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Abstract

Few-shot classification consists of learning a predictive
model that is able to effectively adapt to a new class, given
only a few annotated samples. To solve this challenging
problem, meta-learning has become a popular paradigm
that advocates the ability to “learn to adapt”. Recent works
have shown, however, that simple learning strategies with-
out meta-learning could be competitive. In this paper, we
go a step further and show that by addressing the fun-
damental high-variance issue of few-shot learning classi-
fiers, it is possible to significantly outperform current meta-
learning techniques. Our approach consists of designing an
ensemble of deep networks to leverage the variance of the
classifiers, and introducing new strategies to encourage the
networks to cooperate, while encouraging prediction diver-
sity. Evaluation is conducted on the mini-ImageNet, tiered-
ImageNet and CUB datasets, where we show that even a
single network obtained by distillation yields state-of-the-
art results.

1. Introduction

Convolutional neural networks [17] have become stan-
dard tools in computer vision to model images, leading to
outstanding results in many visual recognition tasks such as
classification [16], object detection [8, 19, 26], or seman-
tic segmentation [8, 20, 27]. Massively annotated datasets
such as ImageNet [28] or COCO [18] seem to have played
a key role in this success. However, annotating a large cor-
pus is expensive and not always feasible, depending on the
task at hand. Improving the generalization capabilities of
deep neural networks and removing the need for huge sets
of annotations is thus of utmost importance.

While such a grand challenge may be addressed from
different complementary points of views, e.g., large-scale
unsupervised learning [4], self-supervised learning [7, 12],
or by developing regularization techniques dedicated to
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Figure 1: Illustration of the cooperation and diversity
strategies on two networks. All networks receive the same
image as input and compute corresponding class probabili-
ties with softmax. Cooperation encourages the non-ground
truth probabilities (in red) to be similar, after normalization,
whereas diversity encourages orthogonality.

deep networks [2, 36], we choose in this paper to focus on
variance-reduction principles based on ensemble methods.

Specifically, we are interested in few-shot classification,
where a classifier is first trained from scratch on a medium-
sized annotated corpus—that is, without leveraging external
data or a pre-trained network, and then we evaluate its abil-
ity to adapt to new classes, for which only very few anno-
tated samples are provided (typically 1 or 5). Unfortunately,
simply fine-tuning a convolutional neural network on a new
classification task with very few samples has been shown to
provide poor results [9], which has motivated the commu-
nity to develop dedicated approaches.

The dominant paradigm in few-shot learning builds upon
meta-learning [9, 24, 30, 32, 31, 33], which is formulated
as a principle to learn how to adapt to new learning prob-
lems. These approaches split a large annotated corpus into
classification tasks, and the goal is to transfer knowledge
across tasks in order to improve generalization. While the
meta-learning principle seems appealing for few-shot learn-
ing, its empirical benefits have not been clearly established
yet. There is indeed strong evidence [5, 11, 23] that train-
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ing CNNs from scratch using meta-learning performs sub-
stantially worse than if CNN features are trained in a stan-
dard fashion—that is, by minimizing a classical loss func-
tion relying on corpus annotations; on the other hand, learn-
ing only the last layer with meta-learning has been found to
produce better results [11, 23]. Then, it was recently shown
in [5] that simple distance-based classifiers could achieve
similar accuracy as meta-learning approaches.

Our paper goes a step further and shows that meta-
learning-free approaches can be improved and significantly
outperform the current state of the art in few-shot learning.
Our angle of attack consists of using ensemble methods to
reduce the variance of few-shot learning classifiers, which
is inevitably high given the small number of annotations.
Given an initial medium-sized dataset (following the stan-
dard setting of few-shot learning), the most basic ensemble
approach consists of first training several CNNs indepen-
dently before freezing them and removing the last predic-
tion layer. Then, given a new class (with few annotated
samples), we build a mean centroid classifier for each net-
work and estimate class probabilities—according to a basic
probabilistic model—of test samples based on the distance
to the centroids [21, 31]. The obtained probabilities are then
averaged over networks, resulting in higher accuracy.

While we show that the basic ensemble method where
networks are trained independently already performs well,
we introduce penalty terms that allow the networks to coop-
erate during training, while encouraging enough diversity
of predictions, as illustrated in Figure 1. The motivation
for cooperation is that of easier learning and regularization,
where individual networks from the ensemble can benefit
from each other. The motivation for encouraging diversity
is classical for ensemble methods [6], where a collection
of weak learners making diverse predictions often performs
better together than a single strong one. Whereas these
two principles seem in contradiction with each other at first
sight, we show that both principles are in fact useful and
lead to significantly better results than the basic ensemble
method. Finally, we also show that a single network trained
by distillation [14] to mimic the behavior of the ensemble
also performs well, which brings a significant speed-up at
test time. In summary, our contributions are three-fold:

• We introduce mechanisms to encourage cooperation
and diversity for learning an ensemble of networks.
We study these two principles for few-shot learning
and characterize the regimes where they are useful.

• We show that it is possible to significantly outperform
current state-of-the-art techniques for few-shot classi-
fication without using meta-learning.

• As a minor contribution, we also show how to distill
an ensemble into a single network with minor loss in
accuracy, by using additional unlabeled data.

2. Related Work
In this section, we discuss related work on few-shot

learning, meta-learning, and ensemble methods.

Few-shot classification. Typical few-shot classification
problems consist of two parts called meta-training and
meta-testing [5]. During the meta-training stage, one is
given a large-enough annotated dataset, which is used to
train a predictive model. During meta-testing, novel cate-
gories are provided along with few annotated examples, and
we evaluate the capacity of the predictive model to retrain
or adapt, and then generalize on these new classes.

Meta-learning approaches typically sample few-shot
learning classification tasks from the meta-training dataset,
and train a model such that it should generalize on a new
task that has been left aside. For instance, in [9] a “good
network initialization” is learned such that a small number
of gradient steps on a new problem is sufficient to obtain a
good solution. In [24], the authors learn both the network
initialization and an update rule (optimization model) rep-
resented by a Long-Term-Short-Memory network (LSTM).
Inspired by few-shot learning strategies developed before
deep learning approaches became popular [21], distance-
based classifiers based on the distance to a centroid were
also proposed, e.g., prototypical networks [31], or more so-
phisticated classifiers with attention [33]. All these meth-
ods consider a classical backbone network, and train it from
scratch using meta-learning.

Recently, these meta-learning were found to be sub-
optimal [11, 22, 23]. Specifically, better results were ob-
tained by training the network on the classical classifi-
cation task using the meta-training data in a first step,
and then only fine-tuning with meta-learning in a second
step [22, 29, 35]. Others such as [11, 23] simply freeze the
network obtained in the first step, and train a simple pre-
diction layer with meta-learning, which results in similar
performance. Finally, the paper [5] demonstrates that sim-
ple baselines without meta-learning—based on distance-
based classifiers—work equally well. Our paper pushes
such principles even further and shows that by appropriate
variance-reduction techniques, these approaches can signif-
icantly outperform the current state of the art.

Ensemble methods. It is well known that ensemble meth-
ods reduce the variance of estimators and subsequently may
improve the quality of prediction [10]. To gain accuracy
from averaging, various randomization or data augmenta-
tion techniques are typically used to encourage a high di-
versity of predictions [3, 6]. While individual classifiers of
the ensemble may perform poorly, the quality of the average
prediction turns out to be sometimes surprisingly high.

Even though ensemble methods are costly at train-
ing time for neural networks, it was shown that a sin-
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gle network trained to mimic the behavior of the ensem-
ble could perform almost equally well [14]—a procedure
called distillation—thus removing the overhead at test time.
To improve the scalability of distillation in the context of
highly-parallelized implementations, an online distillation
procedure is proposed in [1]. There, each network is en-
couraged to agree with the averaged predictions made by
other networks of the ensemble, which results in more sta-
ble models. The objective of our work is however signif-
icantly different. The form of cooperation they encourage
between networks is indeed targeted to scalability and sta-
bility (due to industrial constraints), but online distilled net-
works do not necessarily perform better than the basic en-
semble strategy. Our goal, on the other hand, is to improve
the quality of prediction and do better than basic ensembles.

To this end, we encourage cooperation in a different
manner, by encouraging predictions between networks to
match in terms of class probabilities conditioned on the pre-
diction not being the ground truth label. While we show that
such a strategy alone is useful in general when the number
of networks is small, encouraging diversity becomes crucial
when this number grows. Finally, we show that distillation
can help to reduce the computational overhead at test time.

3. Our Approach
In this section, we present our approach for few-shot

classification, starting with preliminary components.

3.1. Mean-centroid classifiers

We now explain how to perform few-shot classification
with a fixed feature extractor and a mean centroid classifier.

Few-shot classification with prototype classifier. Dur-
ing the meta-training stage, we are given a dataset Db with
annotations, which we use to train a prediction function fθ
represented by a CNN. Formally, after training the CNN
on Db, we remove the final prediction layer and use the re-
sulting vector f̃θ(x) as a set of visual features for a given
image x. The parameters θ represent the weights of the net-
work, which are frozen after this training step.

During meta-testing, we are given a new dataset Dq =
{xi, yi}nki=1, where n is a number of new categories and k
is the number of available examples for each class. The
(xi, yi)’s represent image-label pairs. Then, we build a
mean centroid classifier, leading to the class prototypes

cj =
1

k

k∑
i=1

f̃θ(xi), j = 1, ..., n. (1)

Finally, a test sample x is assigned to the nearest centroid’s
class. Simple mean-centroid classifiers have proven to be
effective in the context of few-shot classification [5, 21, 31],
which is confirmed in the following experiment.

Motivation for mean-centroid classifier. We report here
an experiment showing that a more complex model than (1)
does not necessarily lead to better results for few-shot learn-
ing. Consider indeed a parametrized version of (1):

cj =

nk∑
i=1

αji f̃θ(xi), j = 1, ..., n, (2)

where the weights αji can be learned with gradient descent
by maximizing the likelihood of the probabilistic model

pj(y = l|x) =
exp(−d(f̃θ(x), cl))∑n
j=1 exp(−d(f̃θ(x), cj)

(3)

where d(·, ·) is a distance function, such as Euclidian dis-
tance or negative cosine similarity. Since the coefficients
are learned from data and not set arbitrarily to 1/k as in (1),
one would potentially expect this method to produce bet-
ter classifiers if appropriately regularized. When we run
the evaluation of the aforementioned classifiers on 1000 5-
shot learning tasks sampled from miniImagenet-test
(see experimental section for details about this dataset), we
get similar results on average: 77.28 ± 0.46% for (1) vs.
77.01± 0.50% for (2), confirming that learning meaningful
parameters in this very-low-sample regime is difficult.

3.2. Learning ensembles of deep networks

During meta-training, one needs to minimize the follow-
ing loss function over a training set {xi, yi}mi=1:

L(θ) =
1

m

m∑
i=1

`(yi, σ(fθ(xi))) + λ‖θ‖22, (4)

where fθ is a CNN as before. The cost function `(·, ·) is
the cross-entropy between ground-truth labels and predicted
class probabilities p = σ(fθ(x)), where σ is the normalized
exponential function, and λ is a weight decay parameter.

When training an ensemble of K networks fθk indepen-
dently, one would solve (4) for each network separately.
While these terms may look identical, solutions provided
by deep neural networks will typically differ when trained
with different initializations and random seeds, making en-
semble methods appealing in this context.

In this paper, we are interested in ensemble of net-
works, but we also want to model relationships between its
members; this may be achieved by considering a pairwise
penalty function ψ, leading to the joint formulation:

L(θ̄) =

K∑
j=1

(
1

n

n∑
i=1

`(yi, σ(fθj (xi))) + λ‖θj‖22

)

+
γ

n(K − 1)

n∑
i=1

K∑
j,l
j 6=l

ψ(yi, fθj (xi), fθl(xi)), (5)
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where θ̄ is the vector obtained by concatenating all the pa-
rameters θj . By carefully designing the function ψ and
setting up appropriately the parameter γ, it is possible to
achieve desirable properties of the ensemble, such as diver-
sity of predictions or collaboration during training.

3.3. Encouraging diversity and cooperation

To reduce the high variance of few-shot learning clas-
sifiers, we use ensemble methods trained with a particular
interaction function ψ, as in (5). Then, once the parame-
ters θj have been learned during meta-training, classifica-
tion in meta-testing is performed by considering a collec-
tion of K mean-centroid classifiers associated to the basic
probabilistic model presented in Eq. (3). Given a test image,
the K class probabilities are averaged. Such a strategy was
found to perform empirically better than a voting scheme.

As we show in the experimental section, the choice of
pairwise relationship function ψ significantly influences the
quality of the ensemble. Here, we describe three different
strategies, which all provide benefits in different regimes,
starting by a criterion encouraging diversity of predictions.

Diversity. One way to encourage diversity consists of in-
troducing randomization in the learning procedure, e.g., by
using data augmentation [3, 10] or various initializations.
Here, we also evaluate the effect of an interaction func-
tion ψ that acts directly on the network predictions. Given
an image x, two models parametrized by θi and θj re-
spectively lead to class probabilities pi = σ(fθi(x)) and
pj = σ(fθj (x)). During training, pi and pj are naturally en-
couraged to be close to the assignment vector ey in {0, 1}d
with a single non-zero entry at position y, where y is the
class label associated to x and d is the number of classes.

From [14], we know that even though only the largest en-
try of pi or pj is used to make predictions, other entries—
typically not corresponding to the ground truth label y—
carry important information about the network. It becomes
then natural to consider the probabilities p̂i and p̂j condi-
tioned on not being the ground truth label. Formally, these
are obtained by setting to zero the entry y in pi and pj renor-
malizing the corresponding vectors such that they sum to
one. Then, we consider the following diversity penalty

φ(p̂i, p̂j) = cos(p̂i, p̂j). (6)

When combined with the loss function, the resulting formu-
lation encourages the networks to make the right prediction
according to the ground-truth label, but then they are also
encouraged to make different second-best, third-best, and
so on, choice predictions (see Figure 1). This penalty turns
out to be particularly effective when the number of networks
is large, as shown in the experimental section. It typically
worsens the performance of individual classifiers on aver-
age, but make the ensemble prediction more accurate.

Cooperation. Apparently opposite to the previous prin-
ciple, encouraging the conditional probabilities p̂i to be
similar—though with a different metric—may also improve
the quality of prediction by allowing the networks to co-
operate for better learning. Our experiments show that
such a principle alone may be effective, but it appears to
be mostly useful when the number of training networks is
small, which suggests that there is a trade-off between co-
operation and diversity that needs to be found.

Specifically, our experiments show that using the nega-
tive cosine—in other words, the opposite of (6)—is inef-
fective. However, a penalty such as the symmetrized KL-
divergence turned out to provide the desired effect:

φ(p̂i, p̂j) =
1

2
(KL(p̂i||p̂j) + KL(p̂j ||p̂i)). (7)

By using this penalty, we managed to obtain more stable
and faster training, resulting in better performing individ-
ual networks, but also—perhaps surprisingly—a better en-
semble. Unfortunately, we also observed that the gain of
ensembling diminishes with the number of networks in the
ensemble since the individual members become too similar.

Robustness and cooperation. Given experiments con-
ducted with the two previous penalties, a trade-off be-
tween cooperation and diversity seems to correspond to two
regimes (low vs. high number of networks). This moti-
vated us to develop an approach designed to achieve the best
trade-off. When considering the cooperation penalty (7), we
try to increase diversity of prediction by several additional
means. i) We randomly drop some networks from the en-
semble at each training iteration, which causes the networks
to learn on different data streams and reduces the speed of
knowledge propagation. ii) We introduce Dropout within
each network to increase randomization. iii) We feed each
network with a different (crop, color) transformation of the
same image, which makes the ensemble more robust to in-
put image transformations. Overall, this strategy was found
to perform best in most scenarios (see Figure 2).

3.4. Ensemble distillation

As most ensemble methods, our ensemble strategy intro-
duces a significant computional overhead at training time.
To remove the overhead at test time, we use a variant of
knowledge distillation [14] to compress the ensemble into a
single network fw. Given the meta-training dataset Db, we
consider the following cost function on example (x, y):

`(x, y) = (1− α) · ˆ̀(ey, σ(fw(x)))

− α · T 2 · ˆ̀
(

1
K

∑K
k=1 σ

(
fθk (x)

T

)
, σ
(
fw(x)
T

))
, (8)

where, ˆ̀ is cross-entropy, ey is a one-hot embedding of the
true label y. The second term performs distillation with pa-
rameter T (see [14]). It encourages the single model fw to
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(a) MiniImageNet 5-shots (b) CUB 5-shots

Figure 2: Accuracies of different ensemble strategies (one for each color) for various numbers of networks. Solid lines
give the ensemble accuracy after aggregating predictions. The average performance of single models from the ensemble is
plotted with a dashed line. Best viewed in color.

be similar to the average output of the ensemble. In our ex-
periments, we are able to obtain a model with performance
relatively close to that of the ensemble (see Section 4).

Modeling out-of-distribution behavior. When distilla-
tion is performed on the dataset Db, the network fw mimics
the behavior of the ensemble on a specific data distribution.
However, new categories are introduced at test time. There-
fore, we also tried distillation by using additional unnanno-
tated data, which yields slightly better performance.

4. Experiments
We now present experiments to study the effect of coop-

eration and diversity for ensemble methods, and start with
experimental and implementation details.

4.1. Experimental Setup

Datasets. We use mini-ImageNet [24] and tiered-
ImageNet [25] which are derived from the original Ima-
geNet [28] dataset and Caltech-UCSD Birds (CUB) 200-
2011 [34]. Mini-ImageNet consists of 100 categories—
64 for training, 16 for validation and 20 for testing—with
600 images each. Tiered-ImageNet is also a subset of Im-
ageNet that includes 351 class for training, 97 for valida-
tion and 160 for testing which is 779,165 images in to-
tal. The splits are chosen such that the training classes
are sufficiently different from the test ones, unlike in mini-
ImageNet. The CUB dataset consists of 11,788 images of
birds of more than 200 species. We adopt train, val, and
test splits from [35], which were originally created by ran-
domly splitting all 200 species in 100 for training, 50 for
validation, and 50 for testing.

Evaluation. In few-shot classification, the test set is used
to sample N 5-way classification problems, where only k

examples of each category are provided for training and 15
for evaluation. We follow [9, 11, 22, 23, 24] and test our al-
gorithms for k = 1 and 5 and N is set to 1 000. Each time,
classes and corresponding train/test examples are sampled
at random. For all our experiments we report the mean ac-
curacy (in %) over 1 000 tasks and 95% confidence interval.

Implementation details. For all experiments, we use the
Adam optimizer [15] with an initial learning rate 10−4,
which is decreased by a factor 10 once during training when
no improvement in validation accuracy is observed for p
consecutive epochs. For mini-ImageNet, we use p = 10,
and 20 for the CUB dataset. When distilling an ensemble
into one network, p is doubled. We use random crops and
color augmentation during training as well as weight decay
with parameter λ = 5 · 10−4. All experiments are con-
ducted with the ResNet18 architecture [13], which allows
us to train our ensembles of 20 networks on a single GPU.
Input images are then re-scaled to the size 224 × 224, and
organized in mini-batches of size 16. Validation accuracy
is computed by running 5-shot evaluation on the validation
set. During the meta-testing stage, we take central crops of
size 224×224 from images and feed them to the feature ex-
tractor. No other preprocessing is used at test time. When
building a mean centroid classifier, the distance d in (3) is
computed as the negative cosine similarity [31], which is
rescaled by a factor 10.
For a fair comparison, we have also evaluated ensembles
composed of ResNet18 [13] with input image size 84 × 84
and WideResNet28 [37] with input size 80× 80. All details
are reported in Appendix. For reproducibility purposes, our
implementation will be made available at http://lear.
inrialpes.fr/research/fewshot_ensemble/.
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4.2. Ensembles for Few-Shot Classification

In this section, we study the effect of ensemble training
with pairwise interaction terms that encourage cooperation
or diversity. For that purpose, we analyze the link between
the size of ensembles and their 1- and 5-shot classification
performance on the mini-ImageNet and CUB datasets.

Details about the three strategies. When models are
trained jointly, the data stream is shared across all net-
works and weight updates happen simultaneously. This is
achieved by placing all models on the same GPU and op-
timizing the loss (5). When training a diverse ensemble,
we use the cosine function (6) and selected the parameter
γ = 1 that performed best on the validation set among the
tested values (10i, for i = −2, . . . , 2) for n = 5 and n = 10
networks. Then, this value was kept for other values of n.
To enforce cooperation between networks, we use the sym-
metrized KL function (7) and selected the parameter γ = 10
in the same manner. Finally, the robust ensemble strategy
is trained with the cooperation relationship penalty and the
same parameter γ, but we use Dropout with probability 0.1
before the last layer; each of the network is dropped from
the ensemble with probability 0.2 at every iteration; differ-
ent networks receive different transformation of the same
image, i.e. different random crops and color augmentation.

Results. Tables 1 and Table A1 of Appendix summarize
the few-shot classification accuracies of ensembles trained
with our strategies and compare with basic ensembles. On
the mini-ImageNet dataset, the results for 1- and 5-shot clas-
sification are consistent with each other. Training with co-
operation allows smaller ensembles (n ≤ 5) to perform
better, which leads to higher individual accuracy of the
ensemble members, as seen in Figure 2. However, when
n ≥ 10, cooperation is less effective, as opposed to the di-
versity strategy, which benefits from larger n. As we can see
from Figure 2, individual members of the ensemble become
worse, but the ensemble accuracy improves substantially.
Finally, the robust strategy seems to perform best for all
values of n in almost all settings. The situation for the CUB
dataset is similar, although we notice that robust ensembles
perform similarly as the diversity strategy for n = 20.

4.3. Distilling an ensemble

We distill robust ensembles of all sizes to study knowl-
edge transferability with growing ensemble size. To do so,
we use the meta-training dataset and optimize the loss (8)
with parameters T = 10 andα = 0.8. For the strategy using
external data, we randomly add at each iteration 8 images
(without annotations) from the COCO [18] dataset to the 16
annotated samples from the meta-training data. Those im-
ages contribute only to the distillation part of the loss (8).

Table 1 and Table A1 of Appendix display model accu-
racies for mini-ImageNet and CUB datasets respectively.
For 5-shot classification on mini-ImageNet, the difference
between ensemble and its distilled version is rather low
(around 1%), while adding extra non-annotated data helps
reducing this gap. Surprisingly, 1-shot classification accu-
racy is slightly higher for distilled models than for their cor-
responding full ensembles. On the CUB dataset, distilled
models stop improving after n = 5, even though the perfor-
mance of full ensembles keeps growing. This seems to indi-
cate that the capacity of the single network may have been
reached, which suggests using a more complex architecture
here. Consistently with such hypothesis, adding extra data
is not as helpful as for mini-ImageNet, most likely because
data distributions of COCO and CUB are more different.

In Tables 2, 3, we also compare the performance of our
distilled networks with other baselines from the literature,
including current state-of-the-art meta-learning approaches,
showing that our approach does significantly better on the
mini-ImageNet [24] and tiered-ImageNet [25] datasets.

4.4. Study of relationship penalties

There are many possible ways to model relationship be-
tween the members of an ensemble. In this subsection, we
study and discuss such particular choices.

Input to relationship function. As noted by [14], class
probabilities obtained by the softmax layer of a network
seem to carry a lot of information and are useful for distil-
lation. However, after meta-training, such probabilities are
often close to binary vectors with a dominant value associ-
ated to the ground-truth label. To make small values more
noticeable, distillation uses a parameter T , as in (8). Given
such a class probability computed by a network, we experi-
mented such a strategy consisting of introducing new proba-
bilities p̂ = σ(p/T ), where the contributions of non ground-
truth values are emphasized. When used within our diver-
sity (6) or cooperation (7) penalties, we however did not see
any improvement over the basic ensemble method. Instead,
we found that computing the class probabilities conditioned
on not being the ground truth label, as explained in Sec-
tion 3.3, would perform much better.

This is illustrated on the following experiment with two
network ensembles of size n = 5. We enforce similarity on
the full probability vectors in the first one, computed with
softmax at T = 10 following [1], and with conditionally
non-ground-truth probabilities for the second one as defined
in Section 3.3. When using the cooperation training formu-
lation, the second strategy turns out to perform about 1%
better than the first one (79.79 % vs 80.60%), when tested
on MiniImageNet. Similar observations have been made
using the diversity criterion. In comparison, the basic en-
semble method without interactions achieves about 80%.
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5-shot
Ensemble type 1 2 3 5 10 20
Independent 77.28 ± 0.46 78.27 ± 0.45 79.38 ± 0.43 80.02 ± 0.43 80.30 ± 0.43 80.57 ± 0.42

Diversity 77.28 ± 0.46 78.34 ± 0.46 79.18 ± 0.43 79.89 ± 0.43 80.82 ± 0.42 81.18 ± 0.42

Cooperation 77.28 ± 0.46 78.67 ± 0.46 80.20 ± 0.42 80.60 ± 0.43 80.72 ± 0.42 80.80 ± 0.42

Robust 77.28 ± 0.46 78.71 ± 0.45 80.26 ± 0.43 81.00 ± 0.42 81.22 ± 0.43 81.59 ± 0.42

Distilled Ensembles
Robust-dist − 79.44 ± 0.44 79.84 ± 0.44 80.01 ± 0.42 80.25 ± 0.44 80.63 ± 0.42

Robust-dist++ − 79.16 ± 0.46 80.00 ± 0.44 80.25 ± 0.42 80.35 ± 0.44 81.19 ± 0.43

1-shot
Ensemble type 1 2 3 5 10 20
Independent 58.71 ± 0.62 60.04 ± 0.60 60.83 ± 0.63 61.34 ± 0.61 61.93 ± 0.61 62.06 ± 0.61

Diversity 58.71 ± 0.63 59.95 ± 0.61 61.27 ± 0.62 61.43 ± 0.61 62.23 ± 0.61 62.47 ± 0.62

Cooperation 58.71 ± 0.62 60.20 ± 0.61 61.46 ± 0.61 61.61 ± 0.61 62.06 ± 0.61 62.12 ± 0.62

Robust 58.71 ± 0.62 60.91 ± 0.62 62.36 ± 0.60 62.70 ± 0.61 62.97 ± 0.62 63.95 ± 0.61

Distilled Ensembles
Robust-dist − 62.33 ± 0.62 62.64 ± 0.60 63.14 ± 0.61 63.01 ± 0.62 63.06 ± 0.61

Robust-dist ++ − 62.07 ± 0.62 62.81 ± 0.60 63.39 ± 0.61 63.20 ± 0.62 63.73 ± 0.62

Table 1: Few-shot classification accuracy on mini-ImageNet. The first column gives the strategy, the top row indicates
the number N of networks in an ensemble. Here, dist means that an ensemble was distilled into a single network, and
’++’ indicates that extra unannotated images were used for distillation. We performed 1 000 independent experiments on
mini-ImageNet-test and report the average with 95% confidence interval. All networks are trained on mini-ImageNet-train
set.

Method Input size Network 5-shot 1-shot
TADAM [22] 84 ResNet 76.70 ± 0.30 58.50 ± 0.30

Cosine + Attention [11] 224 ResNet 73.00 ± 0.64 56.20 ± 0.86

Linear Classifier [5] 224 ResNet 74.27 ± 0.63 51.75 ± 0.80

Cosine Classifier [5] 224 ResNet 75.68 ± 0.63 51.87 ± 0.77

PPA [23] 80 WideResNet 73.74 ± 0.19 59.60 ± 0.41

LEO [29] 80 WideResNet 77.59 ± 0.12 61.76 ± 0.08

FEAT [35] 80 WideResNet 78.32 ± 0.16 61.72 ± 0.11

Robust 20-dist++ (ours) 224 ResNet 81.19 ± 0.43 63.73 ± 0.62

Robust 20-dist++ (ours) 84 ResNet 75.62 ± 0.48 59.48 ± 0.62

Robust 20-dist++ (ours) 80 WideResNet 81.17 ± 0.43 63.28 ± 0.62

Robust 20 Full 224 ResNet 81.59 ± 0.42 63.95 ± 0.61

Robust 20 Full 84 ResNet 76.90 ± 0.42 59.38 ± 0.65

Robust 20 Full 80 WideResNet 81.94 ± 0.44 63.46 ± 0.62

Table 2: Comparison of distilled ensembles to other
methods on 1- and 5-shot miniImageNet. The two last
columns display the accuracy on 1- and 5-shot learning
tasks. To evaluate our methods we performed 1 000 inde-
pendent experiments on MiniImageNet-test and report the
average and 95% confidence interval. Here, ’++’ means
that extra non-annotated images were used to perform dis-
tillation. The last model is a full ensemble and should not
be directly compared to the rest of the table.

Choice of relationship function. In principle, any sim-
ilarity measure could be used to design a penalty encour-

Method Input size Network 5-shot 1-shot
TADAM [22] 84 ResNet 81.92 ± 0.30 62.13 ± 0.31

LEO [29] 80 WideResNet 81.44 ± 0.12 66.33 ± 0.09

Mean Centroid (one network) 224 ResNet 83.89 ± 0.33 68.33 ± 0.32

Robust 20-dist (ours) 224 ResNet 85.43 ± 0.21 70.44 ± 0.32

Robust 20 Full 224 ResNet 86.49 ± 0.22 71.71 ± 0.31

Table 3: Comparison of distilled ensembles to other
methods on 1- and 5-shot tiered-ImageNet [25]. To eval-
uate our methods we performed 5 000 independent experi-
ments on tiered-ImageNet-test and report the average accu-
racy with 95% confidence interval.

aging cooperation. Here, we show that in fact, selecting
the right criterion for comparing probability vectors (co-
sine similarity, L2 distance, symmetrized KL divergence),
is crucial depending on the desired effect (cooperation or
diversity). In Table 4, we perform such a comparison for
an ensemble with n = 5 networks on the MiniImageNet
dataset for a 5−shot classification task, when plugging the
above function in the formulation 5, with a specific sign.
The parameter γ for each experiment is chosen such that
the performance on the validation set is maximized.

When looking for diversity, the cosine similarity per-
forms slightly better than negative L2 distance, although the

7



Purpose (Sign) L2 -cos KLsim

Cooperation (+) 80.14 ± 0.43 80.29 ± 0.44 80.72 ± 0.42

Diversity (-) 80.54 ± 0.44 80.82 ± 0.42 79.81 ± 0.43

Table 4: Evaluating different relationship criteria on
mini-Imagenet 5-shot The first row indicates which func-
tion was used as a relationship criteria, the first column in-
dicates for which purpose the function is used and the cor-
responding sign. To evaluate our methods, we performed
1 000 independent experiments on CUB-test and report the
average accuracy with 95% confidence intervals. All en-
sembles are trained on mini-ImageNet-train.

accuracies are within error bars. Using negative KLsim with
various γ was either not distinguishable from independent
training or was hurting the performance for larger values
of γ (not reported on the table). As for cooperation, posi-
tive KLsim gives better results than L2 distance or negative
cosine similarity. We believe that this behavior is due to im-
portant difference in the way these functions compare small
values in probability vectors. While negative cosine or L2
losses would penalize heavily the largest difference, KLsim
concentrates on values that are close to 0 in one vector and
are greater in the second one.

4.5. Performance under domain shift

Finally, we evaluate the performance of ensemble meth-
ods under domain shift. We proceed by meta-training the
models on the mini-ImageNet training set and evaluate the
model on the CUB-test set. The following setting was first
proposed by [5] and aims at evaluating the performance of
algorithms to adapt when the difference between training
and testing distributions is large. To compare to the results
reported in the original work, we adopt their CUB test split.
Table 5 compares our results to the ones listed in [5]. We
can see that neither the full robust ensemble nor its distilled
version are able to do better than training a linear classifier
on top of a frozen network. Yet, it does significantly better
than distance-based approaches (denoted by cosine classi-
fier in the table). However, if a diverse ensemble is used,
it achieves the best accuracy. This is not surprising and
highlights the importance of having diverse models when
ensembling weak classifiers.

5. Conclusions
In this paper, we show that distance-based classifiers for

few-shot learning suffer from high variance, which can be
significantly reduced by using an ensemble of classifiers.
Unlike traditional ensembling paradigms where diversity
of predictions is encouraged by various randomization and
data augmentation techniques, we show that encouraging
the networks to cooperate during training is also important.

Method mini-ImageNet→ CUB
MatchingNet [33] 53.07 ± 0.74

MAML [9] 51.34 ± 0.72

ProtoNet [31] 62.02 ± 0.70

Linear Classifier [5] 65.57 ± 0.70

Cosine Classifier [5] 62.04 ± 0.76

Robust 20-dist++ (ours) 64.23 ± 0.58

Robust 20 Full (ours) 65.04 ± 0.57

Diverse 20 Full (ours) 66.17 ± 0.55

Table 5: 5-shot classification accuracy under domain
shift. The last two models are full ensembles and should
not be directly compared with the rest of the table. We
performed 1 000 independent experiments on CUB-test
from [5] and report the average and confidence interval
here. All ensembles are trained on mini-ImageNet.

The overall performance of a single network obtained by
distillation (with no computational overhead at test time)
leads to state-of-the-art performance for few shot learning,
without relying on the meta-learning paradigm. While such
a result may sound negative for meta-learning approaches,
it may simply mean that a lot of work remains to be done in
this area to truly learn how to learn or to adapt.
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Appendix

A. Implementation Details

In this section, we elaborate on training, testing and dis-
tillation details of the proposed ensemble methods for dif-
ferent datasets, network architectures and input image reso-
lution.

Training ResNet18 on 84x84 images on mini-
ImageNet. For all experiments, we use ResNet18 with in-
put image size 84x84, train with the Adam optimizer with
an initial learning rate 3 ·10−4, which is decreased by a fac-
tor 10 once during training when no improvement in valida-
tion accuracy is observed for p consecutive epochs. We use
p = 20 for training individual models, p = 30 for training
ensembles and when distilling the model. When distilling
an ensemble into one network, p is doubled. We use ran-
dom crops and color augmentation during training as well as
weight decay with parameter λ = 5 · 10−4. At training time
we use random crop, color transformation and adding ran-
dom noise as data augmentation. During the meta-testing
stage, we take central crops of size 224× 224 from images
and feed them to the feature extractor. No other preprocess-
ing is used at test time. The parameters used in distillation
are the same as in Section 4.3 of the paper.

Training WideResNet28 on 80x80 images on mini-
ImageNet. For all experiments, we use WideResNet28 with
input image size 80x80, train with the Adam optimizer with
an initial learning rate 1 ·10−4, which is decreased by a fac-
tor 10 once during training when no improvement in valida-
tion accuracy is observed for p consecutive epochs. We use
p = 20 for training individual models, p = 30 for training
ensembles and when distilling the model. When distilling
an ensemble into one network, p is doubled. We use ran-
dom crops and color augmentation during training as well
as weight decay with parameter λ = 5 · 10−4. We also set
a dropout rate inside convolutional blocks to be 0.5 as de-
scribed in. At training time we use random crop and color
transformation only as data augmentation. During the meta-
testing stage, we take central crops of size 80 × 80 from
images and feed them to the feature extractor. No other pre-
processing is used at test time. The parameters used in dis-
tillation are the same as in Section 4.3 of the paper. Here,
the maximal ensemble size we evaluated is 10 and not 20
due to memory limitations on available GPUs. Therefore,
to construct an ensemble of size 20 we merge two ensem-
bles of size 10, that were trained independently.

Training ResNet18 on 224x224 images on tiered-
ImageNet For all experiments, we use ResNet18 with input
image size 224x224, train with the Adam optimizer with an
initial learning rate 3 · 10−4, which is decreased by a factor
10 once during training when no improvement in valida-
tion accuracy is observed for p consecutive epochs. We use
p = 20 for training individual models, ensembles and for

distilation. We use random crops and color augmentation
during training as well as weight decay with parameter λ =
1 · 10−4. At training time we use random crop and color
transformation. During the meta-testing stage, we take cen-
tral crops of size 224 × 224 from images and feed them to
the feature extractor. No other preprocessing is used at test
time. The parameters used in distillation are the same as in
Section 4.3 of the paper.

B. Additional Results

In this section we report and analyze the performance of
different ensemble types depending on their size for differ-
ent network architectures and input image resolutions.

Few-shot Classification with ResNet18 on 224x224
images on CUB. The results for 1- and 5-shot classifica-
tion on CUB are presented in Table A1. Training details
and Figure summary of the results are discussed in Experi-
mental section of the paper.

Few-shot Classification with ResNet18 on 84x84 im-
ages on mini-ImageNet. The results for 1- and 5-shot clas-
sification on MiniImageNet are presented in Table A3 and
summarized in Figure A1. We can see that Cooperation
training is the most successful here for all ensemble sizes
< 20 and other training strategies that introduce diversity
tend to perform worse. This happens because single net-
works are far from overfitting the training set (as opposed to
the case with 224x224 input size) and forcing diversity acts
as harmful regularization. In contrary, cooperation training
enforces useful learning signal and helps ensemble mem-
bers achieve higher accuracy. Only for n = 20 where diver-
sity matters more, robust ensembles perform the best.

Few-shot Classification with WideResNet28 on 80x80
images on mini-ImageNet. Results for 1- and 5-shot clas-
sification on MiniImageNet are presented in Table A2 and
summarized in Figure A1. In this case we can see again
that Diverse training does not help since the networks do
not memorize the training set. Robust ensembles outper-
form other training regimes emphasizing the importance of
the proposed solution that generalizes across architectures.
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5-shot
Full Ensemble 1 2 3 5 10 20
Independent 79.47 ± 0.49 81.34 ± 0.46 82.57 ± 0.46 83.16 ± 0.45 83.80 ± 0.45 83.95 ± 0.46

Diversity 79.47 ± 0.49 81.09 ± 0.45 82.23 ± 0.46 82.91 ± 0.46 84.30 ± 0.44 85.20 ± 0.43

Cooperation 79.47 ± 0.49 81.69 ± 0.46 82.95 ± 0.47 83.43 ± 0.47 84.01 ± 0.44 84.26 ± 0.44

Robust 79.47 ± 0.49 82.90 ± 0.46 83.36 ± 0.46 83.62 ± 0.45 84.47 ± 0.46 84.62 ± 0.44

Distilled Ensembles
Robust-dist − 82.72 ± 0.47 82.95 ± 0.46 83.27 ± 0.46 83.61 ± 0.46 83.57 ± 0.45

Robust-dist++ − 82.53 ± 0.48 83.04 ± 0.45 83.37 ± 0.46 83.22 ± 0.46 83.21 ± 0.44

1-shot
Ensemble type 1 2 3 5 10 20
Independent 64.25 ± 0.73 66.60 ± 0.72 67.64 ± 0.71 68.07 ± 0.70 68.93 ± 0.70 69.64 ± 0.69

Diversity 64.25 ± 0.73 65.99 ± 0.71 66.71 ± 0.72 68.19 ± 0.71 69.35 ± 0.70 70.07 ± 0.70

Cooperation 64.25 ± 0.73 67.21 ± 0.71 67.93 ± 0.70 68.22 ± 0.70 68.69 ± 0.70 68.80 ± 0.68

Robust 64.25 ± 0.73 67.33 ± 0.71 68.01 ± 0.72 68.53 ± 0.70 68.59 ± 0.70 69.47 ± 0.69

Distilled Ensembles
Robust-dist − 67.47 ± 0.71 67.29 ± 0.72 68.09 ± 0.70 68.71 ± 0.71 68.77 ± 0.71

Robust-dist++ − 67.01 ± 0.74 67.62 ± 0.72 68.68 ± 0.71 68.38 ± 0.70 68.68 ± 0.69

Table A1: Few-shot classification accuracy on CUB. The first column gives the type of ensemble and the top row indicates
the number of networks in an ensemble. Here, dist means that an ensemble was distilled into a single network, and ’++’
indicates that extra unannotated images were used for distillation. We performed 1000 independent experiments on CUB-test
and report the average with 95% confidence interval. All networks are trained on CUB-train set.

5-shot
Ensemble type 1 2 3 5 10 20
Independent 70.59 ± 0.51 73.24 ± 0.49 74.29 ± 0.48 74.89 ± 0.47 75.69 ± 0.47 75.93 ± 0.47

Diversity 70.59 ± 0.51 72.35 ± 0.47 73.44 ± 0.49 74.81 ± 0.48 75.47 ± 0.48 76.36 ± 0.47

Cooperation 70.59 ± 0.51 74.04 ± 0.47 74.81 ± 0.47 76.37 ± 0.48 76.73 ± 0.48 76.50 ± 0.47

Robust 70.59 ± 0.51 72.92 ± 0.50 73.09 ± 0.43 75.69 ± 0.42 76.71 ± 0.47 76.90 ± 0.48

Distilled Ensembles
Robust-dist − 73.04 ± 0.50 73.58 ± 0.49 74.35 ± 0.48 74.69 ± 0.49 75.24 ± 0.49

Robust-dist++ − 73.50 ± 0.49 74.17 ± 0.49 74.84 ± 0.49 75.12 ± 0.44 75.62 ± 0.48

1-shot
Ensemble type 1 2 3 5 10 20
Independent 53.31 ± 0.64 55.72 ± 0.60 56.85 ± 0.64 57.90 ± 0.63 58.21 ± 0.63 58.56 ± 0.61

Diversity 53.31 ± 0.64 54.61 ± 0.62 55.90 ± 0.62 57.06 ± 0.63 57.49 ± 0.62 58.93 ± 0.64

Cooperation 53.31 ± 0.64 55.80 ± 0.64 57.13 ± 0.63 58.18 ± 0.64 58.63 ± 0.63 58.73 ± 0.62

Robust 53.31 ± 0.64 55.95 ± 0.62 56.27 ± 0.64 58.51 ± 0.65 59.38 ± 0.65 59.48 ± 0.65

Distilled Ensembles
Robust-dist − 56.84 ± 0.64 56.58 ± 0.65 57.13 ± 0.63 57.41 ± 0.65 58.11 ± 0.64

Robust-dist ++ − 56.53 ± 0.62 57.03 ± 0.64 57.48 ± 0.65 58.05 ± 0.63 58.67 ± 0.65

Table A2: Few-shot classification accuracy on MiniImageNet, using ResNet18 and 84x84 image size. The first column
gives the strategy, the top row indicates the number N of networks in an ensemble. Here, dist means that an ensemble was
distilled into a single network, and ’++’ indicates that extra unannotated images were used for distillation. We performed
1 000 independent experiments on MiniImageNet-test and report the average with 95% confidence interval. All networks are
trained on MiniImageNet-train set.
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5-shot
Ensemble type 1 2 3 5 10
Independent 77.54 ± 0.45 78.78 ± 0.45 79.26 ± 0.43 79.91 ± 0.44 80.12 ± 0.43

Diversity 77.54 ± 0.45 77.88 ± 0.45 79.15 ± 0.44 79.79 ± 0.44 80.18 ± 0.44

Cooperation 77.54 ± 0.45 78.96 ± 0.46 80.06 ± 0.44 80.58 ± 0.45 80.87 ± 0.43

Robust 77.54 ± 0.45 78.99 ± 0.45 80.12 ± 0.43 80.91 ± 0.43 81.72 ± 0.44

Distilled Ensembles
Robust-dist − 79.44 ± 0.44 79.84 ± 0.44 80.01 ± 0.42 80.85 ± 0.43

Robust-dist++ − 79.16 ± 0.46 80.00 ± 0.44 80.25 ± 0.42 81.11 ± 0.43

1-shot
Ensemble type 1 2 3 5 10
Independent 59.02 ± 0.63 60.07 ± 0.62 60.58 ± 0.61 61.24 ± 0.63 62.05 ± 0.61

Diversity 59.02 ± 0.63 58.87 ± 0.62 60.63 ± 0.61 61.30 ± 0.62 62.28 ± 0.61

Cooperation 59.02 ± 0.63 60.22 ± 0.62 61.03 ± 0.61 62.07 ± 0.61 62.42 ± 0.61

Robust 59.02 ± 0.63 60.92 ± 0.62 62.03 ± 0.62 62.78 ± 0.61 63.39 ± 0.62

Distilled Ensembles
Robust-dist − 61.07 ± 0.62 61.57 ± 0.61 62.24 ± 0.61 62.80 ± 0.62

Robust-dist ++ − 61.37 ± 0.62 62.01 ± 0.60 62.45 ± 0.62 63.25 ± 0.62

Table A3: Few-shot classification accuracy on MiniImageNet, using WideResNet28 and 80x80 image size. The first
column gives the strategy, the top row indicates the numberN of networks in an ensemble. Here, dist means that an ensemble
was distilled into a single network, and ’++’ indicates that extra unannotated images were used for distillation. We performed
1 000 independent experiments on MiniImageNet-test and report the average with 95% confidence interval. All networks are
trained on MiniImageNet-train set.

(a) ResNet18 with 84x84 input (b) WideResNet28 with 80x80 input

Figure A1: Dependency of ensemble accuracy on network architecture and input size for different ensemble strategies
(one for each color) and various numbers of networks on MiniImageNet 5-shots classification. Solid lines give the
ensemble accuracy after aggregating predictions. The average performance of single models from the ensemble is plotted
with a dashed line. Best viewed in color.
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