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Flows of granular media in air or in a liquid have been a research field for physicists 
for several decades. Sometimes solid, sometimes liquid, these particulate materials exhibit 
peculiar behaviors, which have motivated many studies at the frontiers between nonlinear 
physics, soft matter physics and fluid mechanics. This paper presents a summary of the 
recent advances in the field, with a focus on the development of continuous approaches, 
which make it possible to treat granular media as a complex fluid and to develop a 
granular hydrodynamics. We also discuss how the better understanding of granular flows 
we have today may help to address more complex materials, such as colloidal suspensions 
or some biological systems.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Les écoulements de milieux formés de grains dans l’air ou dans un liquide intéressent 
les physiciens depuis plusieurs décennies. Tantôt solides, tantôt liquides, ces matériaux 
divisés ont des comportements singuliers qui sont au cœur de nombreuses études à la 
frontière entre la physique non linéaire, la physique de la matière molle et la mécanique 
des fluides. Cet article se propose de faire un point sur les avancées récentes dans le 
domaine, en se concentrant sur le développement d’approches continues qui permettent 
de traiter le milieu comme un fluide complexe et de développer une hydrodynamique 
granulaire. Nous discutons également en quoi la compréhension plus fine des écoulements 
granulaires que nous avons aujourd’hui permet de mieux appréhender les matériaux plus 
complexes comme les suspensions colloïdales, voire certains milieux biologiques.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Examples of granular media and illustration of the different interactions playing a role as a function of the size d of the particles.

1. Introduction: grains at different scales

What is in common between the mortar prepared by a worker in a mixer and a plant, which recovers a vertical pos-
ture after being tilted by the wind? Although very different, both situations involve to some extent the flow of a pile of 
grains. Coarse sand and gravels are avalanching in the rotating mixer while microscopic starch grains are avalanching in 
the statocytes, the specific cells in plants dedicated to the detection of the gravity direction. Understanding the dynam-
ics of grain flows is thus important in many different situations, from industrial applications (for example in construction 
industry, pharmaceutical industry, food industry) to natural processes (for example, avalanches, debris flows, soil erosion, 
plant gravitropism), and at very different scales. The description of dense granular media still represents a real challenge, 
mainly because this multi-body system involves complex particle interactions [1–3]. The quest for a continuum description 
for particulate flows is not finished, although advances have been made during the last 20 years, which are discussed in 
this paper.

The properties of dense particulate flows depend on the particle size as illustrated in Fig. 1, the main reason being that 
interaction forces between solid grains strongly depend on their size. For particles typically larger than d > 100 μm, the 
dominant forces are due to direct mechanical contacts involving normal compression and tangential frictional forces, and 
when the grains are immersed in a liquid, to hydrodynamics interactions induced by the motion of the interstitial fluid. 
For smaller particles, typically d < 100 μm, other colloidal forces come into play, such as van der Waals or electrostatic 
interactions, or entropic forces induced, for example, by polymer brushes at the surface of the grains. At even smaller 
sizes, when d < 1 μm, particles start to be sensitive to the thermal agitation of the solvent, and Brownian motion becomes 
important. In this review, we start by considering large particles for which only contacts and hydrodynamic interactions play 
a role, before discussing the case of small particles, where complexity arises from the existence of other interaction forces. 
In the course of this paper, we will discuss results from experiments using model particles (often spherical beads), and also 
results from discrete numerical simulations, which consists in solving the motion of each individual grain from Newton laws 
using model force interactions to describe the contacts, and in solving the flow of the liquid between the grains [4].

2. Large particles: granular media and suspensions

Dry granular media or granular suspensions refer to media made of grains larger than 100 μm in air or fully immersed 
in a liquid. In this case, the dynamics is controlled by the collisions and the frictional contacts between the grains and, for 
suspensions, also by the hydrodynamic interactions. The case of partially immersed grains, which corresponds to systems 
where capillary forces come into play, is not discussed here, but belongs to the class of cohesive materials, which may share 
resemblance with the powders described in section 3.1. Although they look simple at first sight, granular media still resist 
a complete description able to predict their behavior in the whole range of observed regimes, from very dilute and agitated 
media to very dense and jammed systems. In the following, we discuss how a first approach to the rheology of granular 
flows can be inferred from simple dimensional arguments.

2.1. Rheology of granular media and suspensions

To study the rheology of complex fluids (i.e. the flow behavior in response to an applied force), the traditional approach 
consists in considering the plane shear configuration. The fluid of interest is confined between two plates separated by a 
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distance h, the top plate moving at a velocity u so that the fluid is sheared at a constant shear rate γ̇ = u/h. Classical 
rheology consists in measuring how the shear stress τ exerted by the fluid on the top plate varies with the shear rate γ̇ . 
In the case of granular materials and suspensions, another crucial parameter has to be considered, namely the granular 
pressure P p. When sheared, the packing of grains pushes on the wall and exerts a normal stress P p on the wall. As a 
consequence, there exist two ways to study the rheology of granular systems. In the classical way, the material is sheared 
at a constant volume, keeping the distance between the two plates constant. In this case, one has to measure how both the 
shear stress τ and the normal granular stress P p vary with the shear rate for a given volume fraction of grains φ, where φ is 
the ratio of the volume occupied by the grains to the total volume of the sample. However, a second method has proved to 
be relevant for granular media and consists in shearing the material by imposing the granular pressure (more precisely, by 
imposing on the top plate of the shear cell the vertical normal stress on the grains). In the latter case, the volume occupied 
by the grains is free to adjust. In the following, we start by describing the pressure-imposed rheology before presenting the 
volume-imposed rheology and discussing the connection between the two.

2.1.1. Pressure-imposed rheology
The concept of pressure-imposed rheology has been introduced initially for dry granular media [5] and generalized later 

to suspensions [6]. The motivation was that, in many situations of interest in applications, the volume fraction of the grains 
is not controlled. A typical example is the case of granular avalanches when grains flow down a plane (in air or in a liquid) 
[7]. In this case, gravity imposes the stress distribution, but the volume occupied by the grains adapts, and the flowing 
granular layer may dilate or contract depending on the conditions (the grains being more or less agitated). Pressure-imposed 
rheology has been first developed to describe the properties of free surface flows and consists in prescribing a shear rate γ̇
keeping the granular pressure P p constant. This is achieved in a shear cell, where the top plate is free to move vertically 
and submitted to a constant vertical force (Fig. 2a). The top plate imposed the granular pressure P p on the grains [5]. The 
two measured quantities characterizing the rheological behavior of the material in this condition are the shear stress τ and 
the volume fraction φ, which both depend on the shear rate γ̇ and on the imposed pressure P p. Interestingly, in the limit 
of infinitely rigid particles of density ρp and diameter d interacting only through frictional contacts, dimensional analysis 
imposes that the system is controlled by a single dimensionless parameter called the inertial number: I = γ̇ d/

√
P p/ρp. 

The inertial number is equal to the shear rate made dimensionless using an inertial time scale based on granular pressure. 
Consequently, from dimensional analysis again, the shear stress τ has to be proportional to the pressure P p (the only stress 
scale in the problem), with a coefficient of proportionality (a macroscopic coefficient of friction) being a function of I . For 
the same reason, the volume fraction φ has also to be a function of the inertial number I only, such that:

τ = P pμ(I) and φ = φ(I), (1)

where I = γ̇ d√
P p/ρp

The evolution of the two dimensionless functions μ(I) and φ(I) as a function of the inertial number I are sketched in 
Fig. 2a [5]. The macroscopic friction coefficient μ(I) starts at a constant value μc when I → 0, and experiments suggest 
that it tends to a second constant μ2 when I → ∞. The volume fraction φ is a decreasing function of the inertial number, 
with a maximum value φc when I → 0 [8].

The case of a suspension when the particles are immersed in a liquid of the same density and of viscosity ηf can be 
addressed following the same formalism (Fig. 2b). The suspension is sheared by a porous top plate, free to move vertically. 
The mesh of the plate is smaller than the particle size and the liquid can flow through it. In the limit of the viscous 
regime, when inertia plays no role, the rheology is controlled by a single dimensionless number called the viscous number 
J = ηfγ̇ /P p, being equal to the shear rate made dimensionless using a viscous time scale based on the granular pressure. 
The friction coefficient and the volume fraction are then given by the following relations:

τ = P pμ( J ) and φ = φ( J ), (2)

where J = ηfγ̇
P p

The friction coefficient μ( J ) and the volume fraction φ( J ) are sketched in Fig. 2b. The friction coefficient is an increasing 
function of the viscous number starting at the same value μc as in the dry case and increases linearly when J → ∞. The 
volume fraction is equal to the same maximum value φc as in the dry case in the quasi-static limit J → 0, and decreases 
when J increases. Direct experimental measurements of μ( J ) and φ( J ) have been possible in a rheometer specifically 
designed to impose a constant normal stress [6,9].

The rheology of dry granular media and suspensions under pressure imposed conditions thus share similarities and are 
both described in term of a frictional law. In the quasi-static limit, when I → 0 or J → 0, no distinction can be made 
between a dry granular medium and a suspension: the maximum flowing volume fraction φc and the quasi-static friction 
coefficient μc are the same, suggesting that this limit is controlled by contact properties only. Experiments and numerical 
simulations shows that φc ≈ 0.59 for spheres interacting with frictional contacts (less than φrcp = 0.64, the volume fraction 
of random close packing) and that μc ≈ 0.4. It is important to note that φc increases when the interparticle friction coeffi-
cient μp decreases to zero, and for the case of frictionless particles (μp = 0), numerical simulations suggest that φc coincides 
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Fig. 2. a) Pressure-imposed rheology for dry granular media, and sketches of the friction coefficient μ and the volume fraction φ as a function of the 
inertial number I; b) pressure-imposed rheology for suspensions, and sketches of the friction coefficient μ and volume fraction φ as a function of the 
viscous number J ; c) volume-imposed rheology for granular media, and sketches of the two Bagnold functions fs and fn as a function of the volume 
fraction φ; d) volume-imposed rheology for suspensions, and sketches of the shear and normal viscosities ηs and ηn as a function of the volume fraction φ.

with φrcp [10]. The quasi-static friction coefficient also decreases when decreasing the interparticle friction coefficient, but 
remains finite and equal to μc ≈ 0.1 for frictionless particles [10,11].

2.1.2. Volume-imposed rheology
The more conventional rheological approach consists in shearing the material keeping the distance between the two 

plates constant, i.e. keeping the volume fraction φ of the particles constant. In this configuration, the measured quantities 
are the shear stress τ and the granular pressure P p, which are functions of the shear rate γ̇ and of the volume fraction φ. 
The rigidity of the particles implies that there exists no intrinsic stress scale nor intrinsic time scale. For dry granular 
material made of particles of diameter d and density ρp, dimensional analysis thus implies that the shear and the normal 
stress τ and P p are given by the following expressions:

τ = ρp d2γ̇ 2 f s(φ) and P p = ρp d2 γ̇ 2 fn(φ) (3)

where f s(φ) and fn(φ) are two dimensionless increasing functions of φ, which appear to diverge close to the maximum 
volume fraction φc (Fig. 2c). The variation of the stresses with the square of the shear rate is often called the Bagnold law, 
following the pioneering work of Bagnold [12], who first experimentally evidenced the square variation of the stress with 
the shear rate.

Viscous suspensions, made of the same rigid particles but now immersed in a liquid of viscosity ηf can also be analyzed 
within the same framework. The suspension prepared at a volume fraction φ is sheared at a shear rate γ̇ (Fig. 2b). In the 
viscous regime, when the inertia of the particles and of the fluid is negligible, dimensional analysis implies that the shear 
and normal stresses vary linearly with the shear rate as:
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Fig. 3. Examples of simulations of granular flows using a continuum description; a) realistic simulations of flow of sand manipulated by hands from [16,17]; 
b) prediction of the flow in a silo from [18]; c) fingering instability observed when a granular front made of two sizes of particles flows down an inclined 
plane from [19]; d) flow of a suspension in a pipe, leading to a migration of the particles toward the center (from [20]).

τ = ηf γ̇ ηs(φ) and P p = ηf γ̇ ηn(φ) (4)

where ηs(φ) and ηn(φ) are called the shear and normal relative viscosity respectively, and are two dimensionless increasing 
functions of φ, which also diverge close the maximum volume fraction φc [13,6,14].

The existence of two different descriptions (volume-imposed and pressure-imposed) can be perturbing for the neophyte 
interested in granular rheology. The material is described as a frictional material in the pressure-imposed approach, with a 
yield stress and a shear stress proportional to the pressure, whereas it is described as a viscous or Bagnold liquid in the 
volume-imposed approach, with no yield stress. This illustrates the fact that the behavior of granular materials strongly 
depends on the way they are manipulated. The two approaches are of course fully equivalent, and one can easily switch 
from one description to another, the two functions μ(I) and φ(I) (respectively μ( J ) and φ( J ) for suspensions) being 
related to the two functions fs(φ) and fn(φ) (respectively ηs(φ) and ηn(φ)). Assuming that the function φ(I) (resp. φ( J )) 
is monotonic, it can be inverted to obtain I(φ) (resp. J (φ)). When injected in the definition of the inertial number I
(resp. viscous number J ), it comes that fn(φ) = 1/I(φ)2 (resp. ηn(φ) = 1/ J (φ)) and fs(φ) = μ(φ)/I(φ)2 (reps. ηs(φ) =
μ(φ)/ J (φ)). The equivalence between pressure- and volume-imposed rheologies gives also information about the divergence 
of the functions fs(φ), fn(φ), ηs(φ), and ηn(φ) close to φc. The observation that the friction coefficient tends to a finite value 
in the quasi-static limit I → 0 or J → 0 implies that the two functions fs(φ) and fn(φ) diverge in the same manner when 
φ → φc (the same with the two functions ηs(φ) and ηn(φ)), to insure that the ratio remains finite. Finally, the divergence 
close to φc can be written as a power law, i.e. fs(φ) ∝ fn(φ) ∝ (φc −φ)−αgran , ηs(φ) ∝ ηn(φ) ∝ (φc −φ)−αsus . Our experiments 
show that αsus is close to 2 for frictional particles [13,6,9], but may be larger, about 2.8, for frictionless particles [15]. For 
the case of dry granular material, the divergence observed in numerical simulations is also close to αgran ∝ 2.

2.2. Towards hydrodynamics of granular media

The knowledge of the response of a granular medium submitted to a plane shear has been used as a starting point to 
develop a full tensorial rheological model, able to describe complex flow configurations with shear in different directions. 
For dry granular media, the generalization of the frictional approach in terms of a friction coefficient depending on the 
inertial number seems a promising route. For suspensions, the presence of the liquid phase has to be taken into account, 
and two-phases flow approaches have been developed.

2.2.1. Continuum modeling of dry granular media
For dry granular media, the pressure-imposed approach appears to be the most relevant, as in most configurations, the 

volume fraction of grains is not prescribed and the system is free to dilate or contract. This has motivated the development 
of a simple description, based on a three-dimensional generalization of the μ(I) friction law, assuming that the material 
is incompressible and that the shear stress tensor is collinear with the rate-of-deformation tensor [21]. This approach is 
equivalent to a visco-plastic description, in which both the yield stress and the viscosity are pressure-dependent quantities. 
Such a description has been implemented in fluid mechanics codes, and quantitative predictions have been made for flows 
on inclined plane, flows in silo [22,18], granular collapses of columns [23,24]. Stability properties for flow on inclined planes 
have been predicted within this framework [25]. A modified version of the μ(I) rheology preventing negative pressure 
has been recently developed, and gives realistic results in situations as complex as hands manipulating dry sand [16,17]
(Fig. 3). In geophysics, many applications involve granular layers on slopes, with a typical thickness much smaller than the 
flow length. In these configurations, a depth-averaged approach is relevant, which consists in writing mass and momentum 
equations integrated over the flow thickness. A whole corpus of works has been devoted to this approach, implementing the 
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frictional rheology of granular media in depth-averaged equations [26–28]. Recent studies are able to describe segregation 
phenomena and the appearance of complex fingering pattern at the front of an avalanche flowing down a slope [19] (Fig. 3c). 
Although several limits exist to this approach that will be discussed later in this paper, an increasing number of studies 
show that this simple frictional rheology μ(I) captures important features of granular flows in complex situations. A last 
important remark concerns the existence of nonphysical instabilities in certain range of parameters of the generalized μ(I)
rheology [29]. It has been shown that a short-wave instability may appear close to the quasi-static regime, or at high inertial 
number, which is reminiscent of an ill-posedness of the system of equations.

2.2.2. Continuum modeling of suspensions
The case of suspensions is more complex than the case of dry granular media due to the presence of the interstitial 

fluid. In many situations, a relative motion takes place between the liquid and the grains, and the dynamics of both phases 
needs to be properly described. Two-phase flow models have been developed, that consist in considering the fluid and the 
grains as two intricate continuum phases, and in writing the mass and momentum equations for each of them [30–32]. 
The difficulty lies in the choice of the stresses for each phase and in the choice of the interphase force [33]. The granular 
rheology discussed in the previous section provides expressions for the granular stresses, which can be injected in two-phase 
flow models to give predictions in different configurations.

For the expression of the granular stresses, we have the choice between the description in terms of the volume-imposed 
rheology (the viscous description) or in terms of the pressure-imposed rheology (the frictional description). Although the 
two descriptions are equivalent, depending on the configuration, it may be more convenient to use one or the other. For 
example, the flow of a suspension in a pipe when the particles and the fluid have the same density is typically tackled 
using the volume-imposed rheology and the description in terms of an effective viscous fluid, because the volume fraction 
is well controlled, whereas the particle stress adjusts. By contrast, the flow of dense grains immersed in a lighter fluid and 
avalanching down an inclined plane is a configuration where the volume fraction adjusts, and stresses are prescribed by 
gravity, meaning that the frictional description of the pressure-imposed rheology is more convenient.

An illustration of the success of the two-phase flow approach is the so-called migration phenomenon sketched in Fig. 3d 
[20]. An initially homogeneous suspension is injected in a pipe. The medium being equivalent to an effective viscous liquid, 
the velocity profile is a parabola, reminiscent of a Poiseuille flow. However, after a certain distance, the particles migrate 
to the center, and the concentration is higher in the middle of the pipe than on the wall, and the velocity profile presents 
a pseudo plug region in the center part. Qualitatively, the migration can be explained by considering the effect of particle 
pressure gradients. Initially, when the suspension is homogeneous, the shear rate is maximum close to the wall and vanishes 
in the center. From the expression of the granular pressure – Eq. (4) – this implies that P p is maximum on the wall and 
vanishes at the center. This gradient of granular pressure creates a net body force on the particle phase from the region 
of high pressure to the region of low pressure, i.e. from the wall to the center, explaining the migration. This inward flux 
of particles is compensated by a outward flux of liquid. The migration stops when gradients of volume fraction are such 
that the granular pressure is homogeneous across the section. This phenomenon can be captured using the two-phase flow 
approach [34,33,35].

2.3. Microscopic origin of the rheology

We have discussed in the preceding sections the progress made in the continuum description of granular media and 
suspensions. However, the constitutive laws used in these approaches remain empirical. Relating the macroscopic behavior 
of the medium to the dynamics and to the properties of the individual grains remains a challenge. For example, predicting 
the value of the macroscopic friction coefficient from the properties of the grains (shape, interparticle friction coefficient), 
is still out of reach. However, numerical simulations using discrete element methods has been a powerful tool to investigate 
the dynamics of the grains and their collective motion, giving keys for developing theoretical analysis.

The most advanced theory has been developed for the dilute and agitated flow regime of granular media, called the 
granular gases [38]. In this regime the particles interact through collisions. The main difference with a molecular gas lies in 
the dissipative nature of the collisions. In the 1980s, a kinetic theory for granular gases has been developed [39], which has 
been much improved since, leading to quantitative predictions for shear flow in gaseous states [40]. However, the standard 
kinetic theory fails to properly describe dense granular flows when approaching the maximum volume fraction. When the 
volume fraction increases, the system leaves the pure collisional regime and particles experience enduring contacts, leading 
to cooperative motions. A first approach to capture the dense regime consists in modifying the kinetic theory. The Extended 
Kinetic Theory developed in [41] introduces a correlation length L, and considers that the dissipation is controlled by 
collisions between clusters of size L. This theory correctly predicts flows down inclined planes.

However, to describe and understand precisely the physics of granular flow or suspensions close to the maximum volume 
fraction, more detailed analysis of the fluctuating motion and the associated correlations have been necessary. Fig. 4 shows 
both the contact force network between the particles (Fig. 4a) and the fluctuating velocity around the mean applied linear 
shear profile (Fig. 4b) for two different volume fractions. Force chains are observed, which become more pronounced and 
extend on a longer domain when the volume fraction approaches the maximum volume fraction. The velocity fluctuations 
are also much more important and form vortex-like pattern when approaching φc. Theoretical approaches inspired from 
statistical physics of jammed systems have been developed to characterize this highly correlated fluctuating motion and to 
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Fig. 4. Evolution of the force network; (a) (data from [36]) and of the fluctuating velocity field; (b) (data from [37]) for two different volume fractions 
approaching the maximum volume fraction; (c) cartoon illustrating the amplification of the fluctuations when approaching the maximum volume fraction 
(the so-called lever effect).

predict scaling laws close to φc [42,43]. The key ingredient is that the dissipation is enhanced because fluctuating motions 
are amplified close to jamming. This is called the lever effect [44,15]: because the system is close to a rigid transition, there 
exist only few degrees of freedom to deform, meaning that, to satisfy the macroscopic imposed deformation, the system 
exhibits more and more tortuous motions when approaching φc. The cartoon of Fig. 4c illustrates the lever effect with the 
simple system composed of two beads, one being fixed and the other being pushed horizontally. The rigidity transition cor-
responds to the two particles being aligned horizontally. In this cartoon, a system far from φc is represented by a particle 
far from horizontal (left in Fig. 4c). Imposing a horizontal displacement (the red arrow in the figure) leads to a larger real 
displacement displayed in green, due to the non-penetrability condition. The case of a system close to φc corresponds, in 
this cartoon, to a sphere almost aligned with the horizontal (on the right in Fig. 4c), where from geometrical arguments it is 
straightforward to show that the real displacement imposed by the same horizontal displacement is amplified. The amplifi-
cation of the fluctuations then induces more collisions in the dry case, and more viscous dissipation in the suspension case. 
The lever effect has been used as the starting point in theoretical approaches predicting the divergence of the constitutive 
laws when approaching φc [42,43]. No doubt that the progress made in the understanding of the microscopic dynamics at 
the grain scale will help developing more accurate constitutive laws in the future.

2.4. Beyond simple rheology

The constitutive laws discussed in the previous sections are based on the generalization of the properties of steady 
uniform plane shear flows. Although real successes have been obtained in predicting complex configurations, this simple 
approach fails to properly capture the details of unsteady and non-uniform flows.

A first missing ingredient concerns transient flows. It is well known that a granular material can be prepared at rest 
at different volume fractions, higher or lower than the maximum volume fraction measured under a steady shear φc. This 
means that when sheared, a medium prepared at a volume fraction denser than φc has to dilate (the well-known Reynolds 
dilatancy), and that a packing looser than φc has to compact. As a result, a pile initially prepared in a dense state does not 
behave the same as a pile prepared in a loose state [45]. The influence of the preparation is even more pronounced for 
immersed granular media, as illustrated in Fig. 5a. A column of grains immersed in water initially prepared in a loose state 
spreads far and fast when released [46]. When prepared in a dense state, the collapse of the column is much slower and 
stops early. In this example, the coupling with the liquid phase plays a major role: during the dilatation phase of the dense 
case, liquid is sucked in between the grains, creating an additional compressive stress, which enhances the friction and 
decreases the mobility. For the initially loose case, the phenomenon is reversed. The initial compaction phase is associated 
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Fig. 5. a) Submarine collapse of granular column showing that the initial preparation of the packing in a dense or in a loose state strongly influences the 
dynamics [46]. b) Evidence of non-local effects in a Couette geometry: a rod submitted to a force F and immersed in the medium far from the shear band 
starts moving as soon as the inner cylinder rotates, although no macroscopic motion is observed around it [52]. c) Starting (open circles) and stopping 
(black dots) angles of a layer of grains on an inclined plane as a function of the thickness h/d of the layer [53].

with liquid being expelled from the medium, which diminishes the compressive stress, enhancing mobility. To capture those 
effects, an additional law describing the dilatation/compaction process has been proposed and coupled with the two-phase 
flow equations, leading to predictions for the initiation of submarine granular avalanches [47], or for the dynamics of an 
object impacting a dense or a loose sediment [48].

Taking into account the variations of the volume fraction represents only a first step towards a detailed description of 
transient flows. The microstructure of the medium, i.e. the orientation of the contacts, also evolves during transient flows 
before reaching the steady state. This is, for example, evidenced in experiments where the direction of the shear is reversed 
[49–51]. When a suspension initially sheared in a direction is suddenly sheared in the reverse direction, the viscosity 
suddenly drops before increasing again toward its steady value. The drop corresponds to the opening of the contacts, which 
were oriented in the direction of the initial shear and require a finite deformation to reorient along the new direction 
when the shear is reversed. Few attempts exists to develop rheological models that take into account the evolution of the 
microstructure [51].

A second limit of the rheology based on the generalization of steady uniform shear concerned non-local effects. A striking 
illustration is given by the experiment sketched in Fig. 5b [52]. A granular material confined in between two concentric 
cylinders is sheared when the inner cylinder is put in rotation at an angular velocity �. In the quasi-static regime, a 
shear band is observed close to the rotating cylinder, which extends typically over 10 particle diameters. A vertical rod is 
immersed in the apparent static region far from the shear band and submitted to a force F . When � = 0, everything is 
static, and a minimal force Fc is necessary to move the rod, which otherwise remains static. However, as soon as the inner 
cylinder is put into motion and that a shear band develops, the rod slowly moves into the medium, although the force F
is below the critical force F < Fc. This observation means that the flow close to the inner cylinder induces a flow further 
away close to the rod. This is a clear evidence of non-local effects, in the sense that the shear at one position influences 
the rheology further away in regions where no macroscopic flow is apparent. The appearance of non-local effects in the 
dense-flow regime is not a surprise, when considering the existence of highly correlated motion and long force chains 



JID:COMREN AID:3448 /SSU [m3G; v1.246; Prn:18/10/2018; 9:23] P.9 (1-14)

Y. Forterre, O. Pouliquen / C. R. Physique ••• (••••) •••–••• 9
described in section 2.3. However, taking them into account in rheological models is still a challenge. The development of 
non-local models is a very active domain of research [54,55].

A last observation not described by simple constitutive laws is the existence of a hysteresis in the transition from solid 
to liquid regime. A static layer of grains resting on a rough plane starts to flow when the inclination reaches a critical angle 
θstart, whereas a flowing layer will stop when the slope goes below a critical angle θstop < θstart (Fig. 5c) [53]. On an inclined 
plane, the critical angles depend on the thickness of the layer, an effect reminiscent of non-local effects. The same hysteresis 
is observed on a pile or in a rotating drum. To trigger an avalanche, the pile has to reach a critical angle, which is higher 
than the angle observed after the avalanche. Although the hysteresis of the avalanche angles is a very well-known effect 
studied for more than 40 years, no consensus exists on its physical origin.

3. Small particles: powders and colloidal suspensions

In the first part of this review, we have seen that for particles interacting only through hard contacts or hydrodynamic 
interactions, dimensional analysis strongly constrains the possible steady rheological responses of granular matter. In partic-
ular, when sheared at fixed volume, the shear stress must be proportional to γ̇ 2 in the inertial regime (Bagnold behavior) 
and to γ̇ in the viscous regime (Newtonian behavior), with a pre-factor that only depends on the volume fraction φ but not 
on the shear rate. However, real granular media and suspensions often deviate from this ideal rheological response. They 
can display a minimum stress to flow (yield stress) at constant volume, a shear-rate dependent viscosity (shear thinning 
or shear thickening behavior) or a time-dependent rheology (thixotropy). This is especially true for materials composed of 
‘small’ particles, typically of diameters below 100 μm, like powders or colloidal suspensions (Fig. 1). The reason for this de-
parture lies in the existence of other force scales at the particle level, such as cohesive forces, short-range repulsive forces, 
or thermal fluctuations. Unifying all these phenomena in a unique rheological description is still a challenge [56]. In the 
following, we give a brief overview of the main rheological behavior of these more complex granular media, with some 
recent progress in the field.

3.1. Attractive interaction

Cohesion in granular media and suspensions can have different physical origins. For instance, it is well known that 
adding a small amount of liquid to a dry sand is sufficient for building sand castles, a signature of cohesion arising from 
the capillary bridges between grains. Another source of cohesion comes from the van der Waals interactions between 
molecules that affect all particles at small scales. These attractive forces are responsible for the aggregation of small colloids 
in suspensions when no stabilizing repulsive forces exist. The first main consequence of cohesion in powders or colloidal 
suspensions is the appearance of a yield-stress in the absence of any external confining stress. In addition, the critical 
flowing packing fraction φc of cohesive media is usually smaller at low stress than at large stress, meaning that the response 
at fixed volume is now shear-thinning. Finally, in colloidal suspensions, the aggregation process itself is often slow and 
limited by thermal diffusion such that, in the absence of external forcing, the structure of the medium evolves in time. The 
rheological response therefore depends on the waiting time before the suspension is sheared. At large concentration, the 
network of aggregative particles can percolate throughout the whole system, providing the system a yield-stress (gel-like 
response). Under shear, the network of particles can be broken. This competition between the aging of the structure induced 
by aggregation and its rejuvenation induced by the shear rate gives rise to a rich rheological response, combining thixotropy 
and non-linear shear rate dependence.

3.2. Repulsive interaction

To prevent aggregation, colloidal suspensions are often stabilized by a short-range repulsive force between particles. This 
repulsive force can either stem from electrostatic surface charges on the particle surfaces or from a specific polymer coating. 
This is the case of modern concrete, where the addition of polymers (superplastizers) improves the workability of the fresh 
concrete and its final strength. It was recently proposed that such a short-range repulsive force Frep induces a frictional 
transition in the suspension, which has dramatic consequences on the rheology [57,58]. At small shear rate (small stress), 
the repulsive force prevents the particle from making contact. The suspension thus flows as if particles were frictionless, 
with a viscosity that diverges at a critical packing fraction φμp=0

c = φrcp ≈ 0.64 corresponding to frictionless particles (see 
§2.1.1) (Fig. 6a). Conversely, at large shear rate (large stress), the hydrodynamic forces overcome the repulsive force and 
particles are pressed into frictional contact. The rheology of the suspension thus switches to that of a frictional suspension 
whose viscosity diverges at a critical packing fraction φμp �=0

c ≈ 0.59 < φ
μp=0
c . A suspension of frictional particles with a 

short-range repulsive force Frep therefore has two possible rheological branches: a low-viscosity frictionless branch at low 
stress and a high-viscosity frictional branch at large stress (Fig. 6b). The transition between the two branches gives rise to a 
shear-thickening behavior, which has been studied both numerically [57,59] and theoretically [58]. Depending on the initial 
packing fraction φ, the shear-thickening transition can be continuous, discontinuous or even leads to the jamming of the 
suspension, as illustrated in Fig. 6b. The discontinuous transition occurs at a critical shear stress τc and a critical shear rate 
γ̇c given by
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Fig. 6. Frictional transition and shear-thickening in dense suspensions. a) Frictional transition model for frictional particles with a repulsive force. b) (left) 
Viscosity branches corresponding to the frictionless and frictional states; (right) sketch of the shear stress as a function of the shear rate for the three 
different concentrations indicated by arrows on the left graph.

τc = β
Frep

d2
and γ̇c = β

Frep

η
μp=0
s (φ)d2

(5)

with β ≈ 0.04 [59].
The above mechanism provides a coherent framework for explaining the dramatic shear thickening behavior observed 

in some non-Brownian suspensions of particles, such as cornstarch in water. Experimental support for this mechanism was 
recently obtained from direct measurements of the frictional properties of shear thickening suspensions. At the macroscopic 
level, Clavaud et al. [11] used rotating drum experiments and a model suspension where the repulsive force can be tuned to 
deduce the friction coefficient μ of the suspension from the avalanche angle. They showed that the presence of a repulsive 
force between particles leads to a frictionless state at low stress and a shear-thickening rheology, which are both suppressed 
when the repulsive force is missing [11]. At the microscopic level, Comtet et al. [60] measured the friction coefficient 
μp between pairs of particles of a shear thickening suspension using a tuning-fork-based Atomic Force Microscope. They 
evidenced a frictional transition above a critical normal load Frep, in good agreement with the shear-thickening transition 
measured for the macroscopic rheology [60].

3.3. Brownian suspensions

For suspensions with particle diameter typically below 1 μm, the thermal agitation of the particles (Brownian motion) 
is no longer negligible. This introduces a new dimensionless parameter in the rheology, the Péclet number, which describes 
the competition between the advection time scale, γ̇ −1 and the diffusion time scale, d2/D, where D = kB T /(3 π ηf d) is the 
Stokes–Einstein diffusion coefficient. The Péclet number is given by:

Pe = ηf γ̇ d3

kB T
(6)

For Pe � 1, the diffusion time is much smaller than the advection time. The rheology then corresponds to the linear re-
sponse close to the thermal equilibrium, with a shear-rate-independent viscosity and particle pressure, which are both of 
Brownian origin. A distinctive property of Brownian (frictionless) hard particles is that the thermal viscosity dramatically 
increases, by tens of order of magnitude, as the packing fraction approaches a value φg ≈ 0.58 − 0.60 [61,62]. Remarkably, 
this value is smaller than the maximal flowing packing fraction φμp=0

c ≈ 0.64 discussed previously for non-Brownian fric-
tionless spheres. This large increase of the viscosity at φg is analogous to the case of the glass transition observed in some 
molecular liquids when they are cooled below a critical temperature. It comes from the dramatic slowing down of the par-
ticle diffusion dynamics close to φg (the diffusion time for the particle to escape the ‘cage’ of its neighbors). Above φg, the 
viscosity is so large that the suspension develops a yield stress on experimental time scales.

Interestingly, thermal fluctuations in Brownian hard particles set a force scale, F ther = kB T /δ where δ is the interpar-
ticle gap, which acts as an analogue of a repulsive force between particles [63,64]. As the Péclet number increases, the 
hydrodynamic forces enables to explore deeper the thermal repulsive shell around the particles, yielding an intermediate 
shear-thinning behavior. However, at large Péclet numbers, when the hydrodynamic forces overcome the thermal repulsive 
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forces, the particles make contact. The suspension thus switches from frictionless to frictional and the same shear-thickening 
mechanism as described above can apply [65,66]. When both Brownian motion and repulsive force are taken into account, 
the critical shear stress for the shear-thickening transition is given by

τc = β
Frep

d2
+ α

kBT

d3
with α ∼ d

δ∗ (7)

In this expression, δ∗ is the typical interparticle gap at which contact occurs, which may depend on particle roughness or 
elasticity. The respective importance of thermal motion or repulsive force in dense Brownian suspensions therefore depends 
on the detailed physics at the contact scale.

4. Active granular media: an example in the vegetal world

4.1. Introduction

So far, we have discussed the flowing behavior of passive granular matter, that is a medium made of inert particles 
that are driven through interactions with other particles and hydrodynamic stresses. However, the living world also offer 
fascinating examples of ‘granular’ assemblies that are made of non-passive or active ‘particles’, such as schools of fish, bac-
teria colonies or organelles in the cytoskeleton of the cells [67]. In these systems, the medium is composed of self-driven 
units that consume or extract energy from the surrounding fluid, such that each particle is animated by its own motion, 
which can be directional or random. Similar examples in the non-living world include motile colloids, collection of robots 
or shaken granular media made of anisotropic particles. Strikingly, this input of energy at the local scale can have dra-
matic consequences on the collective behavior and flow response of this active granular matter, including giant fluctuation 
of density, out-of-equilibrium phase transition, and emergent patterns. The topic of active matter initially emerged from 
theoretical and numerical studies on the collective motion of flock of birds, by analogy with phase transitions in condensed-
matter physics [68]. More recently, the field gains strong momentum in the soft matter and biophysics community, with the 
study of motile colloids and active gels. In the following, we describe a peculiar example of active granular matter that we 
recently uncovered in the vegetal world: the statoliths that give plants the sense of gravity.

4.2. Statoliths: an agitated granular medium at the origin of plants’ sensitivity to gravity

From tiny shoots to large trees, all plants are able to sense gravity and reorient their growth toward the vertical direction 
of the gravitational field [69,70]. This ability is not only important at early stages of development for roots to anchor in the 
soil and shoots to find light. It is also key all along the plant’s life, for the plant to maintain its upright position and not 
fall against its own weight. The detection of gravity in all plants originates in specialized cells, called statocytes, in which 
starch-rich particles called statoliths are present (Fig. 7a). These micro-size grains are denser than the surrounding cytoplasm 
and sediment at the bottom of the cells, thus giving the direction of gravity. When the plant is tilted, the statoliths trigger 
a series of biochemical reactions that induce an asymmetric growth between the two faces of the organ. This differential 
growth eventually leads to the bending of the plant toward the vertical direction (Fig. 7a).

How cells detect the statoliths and how this sensing is converted into a bending growth response at the organ’s level are 
still the object of many studies in plant biology. We recently showed that plants are actually not sensitive to the intensity 
of the gravity field, but only to the inclination against the direction of gravity [72,73]. The gravisensor in plants is thus a 
position sensor, not a force sensor. This finding is surprising, because it suggests that the pile of statoliths at the bottom of 
the cell move and respond to even the tiniest tilts. At first sight, such a behavior contradicts our knowledge of the physics 
of granular media, which stipulates that an assembly of grains cannot move below a critical avalanche angle set by friction 
and steric constrains between particles (see §2.1).

To address this issue, we directly visualized the motion of statoliths in gravisensing cells (wheat coleoptile) in response 
to various cell inclinations (Fig. 7b) [71]. When a cell is tilted, statoliths first behave like a classic (immersed) granular 
avalanche: the statoliths flow in the bulk and the pile angle rapidly relaxes toward a critical angle θc in a few minutes 
(Fig. 7c). However, the long-time behavior of statoliths strongly contrasts with that of a classical granular medium. Instead 
of being stuck at the critical angle, the statolith pile keeps evolving and slowly creeps. Eventually, the free surface of the 
pile recovers the horizontal after few tens of minutes, as a liquid would do. Investigation of statolith motion at the particle 
level suggests that this long-time liquid-like behavior comes from the agitation of the statoliths. Unlike a passive granular 
material, statoliths exhibit random and large fluctuating motion, which likely helps the grains to unjam and flow even for 
very small inclinations.

To understand the origin of this agitation, we have compared the avalanche dynamics of the statoliths with the behavior 
of inert particles of similar size in biomimetic cells. In this case, the only source of fluctuation is thermal fluctuation 
(Brownian motion), whose intensity is characterized by the inverse gravitational Péclet number

Pe−1
g = kBT

(8)

m g d
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Fig. 7. An example of active granular matter: the gravisensors of plants. a) Gravitropism response of an inclined wheat coleoptile and picture of the 
gravisensing cells with the statolith pile at the bottom. b) Time-lapse images of a statolith pile avalanche in response to cell tilting. c) Statolith pile angle 
as function of time showing a first rapid granular avalanche regime followed by a slow creeping regime toward horizontal. d) Statolith vertical fluctuation 
inside and outside of the cell, compared with Brownian fluctuations of silica microparticles in water for different gravitational Péclet numbers. Adapted 
from [71].

where kB T is the thermal energy, m is the particle’s mass corrected by the buoyancy, g is the intensity of gravity, and d
the particle’s diameter. In this biomimetic system, liquid-like avalanches similar to the biological ones can be observed if 
the thermal agitation is high enough compared to the gravitational energy (large Pe−1

g ). However, quantitative comparison 
between both systems shows that statoliths flow much more rapidly than purely Brownian particles having the same value 
of the inverse gravitational Péclet number. Everything happens as if statoliths in the plant cells were agitated by an effective 
temperature ten times higher than the physical thermal temperature (Fig. 7d).

The active nature of statolith agitation is therefore key to explain the remarkable sensitivity of plants to gravity [71]. 
The statoliths’ agitation is large enough to erase the traditional flow threshold of granular media, while small enough to 
maintain the grains together at the bottom of the cell and give the direction of gravity. Our results show that this agitation 
is not thermal, but comes from the biological activity of the cytoplasm that surrounds the grains. This example shows how 
activity can strongly modify the flow and the transport of dense particulate media at small scales. Understanding the physics 
and the rheology of such active granular matter is an exciting topic for future research [74,75].

5. More open problems!

In this review we have discussed the physics of granular flows, illustrating through a few examples the recent advances 
made in the field. However, our presentation is far from being exhaustive, and some important problems have not been 
discussed, which represent novel avenues for future researches. Among them we can mention:

• the transition between the viscous and the inertial regime in suspensions,
• the flow of polydispersed particles, which could lead to segregation phenomena,
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• the flow of deformable particles,
• the influence of the particles at the interfaces of liquid, with the dynamics of wetting, of drops, of films,
• the elongational rheology of granular media.
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