying that the surface heat flow decreases as mantle convection becomes more vigorous. According to Korenaga, the thickening of the lithosphere is controlled by dehydration during melting at mid-ocean ridges.

A hotter mantle (higher values of Ra), which produces more melt, would thus lead to a thicker lithosphere that slows down mantle convection. [START_REF] Davies | Effect of plate bending on the urey ratio and the thermal evolution of the mantle[END_REF] compared two different mantle convection models in which the lithosphere thickens either by conductive cooling or by the dehydration stiffening process. He concluded that the result β < 0 is an artefact of the small value of R min = 200 km and the high value of the SP viscosity η 1 = 10 23 Pa s assumed by [START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF]. Higher values of R min = 300-500 km and/or lower lithosphere viscosities (η 1 = 10 22 Pa s) recover the standard result β = 1/3 and imply that the dissipation of energy at subduction zones is minor. Other authors have suggested that the viscous dissipation associated with the deformation of the lithosphere is never dominant. Using a numerical model for compressible convection, [START_REF] Leng | Constraints on viscous dissipation of plate bending from compressible mantle convection[END_REF] found that the dissipation occurring in a subduction zone is 10-20 % of the total dissipation. A slightly wider range, 10-30 %, is suggested by the study of [START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF], who combined analysis of short and intermediate wavelength gravity and geoid anomalies with the predictions of a 2-D numerical model. [START_REF] Capitanio | Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation[END_REF] investigated free subduction numerically using a constant or layered linear viscoelastic rheology and found that the lithospheric dissipation is generally less than 25% of the total. Similar results are obtained when a plastic rheology is adopted to model the lithosphere (e.g. [START_REF] Buffett | Bending stress and dissipation in subducted lithosphere[END_REF][START_REF] Rose | Mantle rheology and the scaling of bending dissipation in plate tectonics[END_REF]. This assumption seems also to be consistent with observations arising from natural subduction zones concerning the relationship between subducting plate age and slab curvature [START_REF] Buffett | Curvature of subducted lithosphere from earthquake locations in the Wadati-Benioff zone[END_REF][START_REF] Holt | Overriding plate thickness control on subducting plate curvature[END_REF].

In this study we investigate the energetics of subduction using a 2-D numerical model in which a subducting plate (SP) and an overriding plate (OP) interact across a relatively weak interface. The model is dynamically self-consistent and the Stokes equations of motion are solved by means of the Boundary Element Method (BEM). Our investigation differs in two important ways from previous work. First, unlike numerous previous studies that look only at the deformation of the SP (e.g. Conrad & Hager, 1999b;[START_REF] Davies | Effect of plate bending on the urey ratio and the thermal evolution of the mantle[END_REF][START_REF] Capitanio | Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation[END_REF][START_REF] Irvine | Effect of plate thickness on bending radius and energy dissipation at the subduction zone hinge[END_REF], we explicitly quantify the deformation occurring in the subduction interface and the corresponding dissipation of energy. Second, we systematically interpret our results in the light of thin viscous-sheet theory [START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF] to determine scaling laws that describe the physical mechanisms underlying our system.

The outline of the paper is as follows. After introducing the model setup and the BEM, we begin by performing a scaling analysis of instantaneous solutions of the Stokes equations for plates with a specified geometry. We find that the fraction R of the total energy dissipation that occurs in the upper convective boundary layer is controlled by three key parameters: the flexural stiffness of the SP, the strength of the subduction interface and the shape (dip) of the descending slab. Next, we examine the time evolution of R(t) during unsteady subduction of plates with medium/high viscosity. Time dependent solutions show that R remains always below 0.5, the value corresponding to equipartition of the dissipation between the boundary layer and the ambient mantle. In conclusion, we explore the consequences of this result for the Nusselt number/Rayleigh number relationship Nu ∼ Ra β for a convecting system with plates of moderate to high strength. A crucial result here is that the exponent β can change dramatically depending on the length scale used to describe the dissipation due to bending of the SP. As demonstrated in [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF], the appropriate length scale is the 'bending length', which is the sum of the slab length 115 and the arcwise extent of the region of flexural bulging seaward of the trench.

Adopting this length scale, we find β ∈ [0.25, 0.34]. [START_REF] Manga | Buoyancy-driven interactions between two deformable viscous drops[END_REF][START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF]:

Model setup and BEM formulation

χ 0 (x)u (0) (x) + χ 1 (x)λ 1 u (1) (x) + χ 2 (x)λ 2 u (2) (x) = ∆ρ 1 η 0 C1 (g • y)n(y) • J(y -x)d (y)+ + ∆ρ 2 η 0 C2 (g • y)n(y) • J(y -x)d (y)+ +(1 -λ 1 ) C1 u (1) (y) • K(y -x) • n(y) d (y)+ +(1 -λ 2 ) C2 u (2) (y) • K(y -x) • n(y) d (y).
(2)

In (2), u (i) (x) (i = 0,1 or 2) is the velocity of the fluid at the point x ∈ A i , where A i is the domain occupied by fluid i. The density differences are ∆ρ i = (ρ iρ 0 ), and n(y) is the unit vector normal to the contour C 1 or C 2 that points out of the plate. The coefficients χ i (x) for i = 1 and 2 have the values 0, 1/2

or 1 if x / ∈ A i , x ∈ C i or x ∈ A i , respectively. The coefficient χ 0 (x) is 0 for x / ∈ A 0 , 1/2 for x ∈ C 1 ∨ x ∈ C 2 and 1 for x ∈ A 0 . J(y -x) and K(y -x)
are singular solutions (Green functions) of the Stokes equation for the velocity and the stress, respectively, at the point y due to a line force at x. To prepare eq. ( 2) for solution, we first write it in terms of dimensionless (hatted) variables

(x, ŷ) = h -1 SP (x, y), û(i) = η 0 h 2 SP g∆ρ 1 u (i) (i = 0, 1, 2). (3) 
Next, (2) is written as two coupled integral equations for the velocities on the interfaces C 1 and C 2 by setting x ∈ C 1 and x ∈ C 2 and choosing the appropriate values of χ 0 , χ 1 and χ 2 for each case. The integral equations are then solved using the procedure described by [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF]. Once the interfacial velocities are known, the velocity at points x away from the interfaces can be computed by choosing the appropriate values of χ 0 (x), χ 1 (x) and χ 2 (x) and then evaluating the integrals in (2). Finally, for time-dependent solutions the interfacial points are advanced by solving

dx d t = û(x), t = h SP g∆ρ 1 η 0 t, ( 4 
)
where t is the dimensionless time. More details on the BEM formulation are given in § 3 of [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF].

Rates of viscous dissipation of energy

The main goal of this work is to quantify the amount of energy dissipated in a subduction zone and to understand how that dissipation is partitioned among the different elements of the system. Accordingly, we write the total dissipation rate D Total as a sum of four contributions, viz.,

D Total = D SP + D OP + D SI + D M (5)
where the terms on the right-hand side represent the rates of viscous dissipation due to the deformation of the subducting plate (D SP ), the overriding plate (D OP ), the subduction interface (D SI ) and the ambient mantle (D M ).

Consider first the total dissipation rate D Total . The balance of mechanical energy for a 2D Stokes flow in an area A bounded by a contour C is 2η

A e ij e ij dA = C u i σ ij n j d + A u j f j dA. (6) 
Eq. ( 6) states that the total rate of dissipation in an area A (left-hand side) is the sum of the rate at which the fluid stress σ ij does work on C (first term on the right-hand side) plus the rate at which the gravitational body force f j = -ρgδ j3 does work on A (second term). Now introduce the modified pressure p = p+ρgx 3 and the corresponding modified stress tensor σij = -pδ ij +2ηe ij = σ ij -ρgx 3 δ ij .

Eq. ( 6) then takes the simpler form

2η A e ij e ij dA = C u i σij n j d , (7) 
which states that the total rate of viscous dissipation in A is equal to the rate at which the modified stress performs work on C. For the three-fluid domain with a free-slip upper surface shown in figure 1,

D M + D SI = C1 u i σ(0) ij (-n j )d + C2 u i σ(0) ij (-n j )d , (8a) 
D SP = C1 u i σ(1) ij n j d , D OP = C2 u i σ(2) ij n j d , (8b) 
where σ(i) ij (i=0,1 or 2) is the modified stress tensor of fluid i. The quantity -n j appears in (8a) because the normal vector that points out of the area A 0 is opposite to n, which was defined as pointing out of the plates. Now substitute eq. ( 8) into eq. ( 5) and apply the normal stress matching conditions

σ(k) ij - σ(0) ij n j = n i ∆ρ k gy j for points on C k (k = 1 or 2). The result is D Total = ∆ρ 1 g C1 u i n i y j d + ∆ρ 2 g C2 u i n i y j d . (9) 
Because we know (i.e., have calculated) the velocity u on C 1 and C 2 , (9) implies that the total dissipation rate can be obtained simply by evaluating two integrals over the fluid/fluid interfaces. In this study, however, we shall assume a neutrally buoyant OP (∆ρ 2 = 0), whereupon the second integral in (9) vanishes.

We now turn to the dissipation rates D SP and D OP within the two plates.

In principle these could be calculated from ( 7). However, determination of the stress σij on C 1 and C 2 requires the solution of Fredholm integral equations of the first kind, which are notorious for their numerical instability. Accordingly, we exploit thin viscous-sheet theory [START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF] to write

D SP = LSP+ 0 4η 1 h SP ∆ 2 + 1 3 η 1 h 3 SP K2 ds, (10a) 
D OP = LOP 0 4η 2 h OP ∆ 2 + 1 3 η 2 h 3 OP K2 ds, ( 10b 
)
where ∆ is the rate of stretching of the midsurface of the sheet, K is its rate of change of curvature, and s is the arclength along it. The total rate of dissipation within each plate is thus the sum of contributions from deformation by stretching/shortening (4ηh∆ 2 ) and by bending (1/3ηh 3 K2 ). The quantities ∆ and K are calculated by numerical differentiation of the velocity u on the sheet's midsurface [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF][START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF].

Next, we calculated the rate of viscous dissipation within the SI from the integral

D SI = 2η 0 ASI e ij e ij dA SI (11) 
where A SI is the area of the fluid in the lubrication gap between the plates. We evaluated the integral (11) by assuming that the fluid velocity varies linearly across the gap between the known values on either side.

Finally, the rate of viscous dissipation in the ambient mantle (D M ) is obtained from eq.( 5) once all the other quantities are known.

Scaling analysis

In this section we determine the crucial dimensionless parameters that control the energetics of subduction by performing a scaling analysis of instantaneous BEM solutions. Because inertia is negligible in Stokes flow, the energetic state of the system at any instant is fully determined by the geometry of the plates at that instant. Time is therefore a mere parameter, which we here ignore by focussing on the instantaneous geometry shown in figure 1.

As a target parameter for our scaling analysis, we define the 'dissipation

ratio' R R = D SP + D OP + D SI D Total ≡ D BL D Total . (12) 
R is the fraction of the total energy dissipation that occurs in the upper convective boundary layer comprising the two plates plus the SI.

Subduction of an isolated SP

For simplicity we begin by considering the subduction of an isolated SP without an OP or a SI, for which D BL ≡ D SP . We call this the SP only case.

Looking at figure 1, we can see that the portion of the SP that deforms by bending is characterized by the length b (bending length), which is the sum of the length of the slab and the width fb of the region seaward of the trench where flexural bulging occurs [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. If the SP sinks with a characteristic speed V Sink , its rate of change of curvature scales as K ∼ V Sink / 2 b . Neglecting the dissipation due to stretching and integrating over the bending length, we see that (10a) implies

D SP ∼ η 1 h 3 SP V 2 Sink 3 b f 1 (θ). ( 13 
)
The unknown function f 1 (θ) accounts for the influence of the shape of the midsurface of the SP on the slab's sinking speed [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. A dip-dependency of D SP is also in agreement with the results of [START_REF] Rose | Mantle rheology and the scaling of bending dissipation in plate tectonics[END_REF]. Apart from the factor f 1 (θ), eq.( 13) differs from analogous expressions in previous studies (e.g. Conrad & Hager, 1999a;[START_REF] Buffett | Plate force due to bending at subduction zones[END_REF][START_REF] Capitanio | Dynamics of plate bending at the trench and slab-plate coupling[END_REF] by the presence of the characteristic bending length scale b instead of R min . Next, we estimate the total dissipation rate in the ambient mantle by scaling (6). This yields 13), ( 14) and ( 12) imply

D M ∼ η 0 V 2 Sink f 2 (θ), (14) 
R ∼ St St + F(θ) , (15) 
where

F(θ) = f 2 (θ)/f 1 (θ) and St ≡ (η 1 /η 0 ) (h SP / b )
3 is the flexural stiffness of the SP that measures its mechanical resistance to bending [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF].

Let us now test the scaling law (15) against our BEM solutions. To do this, we run a large number of models for three values of θ 0 and different values of /h SP , L SP /h SP and λ 1 ≡ η 1 /η 0 , computing for each case the flexural stiffness St and the dissipation number R. The results are shown in figure 2. The solid symbols show results for which the bending contribution to D SP exceeds 95%. These collapse onto three master curves, one for each value of θ 0 , thereby confirming the scaling law (15). In the limit of St 1, where we can suppose St F(θ 0 ), R tends to a constant value that is independent of θ 0 , as expected from eq. ( 15). Open symbols, shown for completeness, are for models with a significant (≥ 5%) stretching contribution to D SP , and which for that reason obey less well the scaling law (15).

The three master curves in figure 2 highlight two other interesting features.

First, they tell us something about the temporal evolution of the system. In particular, the curves show that R increases if either St or θ 0 increases. Now, during unsteady subduction, St decreases because the slab length increases, whereas θ 0 increases because the slab gets steeper. We therefore expect the system to evolve as indicated by the thick green arrow. We will verify this later during our analysis of time-dependent BEM solutions. Second, the curves show that R never exceeds 0.7 and is typically < 0.5. The latter value represents the 'equipartition limit', where the dissipation is equally shared between the mantle and the plate. Only stiff plates exceed this limit.

Subduction below an OP

We now add the OP to the system. 

D SI ∼ η SI V 2 Conv h SP d 2 (sinθ SI ) -1 , (16) 
where V Conv is the convergence speed of the descending slab. In writing ( 16), we have assumed that e ij ∼ V Conv /d 2 and A SI ∼ d 2 h SP /sin (θ SI ). We defined V Conv to be the tangential component of the velocity vector on the SP's midsurface where it intersects the depth x 2 = -h SPd 1 (see inset of figure 3). To verify ( 16), we compare it with the predictions of a large number of BEM solutions that include an OP. For this purpose, we rewrite (16) in dimensionless form as

DSI ∼ γ V 2 Conv (sinθ SI ) -1 , (17) 
where

DSI = η 0 h 4 SP (g∆ρ 1 ) 2 D SI , VConv = η 0 h 2 SP g∆ρ 1 V Conv , γ = η SI η 0 h SP d 2 . ( 18 
)
The quantity γ is the dimensionless strength of the SI [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF].

Because η SI = η 0 in our model, we explore the influence of γ by varying d 2 alone [START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF]. Figure 3 shows DSI , computed numerically using eq. ( 11), as a function of γ V 2 Conv (sinθ SI ) -1 for 108 BEM solutions for the ranges of parameters given in the caption of figure 3. All the points collapse onto a straight line with slope of unity, confirming the scaling law (17).

Turning now to the rate of dissipation within the OP, our BEM solutions show that the energy dissipated to deform the OP is never more than 0.03D BL , whatever system configuration we use. We can therefore safely assume D BL ≈ D SP + D SI for our SP+OP case study.

A natural next step would be to determine a complete scaling law for R that includes the effect of the SI and that reduces to (15) in the limit γ = 0 of an infinitely weak (i.e., thick) SI. However, this turns out to be impractical given the large number of parameters involved. Instead, we show in figure 4 how the value of γ influences the dissipation ratio R. Dissipation in the SI can enhance R significantly, but only for low values of the SP's flexural stiffness (St 1).

In this limit, D SI can exceed D SP by a factor of two or more. However, as soon as St increases beyond ≈ 2, the effect of γ vanishes and we recover to a good approximation the corresponding SP only case (empty circles in figure 4).

Moreover, in the limit γ → 0 we recover the SP only results for all values of the stiffness St, whereas when γ > 6 the curves saturate and R does not change anymore (data not shown to save space).

Time-evolving subduction

Our next task is to explore how R varies during unsteady subduction, focussing on the more realistic SP+OP case. We consider two examples: 'low viscosity contrast', with λ 1 = 250 and 'high viscosity contrast', with λ 1 = 2500.

The remaining parameters for both examples are given in table 1.

We ran the simulations until the slab's tip reached the depth x 2 = -6.7h SP , keeping track of R(t) and St(t). The results are shown in figure 5 for λ 1 = 250

(top) and λ 1 = 2500 (bottom). Figures 5a and5c show the geometry of the system at three characteristic times. Figures 5b and5d show the corresponding 
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This agrees with the results of figure 4, which show that the influence of the OP on the energetics of the system becomes almost negligible for St > 2. This is not the case for λ 1 = 250, for which the SP+OP and the SP Only simulations follow very different paths in the St-R space.

Parameterized model of mantle convection

Inspired by the approach of Conrad & Hager (1999b), we now construct a parameterized convection model by considering steady-state thermal convection in a cell of length L h and thickness H (figure 6). At the top of cell is the SP which thickens by conductive cooling as it moves toward the trench, reaching a thickness h SP when it enters the subduction zone. We assume no heat sources within the system and we consider a well-mixed mantle (i.e. high mantle Rayleigh numbers, Ra m ) at temperature T m . The only temperature difference is across the SP, and is ∆T = T m -T Surf , where T Surf is the temperature at the SP's surface.

We begin by defining the Nusselt number (Nu) of the convecting cell as the ratio of the surface heat flow in the presence of convection to that transported purely by conduction (e.g. Turcotte & Schubert, 2014). The numerator is the integral over the length L h of the vertical temperature gradient predicted by the standard half-space cooling model. The denominator is the heat transported by conduction across the entire thickness of the cell H. We thus have

Nu = 2H U SP πκL h 1/2 , ( 19 
)
where κ is the thermal diffusivity and U SP is the horizontal speed of the SP.

Scaling the continuity equation in the convecting cell, we obtain

U SP L h ∼ V Sink L z (20)
where L z is the vertical distance from the slab's tip to the lower surface of the SP (figure 6). Equation ( 20) allows us to rewrite (19) as

Nu ∼ H V Sink κL z 1/2 . ( 21 
)
The next step is to determine V Sink in terms of the different contributions to the viscous dissipation at the subduction zone. The global balance of mechanical energy is

D M + D BL ≡ D M 1 + R ∼ h SP g∆ρ 1 V Sink , (22) 
where D BL ∼ RD M , R ≡ R/(1 -R), and D Total ∼ h SP g∆ρ 1 V Sink . Making use of ( 14) for D M , we obtain

V Sink ∼ h SP g∆ρ 1 η 0 f 2 (θ) 1 + R . ( 23 
)
Because ( 23) relates the slab's sinking speed to the coefficient R that describes the partitioning of viscous dissipation between the boundary layer and the mantle, we expect different regimes of mantle convection depending on the value of R.

Thermal convection dominated by mantle viscous dissipation

In this subsection we recover the well-known result for the Nusselt number predicted by boundary-layer analysis of an isoviscous system. Here the energy dissipated to deform the lithosphere is negligible (i.e. D M D BL and R → 0).

The thickness of the lithosphere h SP is given by the half-space cooling model as

h SP ∼ κL h U SP 1/2 . ( 24 
)
Substituting ( 20) and ( 23) into (24), we obtain

h SP H ∼ L z f 2 (θ) Ra m 1/3 , ( 25 
)
where the Rayleigh number of the entire cell is Ra m ≡ H 3 g∆ρ 1 /(κη 0 ). Then substituting ( 23) into (21) and using (25), we obtain

Nu ∼ Ra m 1/3 L z f 2 (θ) 1/3 , (26) 
which is the standard Nusselt number vs. Rayleigh number scaling for an isoviscous system.

Our next task is to understand what happens when R = 0.

Thermal convection below a strong deforming boundary layer

From the definition R = D BL /D M , we observe that

R ∼ η 1 η 0 h SP b 3 F(θ) + η SI η 0 h SP d SI sin(θ SI )f 2 (θ) V Conv V Sink 2 , ( 27 
)
where we have used ( 13), ( 14) and ( 16) to scale the different contributions to the viscous dissipation. Substituting ( 27) into ( 23) we obtain a nonlinear implicit equation for the sinking speed of the slab:

V Sink ∼ h SP g∆ρ 1 η 0 f 2 (θ) 1 + η 1 η 0 h SP b 3 F(θ) + η SI η 0 h SP d SI sin(θ SI )f 2 (θ) V Conv V Sink 2 -1 . ( 28 
)
Following Conrad & Hager (1999b), we define two additional Rayleigh numbers for the SP and the SI:

Ra SP ≡ 3 b g∆ρ 1 κη 1 , Ra SI ≡ d 3 2 g∆ρ 1 κη SI . ( 29 
)
These Rayleigh numbers measure the importance of viscous dissipation within the SP and the SI relative to the energy available within the system. They become large in the limits D SP → 0 and/or D SI → 0 for fixed h SP , which limits correspond to decreasing viscosity (η 1 or η SI ) and/or increasing length scale ( b or d 2 ). In terms of these Rayleigh numbers, ( 28) can be written as

V Sink ∼ Ra m h SP κ f 2 (θ)H 3 × × 1 + Ra m Ra SP h SP H 3 F(θ) + Ra m Ra SI h SP H d 2 SI H 2 sin(θ SI )f 2 (θ) V Conv V Sink 2 -1 . ( 30 
)
We now investigate two limiting cases of (30).

Case 1: convection beneath a plate with a short travel time

Consider first the case of a lithosphere that moves from the ridge to the trench in a time t = L h /U SP < 80 Myr, the age at which seafloor flattening is observed to begin (e.g. [START_REF] Sclater | The heat flow through oceanic and continental crust and the heat loss of the Earth[END_REF]Conrad & Hager, 1999b). This implies that h SP increases continually according to the half-space cooling model.

Suppose initially that the viscous dissipation in the subduction interface is negligible (Ra SI → ∞). Simplifying (30) accordingly and substituting eq. ( 20) and eq. ( 30) in eq. ( 24), we find

h SP H ∼ Ra SP Ra m L z f 2 (θ) Ra SP -f 1 (θ)L z 1/3 . ( 31 
)
Now using ( 31) and the simplified form of (30) in eq. ( 21) we obtain

Nu ∼ L z f 2 (θ) - F(θ) Ra SP 1/3 Ra m 1/3 . ( 32 
)
The Nusselt number still scales as Ra m 1/3 , but the prefactor decreases as the dissipation rate within the SP increases (i.e., as Ra SP decreases). This result remains valid as long as the denominator of ( 31) is nonzero, i.e., if Ra SP f 1 (θ)L z / . This condition follows from the fact that when Ra SP decreases the convection progressively slows down, increasing the traveling time of the lithosphere. Because the lithosphere then has more time to thicken, Ra SP decreases even further, triggering a positive feedback that leads to an unphysical infinite plate thickness (Conrad & Hager, 1999b).

To understand the influence of viscous dissipation in the SI, we adopt (30) in its full form. Following again the steps in § 6.1 and assuming Ra SP f 1 (θ)L z / , we obtain

h SP H 3 - h SP H d 2 SI H 2 A 1 Ra SI ∼ A 2 Ra m , ( 33 
)
where

A 1 ≡ C 2 V (L Z / )/sinθ SI , A 2 ≡ (L Z / )f 2 (θ) and C V ≡ V Conv /V Sink .
Our BEM simulations show that C V is always less than unity, and we treat it here as a constant. Obtaining representative values of A 1 and A 2 from our BEM solutions, we solve (33) numerically for Ra SI (d 2 , η SI ) ≤ 0.4 and Ra m (H) ∈ [1.6×10 5 -1.3×10 6 ]. We find that h SP /H ∼ Ra m 1/3 and Nu ∼ Ra m 1/3 to within a negligible error. We conclude that for convection below a short SP for which the half-space cooling model applies, the scaling law Nu ∼ Ra m 1/3 remains valid even in the presence of viscous dissipation in the subduction interface.

Case 2: convection below a plate with a long travel time

We now assume that the travel time of the plate is sufficiently long (> 80

Myr) that thermal thickening has stopped by the time it reaches the trench.

The dependence of h SP on Ra m then breaks down and h SP /H becomes a simple constant in the model, with h SP always at its maximum value. Nevertheless, we assume that the amount of heat evacuated by the cell still corresponds to the heat lost during the thickening of the plate, while the amount of heat loss occurring after seafloor flattening occurs remains negligible. This implies that (21) continues to apply for our analysis.

Considering both contributions D SI and D SP to the viscous dissipation, we substitute ( 30) into ( 21) and obtain

Nu ∼            Ra m L z f 2 (θ) h SP /H 1 + Ra m Ra SP h SP H 3 F(θ) + Ra m Ra SI h SP H d 2 SI C 2 V H 2 sin(θ SI )f 2 (θ) R            1/2 , ( 34 
)
where the bracket highlights the definition of R. We now use (34) to determine the value of the exponent β that would appear in the corresponding Nu-Ra β m relationship. Observing that Nu = Ra β m implies β = (dNu/dRa m )(Ra m /Nu), we find that (34) implies

β = 1/2 1 + R . (35) 
Eq. ( 35) shows that β strongly depends on the dissipation partition coefficient R. This relationship is particularly useful as it allows us directly to correlate R with the present-day Urey ratio of the Earth, i.e. Ur ≈ (τ Dτ R )/τ D [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics[END_REF]. In the previous expression, τ D ≈ 3000 Myr is the average decay time of the radioactive elements that generate heat in the Earth's interior.

The time

τ R = M C P T 0 (1 + β + βn)Q 0 (36)
is the relaxation time of mantle convection [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics[END_REF], where M is the mass of the Earth, C P is an average heat capacity, n is the exponent of the Arrhenius law η(T ) = η 0 (T /T 0 ) -n describing the temperature dependence of the mantle viscosity and T 0 is the reference mantle temperature around which is linearized the expression describing the rate of Earth's heat loss, whose corresponding reference value is Q 0 . Using the standard values for all the parameters appearing in (36) [START_REF] Labrosse | Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics[END_REF], we observe that for R = 0 (no dissipation in the boundary layer), β = 1/2, τ R ≈ 530 Myr and Ur ≈ 0.82. By contrast, for R = 1 (viscous dissipation equally partitioned between the boundary layer and the mantle), β = 1/4, τ R ≈ 1000 Myr and Ur ≈ 0.66. In order to satisfy the geochemical constraint Ur ≤ 0.5, following the same reasoning, we need τ R ≥ 1500 Myr and β ≤ 0.16, which corresponds to R ≥ 2.

To conclude, we note that the models of Conrad & Hager (1999b) also lead to equation ( 35). In fact, starting from equation ( 5) of Conrad & Hager (1999b) and using their definition of the viscous dissipation in the mantle and the lithosphere, we recover exactly equation ( 35) after exploiting the relationship β = (dNu/dRa m )(Ra m /Nu).

Influence of the lengthscales b vs. R min on dissipation partitioning

We now show how the estimates of the dissipation partitioning coefficient R and the heat transport exponent β change dramatically depending on the length scale ( b or R min ) used to characterize the bending response of the SP.

We begin by defining

α ≡ D SP | Rmin D SP | b = b R min 3 (37) 
as the factor by which D SP is overestimated if R min is adopted instead of b , all else being equal. We estimate α in a realistic way by running time-dependent BEM simulations starting from the initial conditions reported in table 1. Next, for both the 'low viscosity contrast' and 'high viscosity contrast' cases we stop the simulations at two characteristic depths H 1 /h SP = Ĥ1 = 6.7 and H 2 /h SP = Ĥ2 = 10.0. Owing to the quasi-stationarity of Stokes flow, these instantaneous configurations can be assumed to be representative for the purposes of our steady-state analysis.

Figure 7a shows that α increases rapidly as the slab progressively sinks, illustrating the strong influence of the chosen length scale in the evaluation of D SP . For the two characteristic depths Ĥ1 and Ĥ2 , for example, we find α 1 = 33 and α 2 = 134 respectively when λ 1 = 250 (red empty circles), and α 1 = 16 and α 2 = 51 respectively when λ 1 = 2500 (black filled circles). The dependence of α on the depth Ĥ is explained by figure 7b, which shows the dimensionless lengths ˆ b and Rmin as functions of Ĥ for λ 1 = 2500. As the slab penetrates deeper, the bending length increases while the minimum radius of curvature tends to stabilize to a constant value. The ratio b /R min , and thus the overestimate of the dissipation D SP , therefore increases with the depth H. For λ 1 = 250, the gap between the two curves of figure 7b becomes even wider, which is why α is larger for the 'low viscosity contrast' case (red empty circles, figure 7a).

To show how the overestimation of D SP documented above influences the inferred value of β, we calculate the quantity If, however, we adopt the correct length scale b , β ∈ [0.30, 0.34] for Ĥ = 6.7

R| Rmin = α + δ 1 + δ R| b , (38) 
and β ∈ [0.25, 0.28] for Ĥ = 10. This shows that one's assumption about the thickness of the convecting cell plays a role in the determination of β.

In light of table 2 , we conclude that it is crucial to use the dynamic length scale b rather than the purely geometric length R min to characterize the bending response of a viscous plate. We emphasize that even other purely geometric lengthscales, such as the product R min θ suggested by [START_REF] Capitanio | Dynamics of plate bending at the trench and slab-plate coupling[END_REF], cannot capture the dynamic viscous response of the SP. This follows from the fact that viscous forces acting on a fluid volume do not define its shape, but rather the rate of change of that shape.

Discussion

Our results do not support previous proposals that the dissipation of energy associated with mantle convection is dominated by the contribution from stiff subduction zones (e.g. Conrad & Hager, 1999b;[START_REF] Becker | The development of slabs in the upper mantle: Insights from numerical and laboratory experiments[END_REF]. Adopting a modified version of the parameterized convection model of Conrad & Hager (1999b), we showed that a realistic treatment of plate bending implies small departures from the classical value of the heat transfer scaling exponent β = 1/3.

Previous estimates of β ≈ 0 might follow from overestimating the bending dissipation of the SP, as also suggested by [START_REF] Davies | Effect of plate bending on the urey ratio and the thermal evolution of the mantle[END_REF]. In particular, we showed how the bending response of the SP is strongly overestimated when it is described in terms of the minimum radius of curvature R min , as done in many previous studies (e.g. Conrad & Hager, 1999b;[START_REF] Korenaga | Energetics of mantle convection and the fate of fossil heat[END_REF]. At the same time, our results are broadly consistent with those of several other studies that have estimated the amount of energy dissipated in subduction zones (e.g. [START_REF] Capitanio | Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation[END_REF][START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF][START_REF] Leng | Constraints on viscous dissipation of plate bending from compressible mantle convection[END_REF][START_REF] Irvine | Effect of plate thickness on bending radius and energy dissipation at the subduction zone hinge[END_REF].

Our analysis, however, neglects certain aspects of real subduction systems and Earth's mantle convection. We now discuss how these simplifications might affect our results.

We first consider the effect of a more realistic rheology involving both Newtonian diffusion creep and non-Newtonian power-law creep. The viscosity of a sheet having such a rheology and deforming by pure bending is

η = 1 η 0 + 1 η 1 -1 , η 1 = BI 1/n-1 , (39) 
where η 0 is a constant Newtonian viscosity, B is a constant rheological stiffness (units kg m -1 s -2+1/n ), and I = (e ij e ij /2) 1/2 ≡ | Kz| is the second invariant of the strain rate tensor. The fiber stress in the sheet is σ ss = -4η Kz, and the bending moment is

M = h/2 -h/2 zσ ss dz. ( 40 
)
We are interested in the ratio Π of the bending moment M composite for a sheet with a composite rheology to the bending moment M Newtonian = -η 0 Kh 3 /3 of a purely Newtonian sheet. The integral (40) cannot be evaluated analytically for arbitrary n, but can be integrated for particular choices of n. We therefore choose n = 3, a value close to that for olivine deforming by dislocation creep.

We thereby find

Π(λ) ≡ M composite M Newtonian = - 36 2 2/3 λ 4 + 12 λ 3 - 18 2 1/3 5λ 2 + 9 2 2/3 7λ + 72 λ 9/2 tan -1 λ 1/2 2 1/3 = 1 - 9 11 2 2/3 λ + O(λ 2 ), (41) 
where λ = (η 0 /B)(| Kh) 2/3 is a dimensionless number that vanishes in the limit of a purely Newtonian viscosity η = η 0 . Eqn. ( 41) shows that Π is a monotonically decreasing function of λ with Π(0) = 1, Π(1) = 0.663 and Π(10) = 0.168.

A sheet with composite rheology is therefore always weaker in bending than a purely Newtonian sheet. We conclude that subducting sheets with realistic composite rheology will contribute even less to the total viscous dissipation than the ≈ 40% predicted by our purely Newtonian models.

Next, we consider the influence of more realistic slab shapes. Tomographic images (e.g [START_REF] Goes | Subduction-transition zone interaction: A review[END_REF] suggest that many slabs in natural subduction zones bend more tightly than our model predicts (figures 5a,c). Thus, we might expect real subduction zones to be characterized by shorter slabs and (consequently) shorter bending lengths. This argument implies a lower slope for the curve b vs. Ĥ in figure 7b (dashed curve). The difference between the bending dissipations calculated using b vs. R min would then be lower for real subduction zones than in our model. However, due to the different natures and time evolutions of the two lengthscales, the overestimation factor α remains large.

For example, for the dashed curve in fig. 7b Therefore, even if real subduction zones have shorter effective bending lengths than our BEM models, we expect only a small variation in the range of β given in §7.

In closing, we remark that neither the parameterized convection model of §6 

Conclusion

In this work we studied the energetics of subduction using a numerical model based on the BEM. We endeavored to shed light on two topics: the partitioning of viscous dissipation among the different elements of a subduction zone (i.e. the subducting plate, the subduction interface and the mantle); and the influence of the energy dissipated in subduction zones on parameterized models of mantle convection.

By means of a scaling analysis of instantaneous BEM solutions for an isolated SP, we found that the ratio R of the energy dissipated in the upper boundary layer to the total energy dissipation obeys the scaling law

R ∼ St/[St + F(θ)],
where St (the 'flexural stiffness') represents the SP's mechanical resistance to bending and F(θ) is a function that accounts for the effect of the dip θ of the descending slab. Adding an OP to the system, we found that R also depends on a third parameter γ, the dimensionless strength of the subduction interface.

Turning to unsteady subduction, we observed that the time evolution of R(t) depends on the SP/mantle viscosity ratio λ 1 . Nonetheless, for both the 'low viscosity contrast' (λ 1 = 250) and 'high viscosity contrast' (λ 1 = 2500) cases explored, we observed that R(t) never exceeds the value 0.5 corresponding to equipartition of the dissipation between the boundary layer and the mantle. We conclude that energy dissipation during free subduction is never dominated by the contributions of plate bending and interface shearing. We also found that the relative importance of dissipation in the subduction interface decreases as subduction proceeds.

Turning to the influence of strong subduction zones on mantle convection, we found that it primarily depends on the travel time of the lithosphere from the ridge to the trench. For short travel times ≤ 80 Ma, the thickness h SP of the lithosphere when it enters the subduction zone is described by the classical half-space cooling model and depends on the mantle Rayleigh number Ra m .

The Nusselt number is then Nu ∼ Ra β m with β = 1/3, as for an isoviscous mantle. For long travel times, by contrast, h SP is a constant. The heat transfer scaling exponent is then β = 0.5/(1 + R), where R ≡ R/(1 -R) is the ratio of the boundary-layer dissipation rate to that within the surrounding mantle.

The partitioning factor R depends strongly on the length scale one adopts to characterize the bending of the SP. If the minimum radius of curvature R min of the plate is used, as in several previous studies, the bending dissipation of 650 the SP is strongly overestimated and β → 0. If however one uses the correct length scale, the 'bending length' b , β ∈ [0.30, 0.34] for H/h SP = 6.7 and β ∈ [0.25, 0.28] for H/h SP = 10, where H is the depth of the convecting layer.

Our overall conclusions are that strong subduction zones do not dominate the viscous dissipation associated with mantle convection, and that subduction zone that we can suppose representative of a more realistic subduction system (see § 8 for details).

All lengths in the figures are given in units of the plate thickness.

Figure 1

 1 Figure1shows the initial geometry of our 2-D subduction model. The motion and deformation of the plates are entirely driven by the negative buoyancy of the descending slab, and the system is free of boundary constraints. The model comprises three fluids: i) an infinitely deep ambient mantle with viscosity η 0 and density ρ 0 , bounded above by a free-slip surface (x 2 =0) ; ii) a subducting plate (SP) with viscosity η 1 = λ 1 η 0 and density ρ 1 ; and iii) an overriding plate (OP) with viscosity η 2 = λ 2 η 0 and density ρ 2 . The SP comprises a flat portion of length L SP and an attached slab of length whose initial dip is θ 0 . The initial thickness h SP of the SP is constant apart from the two rounded ends. The thickness and length of the OP are h OP and L OP , respectively. The rounded ends of the plates were designed to ensure continuity of curvature at all points along the contours C 1 and C 2 . A lubrication gap with initially constant thickness d 2 separates the SP from the OP. In each plate we define a midsurface located halfway between the upper and lower surfaces. The arclength coordinates along these surfaces are s ∈ [0, L SP + ] for the SP and s OP ∈ [0, L OP ] for the OP. Finally, above the plates is a lubrication layer of thickness d 1 that permits free horizontal motion of the plates. More details on the initial setup are given in § 2 of[START_REF] Gerardi | Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone[END_REF].The model of figure1represents a Stokes flow problem with deformable fluid/fluid interfaces. Such problems can be solved efficiently using the Boundary-Element Method (BEM), a numerical technique based on the boundary-integral representation of Stokes flow. For the geometry of figure 1, that representation yields the following integral equation for the fluid velocity (Manga & Stone,

  which is obtained using the scales e ij ∼ V Sink / b and A 0 ∼ 2 b . Like (13), it contains an unknown function f 2 (θ). Now because D BL = D SP and D Total = D SP + D M , equations (

  For this SP+OP case, D BL ≡ D SP + D OP + D SI . We expect the OP to have two opposite effects on the dissipation ratio. On the one hand, it should increase R because deformation of the subduction interface and of the OP itself leads to higher dissipation within the boundary layer. On the other hand, the OP acts as a no-slip boundary condition on the mantle fluid below, enhancing the dissipation in that region and decreasing R. The inset of figure 3 shows a close-up view of the subduction interface (lubrication gap), which has thickness d 2 , inclination angle θ SI , and viscosity η SI . Assuming that layer-parallel shear in the gap gives the largest contribution to viscous dissipation, we use (11) to scale D SI as

  time evolution of R(t) as a function St(t) (black filled circles). Time increases from right to left along these curves. The fraction D SI /D BL of the boundarylayer dissipation that occurs in the SI is also noted for the three times. Finally, the green open circles show R(St) for the same SP but without the OP. The first important result of figure 5 is that R remains always below the value 0.5 that corresponds to equipartition of the dissipation between the boundary layer and the ambient mantle. Second, the shapes of the curves concerning the subduction of an isolated SP (figure 5b and d, green empty circles), which show R increasing as St decreases and θ increases, agree with what we expected from our earlier SP Only solutions (Figure 2, § 4.1). The behavior of the SP+OP case is more complex (figure 5b and d, black filled circles). Recall that the temporal evolution of R reflects a balance between two competing effects: a dynamical one (R decreases as St and D SI /D BL decrease with time) and a geometrical one (R increases as the slab dip increases).For the SP+OP case with λ 1 = 250, the dynamical effect dominates at first, leading to a steady decrease of R with time. Then, at St ≈ 0.6, the balance is reversed and R starts to increase (figure5b). For λ 1 = 2500, by contrast, the two effects nearly cancel out, maintaining a constant value R ≈ 0.4 (figure5d). Interestingly, for both cases, the relative importance of the dissipation at the interface (D SI /D BL ) decreases as subduction proceeds. Indeed, BEM solutions show that both D SI and D BL increase with time, but the latter increases faster so that at one point it starts to dominate the overall dissipation within the boundary layer. Nevertheless, at the end of the simulations, D SI is still significant: 44% and 34% of D BL for λ 1 = 250 and λ 1 = 2500, respectively.Finally, we note that for λ 1 = 2500 the simulations for the SP+OP and the SP Only cases have rather similar variations of R as a function of St ∈ [2, 10].

  where α, δ ≡ D SI /D SP | b and R| b are determined from the BEM simulations. The corresponding values of β are then obtained from (35). The results are summarized in table 2 for our four characteristic combinations of Ĥ and λ 1 . If we use R min as the bending length scale, the estimate of the boundary-layer dissipation D SP is much higher, resulting in values of β close to zero in all cases.
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  nor the BEM model considers the 660 Km discontinuity between the upper and lower mantle. Due to the viscosity jump at this depth, the SP experiences additional bending and stretching deformation that increases the amount of gravitational energy consumed. This additional source of energy dissipation might considerably affect the Nu ∼ Ra β m heat transfer law.

  655 dissipation leads to relatively small departures from the classical Nu ∼ Ra 1/3 m heat transfer law. Turcotte, D., & Schubert, G. (2014). Geodynamics. Cambridge University Press.
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 12567 Figure 1: 2D model geometry. A dense subducting plate (SP) with viscosity η 1 = λ 1 η 0 and density ρ 1 sinks beneath an overriding plate (OP) with viscosity η 2 = λ 2 η 0 and density ρ 2 in an infinitely deep ambient fluid with viscosity η 0 and density ρ 0 . The dip angle at the end of the slab is θ 0 . The ambient fluid is bounded above by a free-slip surface x 2 =0. The arclengths along the midsurfaces of the plates are s ∈ [0, L SP + ] for the SP and s OP ∈ [0, L OP ] for the OP.b is the 'bending length', the length of the portion of the SP that deforms primarily by bending[START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. It is the sum of the slab length ( ) and the width of the zone of flexural bulging ( fb ). The minimum radius of curvature of the plate's midsurface R min is also shown.

  , we would obtain α ∈ [10 -40] instead of our present model result α ∈ [16 -51] (table 2, case λ 1 = 2500).

Table 1 :

 1 Initial configurations of the models whose time evolutions are shown in figure 5. SP /h SP /h SP λ 1 d 2 /h SP L OP /h SP h OP /h SP λ 2

			SP				OP		
	θ 0 L 'Low viscosity 30 • contrast'	20	5	250	0.25	20	1	250
	'High viscosity contrast'	30 •	20	5	2500	0.25	20	1	2500

Table 2 :

 2 Values of the coefficient δ, the dissipation ratio R| L and the corresponding exponent
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