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Abstract

The examination timetabling problem (ETP) can be described as a
set of exams to be scheduled over an examination session while respect-
ing numerous hard and soft constraints. Spacing soft constraints, which
seek to spread the exams taken by students out over the available peri-
ods rather than scheduling them close together, are widely encountered in
real-world ETP problems. In this paper we consider the spacing soft con-
straints that seek to prevent students sitting more than one exam a day,
for reason of fairness, as defined in the ITC2007 examination timetabling
track. Work on ETP has tended to focus on heuristic approaches, and
little effort has gone developing lower bounds, although knowing how far
a given solution is from optimality is of both practical and theoretical in-
terest. In existing mathematical formulations of spacing soft constraints
the number of equations is in the order of the square of the number of ex-
ams. These formulations consume excessive quantities of memory, which
remains a problem for current solvers. In this study, we present a generic
model for computing lower bounds on spacing soft constraints, together
with more compact formulations where the number of equations is equal
to the number of exams, and not in the order of the square of this num-
ber. Computational results on ITC2007 and Yeditepe instances are an
improvement on results obtained so far on lower bounds, and our new
formulations yield a more compact model achieving better results com-
pared to existing formulations. Some effort still needs be devoted to lower
bounds and to exact methods capable of bridging the gap between theory
and practice.
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1 Introduction

Academic institutions periodically face the problem of organizing examination
sessions. Designing an examination timetable is a complex, time consuming
and tedious task for practitioners that quite often have to deal with contradic-
tory expectations of the institution, teachers, and students. The examination
timetabling problem (ETP) can be described as a set of exams to be scheduled
into a set of periods while respecting numerous hard and soft constraints. The
quality of a solution that satisfies all the hard constraints is measured by as-
sessing violations of soft constraints. A large number of variants of ETPs can
be found in the literature, every institution has its own set of hard constraints
and uses a different set of soft constraints to assess solutions.

In 1997, Burke et al. [10] presented an introduction to automated examina-
tion timetabling using information collected within UK Universities, cataloging
and structuring common types of constraints, and popular approaches used at
the time. In a latter comprehensive survey, Schaerf [30] presented school, course
and examination timetabling problems. Here, variants of ETPs were discussed
and solutions were reviewed and compared. Many methodologies were devel-
oped to tackle specific problems, however scientific comparisons are difficult
because presented problems do not have the same sets of hard and soft con-
straints. Benchmarks with standard variants from the Universities of Toronto
[11], Nottingham [15] and Melbourne [23] were proposed that make compar-
isons possible. In 2009, Qu et al. [28] summarized earlier surveys on examina-
tion timetabling [10, 12, 14, 30] and presented the state of the art on solution
methods. Benchmarks available at that time were presented, approaches and
results on the benchmark datasets were discussed. The second International
Timetabling Competition (ITC2007) examination timetabling track [21] intro-
duced a problem description which covers many real-world situations. These
benchmarks are at the research community’s disposal to permit comparisons.

Examination timetabling has been intensively studied over the last decades
using a large variety of optimisation techniques for preprocessing and for solving.

Gogos et al. [19] and Arbaoui et al. [7] proposed preprocessing to reveal
hidden hard constraints that can be deduced prior to solving. The initial data
can then be enriched and infeasibilities can be detected sooner during the solving
process.

A large number of solution methods based on heuristics, meta-heuristics
and their hybridizations, and hyper-heuristics can be found in the literature. A
selection of investigated methods includes: Graph Ordering Heuristic [2], Tabu
Search [20], Simulated Annealing [16], Great Deluge [25], Hill Climbing with
or without Late Acceptance [8], Bin Packing Heuristic [31], Evolutionary and
Nature Inspired Algorithms [3] and Hyper-Heuristic [9]. Recently, Alzaqebah
et al. [5] obtained the best result found so far for one instance of the Toronto
benchmark using a hybrid bee colony approach, simulated annealing and late
acceptance hill climbing.

Exact methods or their hybridization with heuristics have been studied to
solve examination timetabling problems. Hybridizing integer programming and
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a decomposition approach was investigated by Qu et al. [29]. An integer pro-
gramming phase for assigning exams to rooms was used by Gogos et al. [19].
For a specific problem, MirHassani [24] proposed a Mixed Integer Programming
(MIP) model. A three-stage Integer Linear Programming (ILP) approach is
proposed by Al-Hawari et al. [4] to solve the examination timetabling problem
at the German Jordanian University. Recently, a column generation approach
was proposed by Woumans et al. [32]. To increase the spacing of exams for stu-
dents, multiple versions of an exam to be planned are allowed, and a trade-off
between spacing for students and numbers of exam versions is optimized.

In this paper we consider the ITC2007 problem formulation. The objective
function for the ITC2007 benchmark is a sum of seven terms that can interact
in contradictory ways. One of the terms assesses allocations of large exams to
periods at the end of the examination session because large exams take longer
to mark (teacher expectations). Large exams may not be spread out within
all periods, this may act in a contradictory way with other terms that assess
spacing soft constraint violations (student expectations). The objective function
is a measure of a trade-off between expectations of the institution, teachers, and
students.

The results have been steadily improved over the last decade by applying
heuristic approaches. Solutions are obtained but we do not know how far from
optimality these solutions actually are.

Real-world problems may contain subsets of ITC2007 soft constraints. The
results presented in the literature provide upper bounds for the value of the
objective function but we do not have lower bounds for each term considered
individually. It could also be practically and theoretically interesting to assess
lower bounds on terms that aim to reach the same objective. The spacing soft
constraints are widely encountered in real-world ETP problems. In particular,
it is preferable for students not to have to sit more than one exam a day.

To the best of our knowledge, Arbaoui et al. [6] presented the first work on
spacing soft constraint lower bounds for ITC2007 problems. A set of selected
cliques, computed on the conflict graph coded using the conflict matrix (see
Carter et al. [15]), is used to compute lower bounds.

Few exact methods have been reported compared to heuristic based ap-
proaches. McCollum et al. [22] proposed a new mathematical model for the
ITC2007 examination timetabling track that permits to have a meaningful ba-
sis for hard and soft constraints. As stated by the authors, the model was not
designed to solve sizeable real instances but only for modeling purposes. How-
ever, it can optimally solve two small instances of the Yeditepe datasets [27].
Fonseca et al. [17] proposed an improved version of this model that fits better
in memory and less out-of-memory were observed on sizeable instances. An
improved formulation proposed by Arbaoui et al. [7] was run on each term con-
sidered individually. For certain terms optimal values were attained. However,
current solvers faced difficulties to run for assessing spacing soft constraints
terms.

Soghier et al. [31] investigated bin packing heuristics and proposed an adap-
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tive hybrid hyper-heuristic approach. This way of approaching ETP considers
exams are items and rooms/periods are bins. Data-dependent Dual-Feasible
Functions (DDFF) were proposed for building lower bounds for bin-packing
problems (see Carlier et al. [13]). In [7], the authors proposed a valid inequality
based on an adaption of a DDFF that proved to be efficient on small instances.

Applying valid inequalities while reducing the number of variables and con-
straints proved to be helpful improving exact methods based on integer pro-
gramming formulations [7, 17]. However, the spacing soft constraint formu-
lations consume excessive quantities of memory and current solvers still face
difficulties to run models.

In this study, we present improvements for computing two spacing soft con-
straint lower bounds, together with more compact formulations yielding to de-
sign a MIP model that consume less memory.

The rest of the paper is organized as follows. In the next section, hard
and soft constraints of the ITC2007 examination timetabling competition are
presented. In Section 3, we propose three propositions to compute minimum
number of spacing soft constraint violations for every clique of a given size, and
the generic MIP model that computes the associated lower bounds. In Section
4, the new formulations of the three spacing soft constraints are described, the
model embedding these formulations is compared to existing MIP models. In
Section 5, computational results assessed on ITC2007 [21] and Yeditepe [27]
datasets are presented and commented on, and concluding remarks are given in
Section 6.

2 Problem formulation

This section provides a description for the examination track of the Second
International Timetabling Competition (ITC2007) [21] used in our study.

Input data consists of exams, rooms and days/periods. Every exam has a
duration, and has to be allocated to a period and a room. The set of students
enrolled for each exam is given. Each room has a seating capacity, and some
rooms can have a penalty for their use. Exams can share a room, as long as the
capacity of the room is respected. The examination session is composed of days
defined over a specified length of time. Each day has a number of periods, each
period has a duration, and some periods can have a penalty for their use.

The hard constraints are:

Conflicts: A student can sit only one exam at a time.

Period length: The exam duration must be less than or equal to the period
duration.

Room capacity. The capacity of any room cannot be exceeded at any period.

Room exclusivity: An exam must take place in a room on its own.

Time-ordering: An order between pair of exams must be respected.
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The time-ordering hard constraints are After constraint, an exam i has
to be scheduled after exam j, Exclusion constraint, exams i and j have to
be scheduled at different periods, and Coincidence constraint, exams i and j

must be scheduled to the same period.

The soft constraints used to assess the terms of the objective function are:

Front-Load: Exams having a large number of students should be allocated in
the earlier periods of the session.

Period-Penalty: An exam should not be allocated to a penalized period.

Room-Penalty: An exam should not be allocated to a penalized room.

Non-Mixed-Duration: Exams allocated in the same period to the same room
should have the same duration.

Two-In-a-Row: For a student, exams that are scheduled back-to-back in the
same day should be avoided.

Two-In-a-Day: For a student, exams that are scheduled in the same day but
not back-to-back should be avoided.

Period-Spread: For a student, exams should be spaced out over a fixed num-
ber of periods.

Data and weights that involving assessing the soft constraints are provided
in the input file of each instance.

Two-In-a-Row, Two-In-a-Day and Period-Spread are spacing soft con-
straints that aim at spreading out exams taken by students over the exam
session.

3 Two-In-a-Row & Two-In-a-Day lower bounds

Here, we propose improvements for calculating lower bounds for Two-In-a-Row
and Two-In-a-Day spacing soft constraints. We consider them both individually
and together since they aim to prevent students sitting more than one exam a
day.

To the best of our knowledge, the first attempt to design lower bounds for
these soft constraints was proposed by Arbaoui et al. [6]. The idea is to use
cliques calculated on the conflict graph coded using the conflict matrix (see
Carter et al. [15]). The authors proposed three limits on the size of a clique
beyond which at least one violation of these spacing constraints occurs. Cliques
of sizes larger than these limits are selected. For every clique, contributions for
penalties of these spacing soft constraints are computed using a MIP formulation
that permits to obtain optimal values. The contributions of two cliques with
no common edge can be summed. To compute a lower bound, a family of
edge-disjoint cliques is built applying a greedy heuristic.
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A greedy heuristic building a family of edge-disjoint cliques provides an eval-
uation without any guarantee of optimality. Moreover, since selected cliques
have no common edges, some edges cannot be counted as violations. Further-
more, the greedy heuristic does not take account of Coincidence constraints
between exams.

We propose calculation of minimum numbers of violations in Section 3.1.
The limits allow us to know whether a clique induces at least one soft constraint
violation, but they do not allow minimum numbers of violations to be computed.

In Section 3.2, we propose a generic MIP model to compute lower bounds
for Two-In-a-Row and Two-In-a-Day soft constraints (individually or together).
The formulation we propose allows lower bounds to be computed optimally using
minimum numbers of violations and individual contributions of selected cliques.
This formulation ensures that a violation cannot be counted twice whilst taking
into account Coincidence constraints between exams.

3.1 Minimum number of violations

For a clique c of size k of the conflict graph, we propose to compute λR(k),
λD(k) and λRD(k), the minimum numbers of Two-In-a-Row, Two-In-a-Day, or
Two-In-a-Row and Two-In-a-Day spacing soft constraint violations.

The conflict graph G(E, AC) is defined as follows: E is the set of exams, and
for exams i and j, there is an edge [i, j] ∈ AC if at least a student takes the two
exams. Each edge [i, j] is weighted by wC

ij , the number of students taking exams
i and j. Every spacing soft constraint violation is assessed using the weight of
the associated edge. The number of soft constraint violations equals the number
of weighted edges to be summed to assess either the Two-In-a-Row term or the
Two-In-a-Day term of the objective function.

A day is said to be of type Di if it has i periods, and nDi is the number of
days of type Di. Not all the possible Di’s exist for a particular instance. We
denote δ as the set of numbers of periods that corresponds to the types of days
of an instance. As an example, δ = {2, 3, 4} means that we have types of days
D2, D3 and D4. Then, we denote ϕ =

∑

d∈(δ\{1}) nDd the sum of numbers of
D2, D3 and D4 days. Note that there are no D5 days, neither in the ITC2007
nor in the Yeditepe instances.

A clique corresponds to pairwise adjacent exams in the conflict graph, so
these exams must be allocated in different periods. The three limits on the size
of a clique beyond which at least one violation of Two-In-a-Row, or Two-In-a-
Day, or Two-In-a-Row and Two-In-a-Day occurs are the following:

LR =
∑

i∈δ

⌈

i

2

⌉

nDi

LD = nD1 + 2ϕ

LRD = nD1 + ϕ

LR: for Di days
⌈

i
2

⌉

exams can be allocated without any Two-In-a-Row
violation, one exam can be allocated in D1 and D2 days, and two exams can
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be allocated in D3 and D4 days with an empty period between the two exams.
LD: one exam can be allocated to a D1 day and two exams can be allocated

back-to-back to D2, D3 and D4 days without any Two-In-a-Day violation.
LRD: we can allocate at most one exam per day without any Two-In-a-Row

or Two-In-a-Day violation.
We have LRD ≤ LR, and if there is D3 or D4 types of days LRD ≤ LD.

To compute λR(k), λD(k) and λRD(k), that is to say the minimum numbers
of edges to be used to count penalties, the idea is to determine in which type
of day and period an exam has to be allocated to have the minimum number of
violations.

For Two-In-a-Row soft constraints, if k ≤ LR, no violation occurs.
If LR < k ≤ LR + nD2 + nD4, we have LR allocated exams without any

violation, one in D1 and D2 days, two in D3 and D4 days (empty period
between exams), next, each exam allocated to D2 or D4 days involves one
Two-In-a-Row violation, so we have k − LR Two-In-a-Row violations. When
k = LR + nD2 + nD4 exams are allocated, note that there is an empty period
in D3 and D4 days.

If LR + nD2 + nD4 < k, we have LR + nD2 + nD4 allocated exams, next,
each exam allocated to D3 or D4 days involves two Two-In-a-Row violations.
We have nD2 + nD4 + 2

(

k −
(

LR + nD2 + nD4
))

violations.

So, the following proposition holds to compute λR(k):

Proposition 1 Assume a clique c of size k, we have at least λR(k) Two-In-a-
Row violations where λR(k) is equal to:











0 if k ≤ LR

k − LR if LR < k ≤ LR + nD2 + nD4

nD2 + nD4 + 2
(

k −
(

LR + nD2 + nD4
))

otherwise

For Two-In-a-Day soft constraints, if k ≤ LD, no violation occurs.
If LD < k ≤ LD + nD3 + nD4, we have LD allocated exams without any

violation, we have two back-to-back exams in D2, D3 and D4 days, next, each
exam allocated to D3 or D4 days involves one Two-In-a-Day violation (three
exams are consecutive). We have k − LD violations.

If LD + nD3 + nD4 < k, we have LD + nD3 + nD4 allocated exams, only D4
days have an empty period, next, each exam allocated involves two Two-In-a-
Day violations. We have nD3 + nD4 + 2

(

k −
(

LD + nD3 + nD4
))

violations.

So, the following proposition holds to compute λD(k):

Proposition 2 Assume a clique c of size k, we have at least λD(k) Two-In-a-
Day violations where λD(k) is equal to:











0 if k ≤ LD

k − LD if LD < k ≤ LD + nD3 + nD4

nD3 + nD4 + 2
(

k −
(

LD + nD3 + nD4
))

otherwise
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For Two-In-a-Row and Two-In-a-Day soft constraints, if k ≤ LRD no
violation occurs.

If LRD < k ≤ LRD +ϕ, we have LRD exams allocated without any violation,
we have one exam per day, next, each exam allocated in D2, D3, D4 days
involves a violation (at most ϕ). We have k − LRD violations.

If LRD + ϕ < k ≤ LRD + ϕ + nD3 + nD4, we have LRD + ϕ allocated exams
(two exams in D2, D3 and D4 days), next, each exam allocated in D3 or D4
days involves two more violations. We have ϕ + 2

(

k −
(

LRD + ϕ
))

violations.
If LRD + ϕ + nD3 + nD4 < k, we have LRD + ϕ + nD3 + nD4 al-

located exams, only D4 days have an empty period, next, each exam
allocated in D4 days involves three violations. We have ϕ + 2

(

nD3 + nD4
)

+

3
(

k −
(

LRD + ϕ + nD3 + nD4
))

violations.

So, the following proposition holds to compute λRD(k):

Proposition 3 Assume a clique c of size k, we have at least λRD(k) Two-In-
a-Row or Two-In-a-Day violations where λRD(k) is equal to:


































0 if k ≤ LRD

k − LRD if LRD < k ≤ LRD + ϕ

ϕ + 2(k − (LRD + ϕ)) if LRD + ϕ < k ≤ LRD +ϕ + nD3 + nD4

ϕ + 2
(

nD3 + nD4
)

otherwise

+ 3
(

k −
(

LRD + ϕ + nD3 + nD4
))

Figure 1 provides an illustrative example. On the left, a clique c of k = 5
exams, {A, B, C, D, E}, is displayed with weighted edges (wC

ij are numbers of
students taken i and j exams).

BA C ED

w    = 10
2R

w    = 1
2D

A

B

C

D

E

100

100

100

100

100

100

2

1

1

1

D2 D3

feasible swaps

Optimal allocations of exams within days:

Penalty weights:

Clique c
ϕ = 2

LR = 3 LD = 4 LRD = 2

λR(5) = 3 λD(5) = 1 λRD(5) = 4

Figure 1: Example of a clique c for which Two-In-a-Row or Two-In-a-Day soft
constraint violations occur.

At the top right of Figure 1, the examination timetabling period has two
days, one D2 and one D3, so ϕ = 2. Values for the limits are (LR = 3) < k,
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(LD = 4) < k, and (LRD = 2) < k, we show that clique c contributes for
Two-In-a-Row or Two-In-a-Day penalties because at least one of these spacing
soft constraint violation occurs, so at least one edge has to be used in the
computation. However, the numbers of violations of these spacing constraints
are not known.

Applying the propositions:

• λR(5) = 3 = nD2 + nD4 + 2
(

k −
(

LR + nD2 + nD4
))

• λD(5) = 1 = k − LD

• λRD(5) = 4 = ϕ + 2(k − (LRD + ϕ))

For exams of every clique of size k = 5 to be planned within the examination
timetabling period three Two-In-a-Row violations occur, one Two-In-a-Day vio-
lation occurs, and four Two-In-a-Row or Two-In-a-Day violations occur. These
values correspond to numbers of weighted edges that contribute to evaluations
of corresponding penalties.

3.2 Generic formulation for C
2R, or C

2D, or C
2R + C

2D LBs

We propose a generic linear programming formulation to optimally compute
lower bounds for Two-In-a-Row (C2R term), or Two-In-a-Day (C2D term),
or Two-In-a-Row and Two-In-a-Day (C2R + C2D) spacing soft constraints.
The formulation ensures that an edge (a soft constraint violation) cannot be
counted twice whilst taking into account Coincidence constraints between ex-
ams of cliques.

We denote S a set of cliques c selected such that (|c| = k) is larger than a
chosen limit (see Section 3.1) and E(S) is the set of edges of all cliques in S.

The idea is to optimally select edges e = [i, j] of cliques c ∈ S which can
contribute once to lower bounds using λR(k), λD(k) and λRD(k), and using for
every clique c, the contributions for penalties Two-In-a-Row, or Two-In-a-Day,
or Two-In-a-Row and Two-In-a-Day denoted as T R(c), T D(c) and T RD(c).

To obtain the T R(c), T D(c) and T RD(c) optimal values we use a MIP model
presented in [7]. Problems to be solved closely resemble set cover problems.
All the exams in a clique have to be allocated within days in different periods.
Subsets of one, two, three or four exams are used to generate sets of permu-
tations. According to its size a permutation can be allocated to a type of day
(D1, D2, D3 and D4). Every permutation of a subset of exams can be assessed
since Two-In-a-Row or Two-In-a-Day violations may occur. The model finds
an optimal selection of some assessed permutations such that we cover at most
all the days and such that all the exams of the clique are allocated.

Not all permutations of a subset of exams need to be generated because many
of them have the same penalty induced by soft constraint violations. Breaking
symmetries saves many variables but one can further reduce the number of
permutations to be used. For the permutations of a subset of exams to be
allocated to a type of day a single assessed permutation is retained, since if this
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subset of exams is selected to cover one of the days of this type the permutation
used has a minimal penalty.

Using the clique c of Figure 1, we illustrate these insights. Let us consider
subsets of one, two and three exams to be allocated in D2 and D3 days.

For every day of type D2, and every different exams i and j, we have the
following two permutations: (i, j) for exam i in the first period and exam j

in the second period, and (j, i) for exam j in the first period and exam i in
the second period. These two permutations have the same penalty induced by
the Two-In-a-Row spacing soft constraint violation. We denote (i, j) ∼ (j, i)
for “same induced penalty”. Permutations with one exam i also need to be
considered, since in an optimal solution one exam may be allocated to a D2
day, we have: (i, ) ∼ ( , i).

For a D3 type of day and one exam i we have: (i, , ) ∼ ( , i, ) ∼ ( , , i).
For two exams i and j we have: (i, j, ) ∼ (j, i, ) ∼ ( , i, j) ∼ ( , j, i), and
(i, , j) ∼ (j, , i). For three exams i, j, k we have: (i, j, k) ∼ (k, j, i), and
(i, k, j) ∼ (j, k, i), and (j, i, k) ∼ (k, i, j).

We can further reduce the number of permutations. As an example consider
a subset of three exams, assume T RD(c) is to be assessed (Two-In-a-Row and
Two-In-a-Day), and permutations kept are (i, j, k), (i, k, j) and (j, i, k). Assume
next that in an optimal solution this subset of exams is allocated to a D3 day.
Since the solution is optimal the permutation used to cover a D3 day has a min-
imum penalty. Therefore, penalties can be computed for permutations (i, j, k),
(i, k, j) and (j, i, k) and the permutation with the smallest penalty retained.

Taking the example of Figure 1, subset of exams {C, D, E}, and weights
w2R = 10 and w2D = 1. So, (C, D, E) has a penalty of 22, (C, E, D) has a
penalty of 31, and (D, C, E) has a penalty of 31. The single permutation to be
retained in order to create a decision variable is (C, D, E).

On left, below, of Figure 1 the optimal allocations of exams are displayed,
feasible swaps depicted with curved arrows (symmetries). We obtain T R(c) =
30, T D(c) = 2 and T RD(c) = 32, the minimum contributions for penalties.

The generic linear programming formulation we propose to optimally select
edges of assessed cliques is the following:

Minimize:

∑

e=[i,j]∈E(S)

wC
ij(w2RXe + w2DYe) (1)

subject to:

∀e ∈ E(S) Xe + Ye ≤ 1 (2)

∀c ∈ S
∑

e=[i,j]∈ε(c)

Xe ≥ λR(c) (3)
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∀c ∈ S
∑

e=[i,j]∈ε(c)

Ye ≥ λD(c) (4)

∀c ∈ S
∑

e=[i,j]∈ε(c)

(Xe + Ye) ≥ λRD(c) (5)

∀c ∈ S w2R
∑

e=[i,j]∈ε(c)

wC
ijXe ≥ T R(c) (6)

∀c ∈ S w2D
∑

e=[i,j]∈ε(c)

wC
ijYe ≥ T D(c) (7)

∀c ∈ S
∑

e=[i,j]∈ε(c)

wC
ij(w2RXe + w2DYe) ≥ T RD(c) (8)

∀c ∈ S ∀e = [i, j] ∈ ε(c) such that j ∈ Ecoin

∀j′ such that [j, j′] ∈ Hcoin ∀e′ = [i, j′] ∈ E(S)

{

Xe = Xe′

Ye = Ye′

(9)

Xe, Ye ∈ {0, 1} (10)

Decision variable Xe = 1 if edge e contributes for a Two-In-a-Row violation,
zero otherwise, and decision variable Ye = 1 if edge e contributes for a Two-In-
a-Day violation, zero otherwise.

For all cliques in S, an edge cannot be counted twice for Two-in-Row and
Two-In-a-Day violations, these disjunctions are enforced using Equations (2).

For every clique, minimum numbers of edges involved are enforced using
Equations (3)-(5) (see Section 3.1). For every clique, minimum contributions
for penalties are enforced using Equations (6)-(8).

Since endpoints of edges are exams, we can consider Coincidence constraints,
if there are any, between exams in selected cliques. Coincidence constraints are
enforced using Equations (9). First consider two exams j and j′ subject to a
Coincidence constraint (i.e. [j, j′] ∈ Hcoin). Next consider an exam i, an edge
e = [i, j], and assume that edge e is selected for one of the spacing violations:
edge e′ = [i, j′] has also to be selected.

Preprocessing proposed in [7] ensures that the two edges e = [i, j] and
e′ = [i, j′] exist by propagating Coincidence constraints on the conflict graph
G(E, AC). Note that all edges added by applying this preprocessing have no
common students (wC

ij = 0) and have no impact in relation to penalties.
Equation (1) assesses the minimum weighted sum of edges e ∈ E(S) while

respecting for every clique c the minimum numbers of Two-In-a-Row, Two-In-
a-Day, and Two-In-a-Row and Two-In-a-Day soft constraints violations, the
minimum contributions for penalties, and the Coincidence constraints between
exams of the cliques.

An illustrative example for a conflict graph G(E, AC) with exams
{A, B, C, D, E, F, G, H} is shown on top left of Figure 2. We assume weights
w2R = 10 and w2D = 1. We have a common edge [A, B] weighted by wC

AB = 1
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between cliques c and c′ than cannot be counted twice, and a coincidence
constraint between exams E and G. For the sake of explanation cliques c and c′

are similar, exams {F, G, H} play the same role in clique c′ as exams {C, D, E}
in clique c (see also Figure 1).
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100
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1

Three optimal allocations of exams of cliques
with respect to coincidence constraint:

An optimal allocations of exams of cliques

C F

of clique c’ within days:
An optimal allocation of exams

value: 32

LB: 63
value: 32

LB: 54

Figure 2: Example for Two-In-a-Row and Two-In-a-Day lower bound.

On Figure 2, consider the feasible optimal allocations of exams of cliques c

and c′ (on left, below the conflict graph). The optimal penalty is equal to 32
for both cliques (see also Figure 1).

The greedy heuristic builds a family of edge-disjoint cliques composed of one
of the two cliques with a LB value of 32 for the Two-In-a-Row and Two-In-a-
Day (C2R + C2D) lower bound.

Without considering the coincidence constraint, the formulation computes
a lower bound with value of 54 = 10 + 22 + 22, we have 10 for exams {A, B}
allocated to D2 day, 22 for exams {C, D, E} allocated to D3, and 22 for exams
{F, G, H} allocated to D3. These values correspond to an optimal allocation of
the exams of the two cliques as shown bottom left on Figure 2. We achieve a
better lower bound.

With preprocessing, we now consider the coincidence constraint between
exams E and G.

At the top right of Figure 2 we display the new edges we add to the conflict
graph. For example, edge [E, H] with wC

EH = 0 is added to the conflict graph.
No student sits the exam E and the exam H, but exams E and G are subject
to coincidence constraint, and exams G and H are taken by some students, so
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exams E and H cannot be placed in the same period.
Let us consider Equations (9), and focus first on Xe variables associated

with a Two-In-a-Row soft constraint violation. All equations X[D,E] = X[D,G],
X[C,E] = X[C,G], X[G,H] = X[E,H], X[F,G] = X[E,F ] must be enforced (edges
e and e′). For example, if edge e = [D, E] is used to assess a soft constraint
violation (X[D,E] = 1), edge e = [D, G] must also be used (X[D,G] = 1), this
enforces the relative positions of exams {D, E, G} considering Two-In-a-Row
soft constraint violations. Using Equations (9), we also enforce the relative
positions of exams considering Two-In-a-Day soft constraint violations. By
Equations (2) we cannot have Xe = Ye. Hence, the coincidence constraint is
enforced without explicitly considering days or periods.

Considering the coincidence constraint, the formulation computes a lower
bound with value of 63 = 10 + 22 + 31. We achieve a better lower bound.

At the bottom right of Figure 2 we display three example of optimal allo-
cations of exams {A, B, C, D, E, F, G, H} with respect to the coincidence con-
straint between exams E and G.

We denote B the generic formulation that consists of Equations (1) to (10).
Numbers of variables are in the order of the number of edges O(|AC |) and
numbers of constraints are in the order of the numbers of edges and cliques
O(|AC |) + |S|) .

The proposed generic formulation B can be used to compute lower bounds ei-
ther for C2R, or C2D, or C2R+C2D. Cliques with common edges can contribute,
so no family of edge-disjoint cliques built using a greedy heuristic can provide
a better evaluation. The formulation also allows Coincidence constraints to be
enforced.

4 New formulation of spacing soft constraints

We recall the objective function for ITC2007 examination timetabling problem:
Minimize

CF L + CP + CR + CNMD + C2R + C2D + CP S (11)

where CF L, CP , CR, CNMD, C2R, C2D, CP S ∈ N. These seven terms corre-
spond to Front-Load, Period-Penalty, Room-Penalty Non-Mixed-Duration, Two-
In-a-Row, Two-In-a-Day, and Period-Spread.

Although it is able to solve smaller instances, the formulation proposed in
[22] requires a large amount of memory. Formulations proposed in [7, 17] aim
at reducing the numbers of hard and soft constraints. We denote M the formu-
lation presented in [7], F ′ the formulation proposed by [17] and O the original
formulation described in [22].

In practice it was observed by Fonseca et al. [17] for formulation F ′ and Ar-
baoui et al. [7] for formulation M that these formulations still faced difficulties
to be run on current generation of solvers. The required memory to instanci-
ate sizeable real problems with Two-In-a-Row, Two-In-a-Day, or Period-Spread
soft constraints is too large. Formulations O , F ′ and M have as many Two-In-
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a-Row, Two-In-a-Day, or Period-Spread soft constraints and variables as edges
in the conflict graph G(E, AC).

To assess the C2R, C2D and CP S terms, formulations O, F ′ and M use
two kind of equations. The first, based on edges [i, j] ∈ Ac such that wC

ij 6= 0,

detects if a violation occurs within days or within a period spread gap gP S , the
second count the numbers of students involved.

Based on the work of Glover [18], we propose a more compact formulation
for Two-In-a-Row, Two-In-a-Day, and Period-Spread soft constraints.

Considering the conflicting exams with an exam i, i.e. neighbors N (i) of i in
the conflict graph G(E, AC), the idea is to compute first an upper bound (UB)
of the number of students that can be involved if Two-In-a-Row, Two-In-a-Day,
or Period-Spread soft constraint violations occur, then, using this UB one can
aggregate the assessments of these soft constraints.

For an exam i, the value Ti is an upper bound of the number of students to
be counted:

∀i ∈ E Ti =
∑

j∈N (i)

wC
ij (12)

At most all the j ∈ N (i) exams are allocated in a period p if exam i is
not. Assuming exam i is allocated in a period q 6= p such that Two-In-a-Row,
Two-In-a-Day, or Period-Spread soft constraint violations occur, Ti is an upper
bound of the number of students to be counted.

We denote nE the number of exams, nP the number of periods and nDay

the number of days.

4.1 Revisiting the Two-In-a-Row soft constraints

For the Two-In-a-Row spacing soft constraint, the idea is to assess all the soft
constraint violations that occur when an exam i is allocated to a period p of a
day and some of its neighbors j ∈ N (i) are allocated to the period p + 1 of the
same day. We propose the following formulation:

C2R = w2R
∑

i∈E

∑

p∈P

Rip (13)

∀i ∈ E ∀p ∈ P yp(p+1) = 1
∑

[i,j]∈AC

wC
ijXP

j(p+1) − Ti(1 − XP
ip) ≤ Rip











(14)

where boolean decision variables XP
ip = 1 iff exam i is in period p, zero other-

wise. The variable Rip ∈ N assesses the number of students to be counted for
the Two-In-a-Row penalty if exam i is allocated to period p, and some exams
j ∈ N (i) are allocated in period p + 1 in the same day (parameter yp(p+1) = 1).

Considering Equations (14), if some exams j ∈ N (i) are allocated in period
p+1 we have for these exams XP

j(p+1) = 1 and
∑

[i,j]∈AC
wC

ijXP
j(p+1) ≤ Ti. When
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XP
ip = 0, exam i is not allocated in period p, we have Rip = 0 since we minimize

C2R term and Rip ∈ N. When XP
ip = 1, exam i is allocated in period p, all

Two-In-a-Row penalties are counted for all adjacent exams (i.e. [i, j] ∈ AC)
allocated in period p + 1. Hence, Equation (13) counts C2R term.

We now have O(nEnP ) Equations (13) and (14) compared to O((nE)2(nP )2)
for formulations O, F ′ and M (see [7, 17, 22]) using O(nEnP ) integer variables.

The number of integer variables can be further reduced to O(nE). An exam
i is allocated in a single period p, therefore all Rip are null but one. Equations
(13) and (14) can be advantageously rewritten as:

C2R = w2R
∑

i∈E

Ri (15)

∀i ∈ E ∀p ∈ P yp(p+1) = 1
∑

[i,j]∈AC

wC
ijXP

j(p+1) − Ti(1 − XP
ip) ≤ Ri











(16)

We have one XP
ip = 1 and

∑

[i,j]∈AC
wC

ijXP
j(p+1) ≤ Ri, therefore a unique

Equation (16) may set Ri ≥ 0, for all other Equations (16) XP
iq = 0 (p 6= q),

hence all Equations (16) are valid.

For Two-In-a-Row soft constraints, formulations O, F ′ and M require
O((nE)2) boolean variables, while we have a single integer variable Ri for each
exam i. Earlier formulations have O((nE)2(nP )2) equations while we now have
O(nEnP ) equations.

4.2 Revisiting the Two-In-a-Day soft constraints

For the Two-In-a-Day spacing soft constraint, the idea is to assess all the soft
constraint violations that occur when an exam i is allocated to a period p of a
day and some of its neighbors j ∈ N (i) are allocated to periods q > p + 1 of the
same day.

We denote Di ∈ N the variable which assesses the Two-In-a-Day penalties
for an exam i allocated in a period p and some exams j ∈ N (i) allocated in
periods q > p + 1 such ypq = 1 (same day). We propose:

C2D = w2D
∑

i∈E

Di (17)

∀i ∈ E ∀p ∈ P
∑

q∈P, q>p+1, ypq=1

∑

[i,j]∈AC

wC
ijXP

jq − Ti(1 − XP
ip) ≤ Di











(18)

For Equations (18), if some exams j ∈ N (i) are allocated in period q >

p + 1 such that ypq = 1 (same day) we have for these exams XP
jq = 1 and

∑

q∈P, q>p+1, ypq=1

∑

[i,j]∈AC
wC

ijXP
jq ≤ Ti. When XP

ip = 0, exam i is not allo-

cated in period p, we have Di = 0 since the C2D term is minimized and Di ∈ N.
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When XP
ip = 1, exam i is allocated in period p, all Two-In-a-Day penalties

are counted for all adjacent exams allocated in periods q of the same day (i.e.
ypq = 1) but not back-to-back (such that q > p + 1 ) with period p. A single
period p is used to allocate exam i, one Equation (18) may set Di ≥ 0 and all
other Equations (18) are valid. Hence, Equation (17) counts C2D term.

For Two-In-a-Day soft constraints, formulations O and M require O((nE)2)
boolean variables, formulation F ′ requires O(nEnDay) additional boolean vari-
ables, while we have a single integer variable Di for each exam i. We have
O(nEnP ) Equations (17) and (18) compared to O((nE)2(nP )2) Equations for
formulations O and M. Formulation F ′ requires O(nEnDay) additional equa-
tions to link the additional boolean variables to boolean decision variables XP

ip

and O((nE)2nDay) Equations for assessing while the proposed formulation uses
O(nEnP ) Equations (17).

4.3 Revisiting the Period-Spread soft constraints

We present the new formulation of period spread soft constraints for the sake
of homogeneity.

For the Period-Spread spacing soft constraint, the idea is to assess all the
soft constraint violations that occur when an exam i is allocated to a period p

and some of its neighbors j ∈ N (i) are allocated to periods q ∈ {p + 1, p + gP S}
within the period spread gap gP S .

We denote Si ∈ N the variable which assesses the Period-Spread penalties
for an exam i allocated in a period p and some exams j ∈ N (i) allocated in
periods q ∈ {p + 1, p + gP S} (within the period spread gap). We propose:

CP S =
∑

i∈E

Si (19)

∀i ∈ E ∀p ∈ P
∑

q∈{p+1,p+gP S}

∑

[i,j]∈AC

wC
ijXP

jq − Ti(1 − XP
ip) ≤ Si











(20)

Considering Equations (20), if some exams j ∈ N (i) are allocated in period
q ∈ {p+1, p+gP S} we have XP

jq = 1 and
∑

q∈{p+1,p+gP S}

∑

[i,j]∈AC
wC

ijXP
jq ≤ Ti.

When XP
ip = 0, exam i is not allocated in period p, we have Si = 0 since we

minimize CP S term and Si ∈ N. When XP
ip = 1, exam i is allocated in period

p, all Period-Spread penalties are counted for all adjacent exams allocated in
periods q ∈ {p + 1, p + gP S}. A single period p is used to allocate exam i, one
Equation (20) may set Si ≥ 0 and all other Equations (20) are valid. Hence,
Equation (19) counts CP S term.

For Period-Spread soft constraints, formulations O, F ′ and M require
O((nE)2) boolean variables, while we have a single integer variable Si for
each exam i. We have O(nEnP ) Equations (19) and (20) compared to
O((nE)2(nP )2) for formulation O and O((nE)2nP ) for formulations F ′ and M.
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4.4 Comparing formulations

We denote L the formulation that consists of equations of formulation M, ex-
cepted for equations that assess the Two-In-a-Row, Two-In-a-Day, or Period-
Spread terms replaced by Equations (15) to (19).

Earlier formulations faced difficulties to be run due to memory overload. Ta-
ble 1 compares numbers of variables, numbers of Hard constraints, and numbers
of Soft constraints.

Table 1 shows that the proposed formulation L has less variables and less
constraints than existing formulations, so requires less memory to instanciate
sizeable real problems.

O F ′ M L

Variables

nEnP nEnP nEnP nEnP

Boolean Hard +nEnR +nEnR +nEnR +nEnR

+nEnP nR +nEnP nR +nEnP nR +nEnP nR

Integer Hard nE

(nE)2 (nE)2 (nE)2

Boolean Soft +nDurnP nR +nDurnP nR +nDurnP nR nDurnP nR

+nEnDay

Integer Soft nP nR nP nR nP nR nP nR

+nE

H-Constraints

Conflict nSnP nSnP nEnP nEnP

Link nE

After nHaft(nP )2 nHaft nEaftnP nEaftnP

Coincidence nHcoinnP nHcoin nEcoinnP nEcoinnP

Exclusion nHexclnP nHexclnP

Room Exclusive nEnEsolenP nR nEnEsolenP nR nEsolenP nR nEsolenP nR

S-Constraints

CNMD nEnDurnP nR nEnDurnP nR nDurnP nR nDurnP nR

C2R (nE)2(nP )2 (nE)2(nP )2 (nE)2(nP )2 nEnP

C2D (nE)2(nP )2 (nE)2nDay (nE)2(nP )2 nEnP

+nEnDay

CP S (nE)2(nP )2 (nE)2nP (nE)2nP nEnP

Table 1: Comparing O, F ′, M and L formulations.

We denote nS the number of students, nR the number of rooms, nDur the
number of different durations for exams, nHaft the number of pairs [i, j] of ex-
ams that correspond to after constraints, nEaft the number of exams subject to
after constraints, nHcoin the number of pairs [i, j] of exams that correspond to
coincidence constraints, nEcoin the number of exams subject to coincidence con-
straints, nHexcl the number of pairs [i, j] of exams that correspond to exclusion
constraints, nEsole the number of exams subject to room exclusive constraints.
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All the formulations have the same numbers of boolean variables XP
ip (an

exam allocated to a period), XR
ir (an exam allocated to a room), XP R

ipr (an exam
allocated to a period and a room) used to enforce hard constraints.

For Conflict constraints (see H-Constraints), formulation M has O(nEnP )
equations whereas formulations O and F ′ have O(nSnP ) equations. Generally
nE ≪ nS , formulation M has fewer Conflict constraints and we use it for
formulation L.

After and Coincidence hard constraints: formulation F ′ introduced O(nE)
new integer variables (see Integer Hard), this requires O(nE) additional con-
straints to link these variables to XP

ip (see H-Constraints and Link). Formula-

tion O uses O(nHaft(nP )2) and O(nHcoinnP ) constraints, formulation F ′ uses
O(nHaft) and O(nHcoin) constraints, and formulation M uses O(nEaftnP ) and
O(nEcoinnP ) constraints without introducing additional variables. We use equa-
tions of formulation M for formulation L.

Existing formulations have as many spacing soft constraints as the number
of edges in the conflict graph G(E, AC) for assessing Two-In-a-Row, Two-In-
a-Day, or Period-Spread terms. Formulation L has as many spacing soft con-
straints as the number of exams. The proposed formulation L is more compact
to instanciate sizeable real-world problems than existing formulations.

5 Results

In this section we present results obtained on the ITC2007 and Yeditepe in-
stances. To make feasible comparisons on lower bounds with earlier results, we
consider Two-In-a-Row and Two-In-a-Day soft constraints (C2R + C2D term),
these results were obtained using sets of maximal cliques. We also use the sum
of two terms to compare the proposed formulation L to existing formulations
O, F ′ and M since both terms aim at preventing students sitting more than
one exam a day.

Tests were done using a CPLEX 12.5 MIP solver with a single thread and
MipEmphasis parameter set to feasibility, using C++ compiled with gcc ver-
sion 4.4.7, on a machine with an Intel Xeon E5-2670 and 8 GB of RAM. The
computing times are reported in seconds.

Characteristics of ITC2007 and Yeditepe datasets

Table 2 displays characteristics of the ITC2007 and Yeditepe datasets where
preprocessing is done. Preprocessing is performed in less than two minutes for
each instance (see [7]).

We report instance labels, numbers of exams nE and numbers of Coinci-
dence constraints nHcoin. Column |AC| reports numbers of edges of G(E, AC)
conflict graphs, and column ωAC

reports maximum clique sizes. We use the
code presented in [26] to compute maximum clique sizes and sets of maximal
cliques used to compute lower bounds. Columns LR, LD and LRD report the
limits of sizes of cliques beyond which at least one violation of Two-In-a-Row,
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nE nHcoin |AC| ωAC
LR LD LRD

1 607 2 10308 20 29 - 29
2 870 4 4466 15 24 26 13
3 934 82 13887 21 24 24 12
4 273 4 5792 17 14 14 7
5 1018 19 4890 13 28 28 14
6 242 18 2293 13 8 - 8
7 1096 13 12102 16 40 - 40
8 598 5 9213 17 41 79 40
9 169 2 1193 10 13 - 13

10 214 53 2340 18 22 22 12
11 934 82 13887 21 17 18 9
12 78 2 635 12 7 - 7

yue20011 126 0 1397 14 12 - 12
yue20012 141 0 1792 17 12 - 12
yue20013 26 0 84 6 4 - 4
yue20021 162 0 2320 16 14 - 14
yue20022 182 0 2781 20 14 - 14
yue20023 38 0 145 6 4 - 4
yue20031 174 0 2323 14 12 - 12
yue20032 210 0 3046 16 12 - 12

An LB computable: 15/20

Table 2: Characteristics of ITC2007 and Yeditepe instances. LR, LD and LRD

limits.

or Two-In-a-Day, or Two-In-a-Row and Two-In-a-Day soft constraint occurs
(see Section 3.1).

Instances 1, 6, 7, 9 and 12 have no D3 and no D4 types of day, so there is no
Two-In-a-Day soft constraint. All the Yeditepe instances have no Two-In-a-Day
soft constraints. For these instances, we reported - in column LD. Instances 1,
5, 7, 8 and 9 are such that ωAC

is less than each limit, so we cannot compute a
lower bound.

Instance labels for which a lower bound can be computed on C2R + C2D are
shown in bold.

Two-In-a-Row & Two-In-a-Day lower bounds

Computable lower bounds are tabulated in Table 3. Columns |AC| and |S|
report numbers of edges and sizes of sets of maximal cliques. Column |AC|.|S|
provides an estimate of the size of the matrix used by model B since number
of variables is of the order of O(|AC|) and the number of constraints is of the
order of O(|AC| + |S|) (see Section 3.2). For every sizeable ITC2007 instances,
the set of maximal cliques S is computed in less than two minutes, then, for all
selected cliques, we compute T R(c), T D(c) and T RD(c) contributions using the
MIP summarized in Section 3.2 in less than one hour.

To the best of our knowledge the first work on lower bounds was applied on
the first eight ITC2007 instances, column LB [6] reports the values for instances
2, 3, 4 and 6 for which C2R + C2D lower bounds can be computed.

To obtain an upper bound on C2R + C2D terms we use UniTime 4.0 [1],
while setting to zero the weights for other terms of the objective function. The
used approach is an improved version of the work presented by the winner of
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B
|AC| |S| |AC|.|S| LB [6] UBh LB t

2 4466 21 92841 10 10 10 10 O

3 13887 853 9732730 330 3300 670 5 O

4 5792 9935 55318080 291 16369 1620 9694 O

6 2293 12638 2268521 1740 5500 2600 70 O

10 2340 8 9064 - 0 0 3 O

11 13887 2262 25809420 - 13890 3970 5821 O

12 635 4501 2493554 - 2613 2030 3 O

yue20011 1397 249 347853 - 52 19 10 O

yue20012 1792 431 772352 - 119 30 18 O

yue20013 84 40 3360 - 29 13 4 O

yue20021 2320 139 322480 - 116 14 15 O

yue20022 2781 151 419931 - 195 34 23 O

yue20023 145 41 5945 - 56 20 6 O

yue20031 2323 187 434401 - 156 24 15 O

yue20032 3046 637 1940302 - 430 74 66 O

Table 3: Results for lower bounds on ITC2007 and Yeditepe instances.

ITC2007 examination timetabling track [25]. Column UBh reports the values.
Columns LB and t report results using formulation B and computing times.

Optimality is attained by formulation B for all instances for which a lower
bound can be computed (O in column t). Excepted for instances 4 and 11 for
which |AC|.|S| values is very large, the computing times for formulation B are
small. For instance 2, optimal value for C2R + C2D terms is obtained. For
instance 10, zero is attained for UB, so there exist solutions with no student
taking two exams a day.

Formulation B strickly improves the lower bound by up to 456% (instance
4) compared to results presented in [6]. For all Yeditepe instances, a LB can be
quickly computed. Knowing a minimum cost for these spacing soft constraints
on days is of practical interest. Instances yue20013 and yue20023 can be opti-
maly solved with costs 29 and 56 respectively (see [27]), we notice that the gaps
are 55% and 64%.

Gaps between UBh and LB are important. Formulation B optimally selects
a set of edges that corresponds to feasible allocations of exams to days without
considering capacity constraints. Capacity constraints limit numbers of exams
that can be allocated together, thus some exams should have been allocated
to other days leading to more Two-In-a-Row and Two-In-a-Day soft constraint
violations.

Examination timetabling problems are hard problems that have been widely
investigated in the literature using heuristic approaches. Results on benchmarks
are regularly improved applying these solution methods. Approaches for com-
puting lower bounds for Two-In-a-Row and Two-In-a-Day soft constraints have
been investigated less extensively. Bridging the gap between theory and practice
remains challenging. As a comparison of columns LB and UB shows, there is
still room for improvement.

We proposed an exact method that provides better results than selecting
edge-disjoint cliques applying a heuristic. The proposed generic formulation B
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uses minimum numbers of spacing soft constraint violations, and contributions
of cliques. Formulation B ensures that each edge is used once while enforcing
coincidence constraints on exams. For spacing soft constraints within days, the
formulation allows lower bounds to be computed optimally. for Two-In-a-Row,
or Two-In-a-Day, or Two-In-a-Row and Two-In-a-Day soft constraints. Better
results are achieved compared to earlier proposed lower bounds.

Comparing formulations O, F ′, M and L on C2R + C2D

In this section we consider the Two-In-a-Row and Two-In-a-Day terms of
the objective function. Results for formulations O, F ′, M and L are given in
Table 4. The first column reports instance labels, and column UBh reports
values running one hour long the code [1]. Colums UB and t show values
obtained (UB) and computing times (t) for formulations. A one-hour time limit
is used, when reached, - is reported. When no solution can be found, ns is
reported (no solution). When the eight-gigabyte size limit is reached, OM, for
out-of-memory, is reported. For formulations O, F ′, M and L, bold is used for
best results.

O F ′ M L
UBh UB t UB t UB t UB t

1 0 ns - ns - ns - ns -
2 10 OM 590 - 140 - 235 -
3 3300 OM ns - ns - ns -
4 16369 ns - ns - ns - ns -
5 0 0 78 135 - 0 77 0 1834
6 5500 5460 - 4910 - 5160 - 4580 -
7 0 OM 0 685 0 687 0 1414
8 0 0 231 0 1246 0 300 0 410
9 0 0 21 0 735 0 17 0 246

10 0 0 22 0 204 0 54 0 242
11 13890 OM ns - ns - ns -
12 2913 4725 - 3185 - 3675 - 3115 -

yue20011 52 158 - 112 - 84 - 73 -
yue20012 119 298 - 184 - 190 - 162 -
yue20013 29 29 5 29 4 29 2 29 3
yue20021 116 182 - 243 - 149 - 125 -
yue20022 195 7046 - ns - 396 - 365 -
yue20023 56 56 9 56 - 56 5 56 46
yue20031 156 274 - 316 - 322 - 255 -
yue20032 430 8386 - 657 - 648 - 550 -

Table 4: Comparison of formulations O, F ′, M and L on ITC2007 and Yeditepe
instances.

Cliques and Data-dependent Dual-Feasible Functions (DDFF) valid in-
equalities are experienced in [7] and better results were achieved, formulation L
is also run using these valid inequalities.

Formulations F ′ and M proposed in [7, 17] aim at reducing numbers of
hard and soft constraints. No out-of-memory (OM) using 8 GB are reported in
columns for improved formulations. These formulations can be run on standard
computers.

For instances 1, 3, 4 and 11, no solution is attained within the time limit,
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regardless of the considered formulation. For instances 5, 7, 8, 9 and 10, all
compact formulations obtained solutions with no student taking two exans in
the same day (zero cost), using at most half an hour computing time.

For instances 6 and 12 of the ITC datasets, better results are attained using
formulation L. For all Yeditepe instances, optimal solutions or better results
are attained using formulation L compared to others. Formulation M obtains
the best result only for instance 2. Formulation F ′ does not provide a solution
for the yue20022 instance.

Given the difficulty of timetabling problems, running MIP formulations on
sizeable real problems can still be problematic. Nowadays heuristic approaches
provide better solutions, as can be seen by looking at Table 4 and comparing
column UBh with the tabulated results. However, comparing the results of
heuristic and formulation L, we have UBh = 5500 and UB = 4580 for instance
6. A better result is achieved within the one hour time limit.

Table 4 clearly shows that from formulation O to formulation L improve-
ments were obtained. There is however still room for improvements for bridging
the gap between exact methods and meta-heuristic approaches.

The proposed formulation L reduces the number of variables and constraints
for Two-In-a-Row and Two-In-a-Day spacing soft constraints. It is much more
compact and can be run on current generations of solvers to provide results
within a reasonable computing time.

6 Conclusion

In this paper we proposed improvements to lower bounds and new mathematical
formulations for the spacing soft constraints that seek to prevent students sitting
more than one exam a day, as defined in the ITC2007 examination timetabling
track.

We proposed a generic MIP model to compute lower bounds for Two-In-a-
Row and/or Two-In-a-Day spacing soft constraints. The proposed MIP model
computes lower bounds by optimally selecting edges of a set of cliques using
their individual contributions whilst taking into account exam-coincidence hard
constraints. Better lower bounds were achieved than in previous results in the
literature.

In existing mathematical formulations of spacing soft constraints the num-
ber of equations is in the order of the square of the number of exams. We
proposed new formulations of the spacing soft constraints that use as many soft
constraints as the number of exams. Our new formulations yield a model that is
more compact than existing models. Models are compared with respect to the
Two-In-a-Row and Two-In-a-Day terms of the objective function. Using these
new formulations, better results were achieved than with existing mathematical
formulations.

Although heuristics provide high-quality solutions nowadays, it should be
noted that for the benchmark instances considered in this paper, no solution
has so far been attained that can also be proved to be optimal (other than for
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the two small Yeditepe instances). Some effort still needs to be put into the
development of lower bounds and exact methods that are able to validate the
quality of heuristics and bridge the gap between theory and practice.
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