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Abstract

We consider the estimation of the variance and spatial scale parameters of the

covariance function of a one-dimensional Gaussian process with �xed smoothness pa-

rameter s. We study the �xed-domain asymptotic properties of composite likelihood

estimators. As an improvement of previous references, we allow for any �xed num-

ber of neighbor observation points, both on the left and on the right sides, for the

composite likelihood. First, we examine the case where only the variance parameter

is unknown. We prove that for small values of s, the composite likelihood estimator

converges at a sub-optimal rate and we provide its non-Gaussian asymptotic distri-

bution. For large values of s, the estimator converges at the optimal rate. Second, we

consider the case where the variance and the spatial scale are jointly estimated. We

obtain the same conclusions as for the �rst case for the estimation of the microergodic

parameter. The theoretical results are con�rmed in numerical simulations.

Keywords: Gaussian process, composite likelihood, microergodicity, consistency, conver-
gence rate, non-Gaussian limit, �xed-domain asymptotics.

1 Introduction

Gaussian processes are widely used in statistical science to model spatial data. When
�tting a Gaussian �eld, one has to deal with the issue of the estimation of its covariance
function. In many cases, it is assumed that this function belongs to a given parametric
model or family of covariance functions, which turns the problem into a parametric estima-
tion problem. Within this framework, the maximum likelihood estimator (MLE) [29, 37]
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of the covariance parameters has been deeply studied in the last years in the two following
asymptotic frameworks. The �xed-domain asymptotic framework, sometimes called in�ll
asymptotics [9, 37], corresponds to the case where more and more data are observed in some
�xed bounded sampling domain in Rd; while the increasing-domain asymptotic framework
corresponds to the case where the sampling domain, also in Rd, increases with the number
of observed data and the distance between any two sampling locations is bounded away
from 0. The asymptotic behavior of the MLE of the covariance parameters can be quite
di�erent under these two frameworks [46].
Under increasing-domain asymptotics, generally speaking, for all (identi�able) covariance
parameters, the MLE is consistent and asymptotically normal under some mild regularity
conditions. The asymptotic covariance matrix is equal to the inverse of the (asymptotic)
Fisher information matrix [3, 10, 26, 32].
The situation is signi�cantly di�erent under �xed-domain asymptotics. Indeed, two types
of covariance parameters can be distinguished: microergodic and non-microergodic param-
eters. A covariance parameter is microergodic if, for two di�erent values of it, the two
corresponding Gaussian measures are orthogonal, see [19, 37]. It is non-microergodic if,
even for two di�erent values of it, the two corresponding Gaussian measures are equiv-
alent. Non-microergodic parameters cannot be estimated consistently, but misspecifying
them asymptotically results in the same statistical inference as specifying them correctly
[34, 35, 36, 45]. In the case of isotropic Matérn covariance functions with d 6 3, [45] shows
that only a reparametrized quantity obtained from the variance and the spatial scale pa-
rameters is microergodic. The asymptotic normality of the MLE of this microergodic
parameter is then obtained in [21]. Similar results for the special case of the exponential
covariance function were obtained previously in [44].
The maximum likelihood method is generally considered as the best option for estimating
the covariance parameters of a Gaussian process (at least in the framework of the present
paper, where the true covariance function does belong to the parametric model, see also
[2, 4]). Nevertheless, the evaluation of the likelihood function requires to solve a system
of linear equations and to compute a determinant. For a data set of n observations, the
computational burden is O(n3), making this method computationally untractable for large
data sets. This fact motivates the search for estimation methods with a good balance be-
tween computational complexity and statistical e�ciency. Among these methods, we can
mention low rank approximation (see [38] and the references therein for a review), sparse
approximation [16], covariance tapering [13, 22], Gaussian Markov random �elds approx-
imation [11, 30], submodel aggregation [7, 12, 17, 31, 40, 41] and composite likelihood.
With composite likelihood we indicate a general class of objective functions based on the
likelihood of marginal or conditional events [42]. This kind of estimation method has two
important bene�ts: it is generally appealing when dealing with large data sets and it can
be helpful when it is di�cult to specify the full likelihood.
Consider the observations y1 = Y (x1), . . . , yn = Y (xn) of a Gaussian process Y correspond-
ing to the observation points x1, . . . , xn. In this work, we focus on composite likelihood
estimators (CLEs) of the covariance parameters that maximize the sum, over i = 1, . . . , n,
of the conditional log likelihood of yi given a subset of {y1, . . . , yn}\{yi} that corresponds
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to observation points that are nearby xi. These estimators have been considered in several
references, including [27, 28, 39, 43]. More generally, the principle of conditioning based
on neighbor observation points rather than on the full set of observation points is widely
applied for Gaussian processes [14, 15].
Despite their popularity in practice, no general �xed-domain asymptotic results exist for the
above CLEs. The existing results address the exponential covariance function in dimension
one. In this case, letting x1 6 . . . 6 xn be the observation points, the CLE coincides
with the MLE due to the Markov property when the likelihood of each yi is evaluated
conditionally to the previous observations yi−1, . . . , yi−K for any arbitrary value of K > 1
(see [44]). The CLE of the microergodic parameter is asymptotically Gaussian in this
special case. When each yi is evaluated conditionally to its two neighbor observations
yi−1, yi+1, then the CLE of the microergodic parameter is also asymptotically Gaussian [6].
Finally, we remark that also pairwise likelihood estimators have been analyzed recently, in
the case of the exponential covariance function in dimension one [5].
In this work, we provide a �xed-domain asymptotic analysis of composite likelihood, for
Gaussian processes in dimension one, that extends the previous references considerably,
in terms of generality. Indeed, we allow for covariance functions σ2kα where kα(t) =
1− |αt|s + r(αt) where the remainder r(αt) is negligible compared to |αt|s as t→ 0. Here
σ2 is the variance parameter, α is the spatial scale parameter and s is the �xed smoothness
parameter, with 0 < s < 3/2. In contrast, only the special case with s = 1 corresponding to
exponential covariance functions is considered in [6, 44]. In particular, we allow for general
Matérn covariance functions with parameter ν between 0 and 0.75, while in [6, 44], only
the case ν = 0.5 is considered. Furthermore, we allow for any �xed number of neighbor
observation points, both on the left and on the right, for the composite likelihood, as
opposed to two neighbor points or only points on the left in [6, 44].
First we consider the case where only the variance parameter σ2

0 is estimated. We show
that if 0 < s < 1/2, then the CLE converges at the sub-optimal rate ns, with an explicit
asymptotic variance and is not asymptotically Gaussian, regardless of the number of neigh-
bors used. Furthermore, we provide its non-Gaussian asymptotic distribution. This result
is somehow surprising since, in this setting, quadratic variation estimators, also having a
small computational cost compared to the MLE, would converge at rate n1/2 [1]. This
could motivate practical adjustments of composite likelihood for Gaussian processes with
small smoothness. For 1/2 6 s < 3/2, the CLE converges at the optimal rate n1/2.
Second, we consider the case where the variance σ2

0 and the spatial scale α0 are jointly
estimated, in which case σ2

0α
s
0 is microergodic. We obtain the same conclusions as above.

For 0 < s < 1/2, the CLE has sub-optimal rate ns and we provide its non-Gaussian
asymptotic approximation. Furthermore, the CLE has rate n1/2 for 1/2 6 s < 3/2.
Many of the proof techniques we suggest are original, notably to take into account several
neighbor points, on the left and on the right, for the composite likelihood. This situation
was not explored theoretically in the references [5, 6]. In particular, we approximate the
conditional expectations and variances, given a �xed number of neighbor observations
under �xed-domain asymptotics, see (26) and (27) in the proofs. Furthermore, we apply
some concepts from the literature of quadratic variation estimators [1, 20] to composite
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likelihood, such as �nite sequences applied to functions with given orders of di�erentiability.
In numerical simulations in the case 0 < s < 1/2 , we con�rm the rate ns and the expression
of the asymptotic variance. We observe that the number of observations n may need to
be very large for the asymptotic results to provide an accurate approximation of the �nite
sample results.
The rest of the paper is organized as follows. In Section 2, we introduce the model and the
CLE. In Section 3, we provide the results for the estimation of the variance parameter σ2

0

while Section 4 is dedicated to the estimation of the microergodic parameter σ2
0α

s
0. Section

5 presents the numerical results. Concluding remarks are given in Section 6. All the proofs
are given in the appendix.

2 The context and notation

We consider a centered Gaussian process Y de�ned on [0, 1], real-valued. We consider a
parametric model of stationary covariance functions of the form {σ2kα;σ2 > 0, α ∈ A},
with A ⊂ Rp and where kα is a correlation function for α ∈ Rp. We let Y have covariance
function σ2

0kα0 for some �xed σ2
0 > 0 and α0 ∈ Rp. We consider the observation points

0 6 x1 6 . . . 6 xn 6 1 and the corresponding observed values y1 = Y (x1), . . . , yn = Y (xn).
Classically, the covariance parameters σ2

0 and α0 are estimated by maximum likelihood
[29, 37]. The MLE is given by

(σ̂2
ML, α̂ML) ∈ argmin

σ2>0,α∈A

(
n log(σ2) + log(det(Rα)) + y>R−1α y

)
, (1)

where Rα is the n × n matrix [Kα(xi, xj)]16i,j6n and where y = (y1, . . . , yn)>. The com-
putation cost of the likelihood criterion in (1) is O(n3) and is prohibitive when n becomes
larger than, say, 104.
To tackle this problem, several references [27, 28, 39, 43] have studied and used composite
likelihood, that we now present. The principle is to sum the conditional log likelihood of
each observation, given the K (resp. L) observations corresponding to the left (resp. right)
nearest neighbor observation points.
We let K ∈ N and L ∈ N be �xed. For any i ∈ {K + 1, . . . , n − L}, we de�ne the vector
rα,K,L;i by

rα,K,L;i = (kα(xi−K , xi), . . . , kα(xi−1, xi), kα(xi+1, xi), . . . , kα(xi+L, xi))
> ,

the vector of local observations yK,L;i by

yK,L;i = (yi−K , . . . , yi−1, yi+1, . . . , yi+L)>
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and the submatrix Rα,K,L;i by

Rα,K,L;i =



kα(xi−K , xi−K) . . . kα(xi−K , xi−1) kα(xi−K , xi+1) . . . kα(xi−K , xi+L)
.
.
.

.

.

.

kα(xi−1, xi−K) . . . kα(xi−1, xi−1) kα(xi−1, xi+1) . . . kα(xi−1, xi+L)
kα(xi+1, xi−K) . . . kα(xi+1, xi−1) kα(xi+1, xi+1) . . . kα(xi+1, xi+L)

.

.

.
.
.
.

kα(xi+L, xi−K) . . . kα(xi+L, xi−1) kα(xi+L, xi+1) . . . kα(xi+L, xi+L)


.

The CLE estimator is then given by

(σ̂2, α̂) ∈ argmin
σ2>0,α∈A

n−L∑
i=K+1

Lσ2,α (yi|yi−K , . . . , yi−1, yi+1, . . . , yi+L) , (2)

where Lσ2,α(yi|yi−K , . . . , yi−1, yi+1, . . . , yi+L) is de�ned as (−2) times the logarithm of the
conditional probability density function of yi given yi−K , . . . , yi−1, yi+1, . . . , yi+L under the
covariance parameters σ2, α. We remark that, by Gaussian conditioning (see e.g. [29,
Appendix A]), for i = K + 1, . . . , n− L, we have

Lσ2,α (yi|yi−K , . . . , yi−1, yi+1, . . . , yi+L)

= log
(
σ2
(
1− r>α,K,L;iR−1α,K,L;irα,K,L;i

))
+

(
yi − r>α,K,L;iR−1α,K,L;iyK,L;i

)2
σ2
(
1− r>α,K,L;iR

−1
α,K,L;irα,K,L;i

) .
The computational cost of computing the composite likelihood criterion in (2) is O(n) if
K and L are �xed, as opposed to O(n3) for the likelihood criterion in (1).

In the rest of the paper, to lighten notation, we write ri and Ri for rα,K,L;i and Rα,K,L;i.

Remark 2.1. We have de�ned the CLE for Gaussian processes in dimension one. Indeed,
all the asymptotic results in the paper hold for one-dimensional Gaussian processes. It
should however be remarked that the CLE is well de�ned and used for Gaussian processes
in dimension larger than one [27, 28, 39, 43]. In fact, the principle of composite likelihood
is applicable whenever a relevant distance can be considered on the input space of the
Gaussian process. This generality and �exibility is an asset of composite likelihood.

3 Estimation of a variance parameter

3.1 Main assumptions and expression of the estimator

In the rest of the paper, we consider the regular design of observation points given by
{x1 = 1/n, ..., xn = 1}. Although the proofs in the paper could be extended to other types
of designs of observation points, we state and prove our theoretical results in the case of
the regular design, for a better readability. Furthermore, we let A be a compact subset of
(0,∞) and we let kα(t) = k(αt), where k is a �xed stationary correlation function. Hence,
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in the parametric model considered in this paper, the parameters are the variance σ2 and
the spatial scale α.
In this section, we let A be reduced to the singleton {1}, we let α0 = 1 (that is the
correlation function is known) and we aim at deriving the asymptotic properties of the
CLE of the unknown variance σ2

0. We then remark that k = kα0 .
Recall that the observation vector is (Y (x1), . . . , Y (xn))T which is the vector of observations
at times x1, ..., xn and that yi = Y (xi) for i = 1, . . . , n. Let us introduce the process Z
such that Y = σ0Z. The process Z is centered and Gaussian with covariance function k
leading to the reduced observations zi = yi/σ0. Analogously to yK,L;i, we de�ne zK,L;i. For
i = K + 1, . . . , n− L, let the prediction be given by

ẑi := E[zi|zK,L;i] = r>i R
−1
i zK,L;i

and the prediction variance be given by

σ̂2
i := Var(zi|zK,L;i) = 1− r>i R−1i ri.

Then, after simple computations, one may derive the value of σ̂2 in (2):

σ̂2

σ2
0

=
1

n− L−K

n−L∑
i=K+1

(zi − ẑi)2

σ̂2
i

. (3)

Obviously, this estimator is unbiased and its variance is given by

Var

(
σ̂2

σ2
0

)
=

2

(n− L−K)2

n−L∑
i,j=K+1

Cov (zi − ẑi, zj − ẑj)2

σ̂2
i σ̂

2
j

(4)

after application of Mehler's formula.

In the rest of the paper, we assume that the correlation function k satis�es the following
condition.

Condition 3.1. The correlation function k has the following expansion

k(t) = 1− |t|s + r(t), (5)

where r is twice di�erentiable, r(0) = 0 and 0 < s < 3/2. Furthermore, for 1/2 6 s < 3/2,
r′′ is bounded.

Condition 3.1 means that the Gaussian process Y is continuous but not di�erentiable. The
quantity s is interpreted as a smoothness parameter and, for instance, s = 1 enables to
recover the exponential covariance function exp{−|t|}, as considered in [5, 6, 44]. Condition
3.1 holds for the Matérn covariance function with parameter ν when s = 2ν, see Section
3.4. Remark that in Condition 3.1, r(t) = O(t) for any 0 < s < 3/2 and r(t) = O(t2) for
1/2 6 s < 3/2. We also note that one may easily extend the results of this section to any
α0 > 0. In fact, we have considered the case α0 = 1 for the ease of the readability of the
proofs.
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3.2 Main results

Let us de�ne the (K+L)×(K+L) matrix b as the inverse of the (K+L)×(K+L) matrix
B given by Bi,j = is + js − |i − j|s. It has been proved in [1, Proposition 2.4] that B is
invertible. Let us de�ne additionally the (K +L)× (K +L) matrix C given by Ci,j = isjs.
In the case 0 < s < 1/2, the additional condition will also be needed.

Condition 3.2. We assume that K ∈ N, L ∈ N and 0 < s < 1/2 are such that

K+L∑
k=1

bK,kk
s 6= 0.

In fact, we can show that Condition 3.2 holds when K = 0 or L = 0 (see Lemma A.5 in the
appendix). When both K and L are non-zero, we are not able to prove that Condition 3.2
holds for all values of K ∈ N, L ∈ N and 0 < s < 1/2. Anyway, we have seen numerically
that Condition 3.2 holds for all the numerous values of K, L and s that we have tried.
We remark that we have the following identity, after some simple computations,(

K+L∑
k=1

bK,kk
s

)2

= (bCb)K,K . (6)

In the next theorem, we provide the asymptotic order of magnitude of the variance of the
CLE.

Theorem 3.3. We assume that Condition 3.1 holds and we let K > 0 and L > 0 be �xed
such that K + L > 2.

(i) If 0 < s < 1/2, then

Var

(
σ̂2

σ2
0

)
= O

(
1

n2s

)
. (7)

Furthermore if Condition 3.2 is ful�lled,

Var

(
σ̂2

σ2
0

)
∼ 4

n2s

(bCb)2K,K
b2K,K

∫ 1

0

(1− t)(1− ts + r(t))2dt. (8)

(ii) If 1/2 6 s < 3/2, then

Var

(
σ̂2

σ2
0

)
= O

(
1

n

)
. (9)

Obviously, one may now derive the consistency of σ̂2 as soon as 0 < s < 3/2 since its
variance goes to zero.
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Corollary 3.4 (Consistency). We assume that Condition 3.1 holds. Then, for 0 < s < 3/2
and for all K > 0 and L > 0 such that K + L > 2, σ̂2 is consistent:

σ̂2 P−→
n→∞

σ2
0.

Theorem 3.3 shows that for 0 < s < 1/2, the CLE converges at a sub-optimal rate ns <
n1/2, while there exist estimators of σ2

0 with optimal rate n1/2, for instance the MLE in
(1). This may be considered as a drawback of the CLE, since other estimators with small
computational cost O(n) exist that converge at the optimal rate n1/2 for any 0 < s < 3/2,
for instance quadratic variation estimators (see Section 3.3 below). We also remark that
the values of the number K and L of neighbors has no impact on the rate of convergence,
but has an impact on the asymptotic variance in the case 0 < s < 1/2.

The next corollary provides the asymptotic variance when 0 < s < 1/2 in two particular
cases.

Corollary 3.5 (Particular cases). We assume that Condition 3.1 holds and that 0 < s <
1/2.

(i) For K = 1 and L = 1, one gets

Var

(
σ̂2

σ2
0

)
∼ 1

n2s

(1− 2s−1)4

(1− 2s−2)2

∫ 1

0

(1− t)(1− ts + r(t))2dt.

(i) For K = 2 and L = 0, one gets

Var

(
σ̂2

σ2
0

)
∼ 1

n2s

22s−4

(1− 2s−2)2

∫ 1

0

(1− t)(1− ts + r(t))2dt.

When K + L = 1, the proof of Theorem 3.3 can not be applied. Anyway, one may easily
prove that (8) and (9) still hold.

Proposition 3.6. We consider the case K = 1 and L = 0 (or by symmetry K = 0 and
L = 1). We assume that Condition 3.1 holds and that 0 < s < 1/2. Then one gets

Var

(
σ̂2

σ2
0

)
∼ 1

n2s

∫ 1

0

(1− t)(1− ts + r(t))2dt. (10)

When 1/2 6 s < 3/2, (9) still holds.

In the next proposition, we show that the CLE σ̂2 converges to a non-Gaussian random
variable when 0 < s < 1/2.

Proposition 3.7. We assume that Conditions 3.1 and 3.2 hold. Then for 0 < s < 1/2,
for K > 0 and L > 0 such that K + L > 1, the random variable ns (σ̂2/σ2

0 − 1) does not
converge in distribution to a Gaussian random variable. In fact, we prove that

ns
(
σ̂2

σ2
0

− 1

)
L−→

n→∞

(bCb)K,K
bK,K

(∫ 1

0

Z(t)2dt− 1

)
.

This proposition is a direct consequence of Theorem 4.1 below, with α̂ = α0 = 1, see also
Remark 4.3.
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3.3 Quadratic a-variations

The aim of this section is to compare the previous asymptotic results to the ones obtained
with the estimator based on quadratic variations in [1]. In that view, we consider a non-
zero �nite support sequence a = (am)m∈N of real numbers with zero sum. Let L(a) be the
length of a: the indices of �rst and last non-zero elements of a have di�erence L(a). Since
the starting point of the sequence plays no particular role, we will assume when possible
that the �rst non-zero element of a is a0. Hence, the last non-zero element is aL(a)−1. We
de�ne the order M(a) as the �rst non-zero moment of the sequence a:

L(a)−1∑
m=0

amm
k = 0, for 0 6 k < M(a) and

L(a)−1∑
m=0

amm
M(a) 6= 0.

To any �nite sequence a, with length L(a), we de�ne the quadratic a-variation of Y by

Va,n =

n−L(a)+1∑
i=1

L(a)−1∑
j=0

ajyi+j

2

. (11)

Guided by the moment method, the authors of [1] de�ne an estimator Ca,n of σ
2
0 from Va,n.

They prove that Ca,n is asymptotically unbiased (see Section 3.3 in [1]) and such that, for
0 < s < 3/2,

E[(Ca,n − σ2
0)2] = O

(
1

n

)
. (12)

In the simplest case where a has non-zero elements a0 = 1 and a1 = −1 only, (12) means
that basing the estimator Ca,n on the di�erences yi − yi−1 yields the optimal rate n1/2. In
contrast, using the di�erences yi − E[yi|yi−1] yields the sub-optimal rate ns when 0 < s <
1/2 from Proposition 3.6. Hence, while it could be intuitive that using yi−E[yi|yi−1] would
be more e�cient than using yi − yi−1, this intuition is in�rmed by our asymptotic results.
Similarly, our results show that using yi−E[yi|yi−K , . . . , yi−1, yi+1, . . . , yi+L] is less e�cient

than using
∑L(a)−1

j=0 ajyi+j when 0 < s < 1/2, which is not obvious to anticipate.

3.4 Application to the Matérn covariance functions

Let, for 0 < σ2 <∞, 0 < α <∞ and 0 < ν <∞, kσ,α,ν : R+ → R+ be de�ned by

kσ,α,ν(t) =
σ2(αt)ν

2ν−1Γ(ν)
Kν(αt)

where Γ is the Gamma function and Kν is the modi�ed Bessel function of the second kind.
The function (x, y) 7→ kσ,α,ν(|x− y|) is the Matérn covariance function [37, 24]. When ν is
not an integer, we have [24]

kσ,α,ν(t) = σ2

∞∑
k=0

α2kt2k

22kk!
∏k

i=1(i− ν)
− πσ2

Γ(ν) sin(νπ)

∞∑
k=0

α2k+2νt2k+2ν

22k+2νk!Γ(k + 1 + ν)
. (13)
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To shorten notation, we simply write kν for k1,1,ν . In view of Condition 3.1, we prove the
following lemma.

Lemma 3.8. When 0 < ν < 1, we have with a �xed �nite non-zero Aν

kν(t) = 1− Aνt2ν + gν(t)t
2. (14)

Furthermore, gν is C
2-di�erentiable on R+.

Consequently, Condition 3.1 holds for the Matérn covariance function k̃ν de�ned by k̃ν(t) =

kν(A
−1/2ν
ν t) with s = 2ν and r(t) = O(t2).

4 Joint estimation of the variance and spatial scale pa-

rameters

We now let A be a general compact subset of (0,∞), that is we consider the joint estimation
of the variance and the spatial scale parameters. As in Section 3, we assume that k satis�es
Condition 3.1. In the case where k is a Matérn covariance function, it is well-known from
[45] that the parameters σ2 and α are non-microergodic but that the parameter σ2α2ν is
microergodic. Hence, recalling that s = 2ν for the correspondence between our assumptions
and the Matérn model, we will provide asymptotic results for the estimation of σ2

0α
s
0 only.

We assume that the true σ2
0 and α0 are �xed in (0,∞), but we do not need to assume

that α0 belongs to A. This is because σ2 is unrestricted in (2), thus there always exists
(σ2, α) ∈ (0,∞)× A such that σ2αs = σ2

0α
s
0.

The next theorem provides the rate of convergence of the CLE σ̂2α̂s of the microergodic
parameter.

Theorem 4.1. We assume that k satis�es Condition 3.1 and we let K > 0 and L > 0 be
such that K + L > 2.

(i) If 0 < s < 1/2, then

σ̂2α̂s

σ2
0α

s
0

− 1 =
α̂s

ns
(bCb)K,K
bK,K

(
α̂s

αs0

∫ 1

0

Z(t)2dt− 1

)
+ oP

(
1

ns

)
. (15)

(ii) If 1/2 6 s < 3/2, then

σ̂2α̂s

σ2
0α

s
0

− 1 = O

(
1√
n

)
. (16)

The interpretation of Theorem 4.1 is the same as the one of Theorem 3.3 in Section 3 for the
estimation of the variance parameter. The CLE converges at the sub-optimal rate ns for
0 < s < 1/2. For 1/2 6 s < 3/2, the CLE converges at the optimal rate n1/2. We remark
that in Section 3, we state our results in terms of the asymptotic order of magnitude of the

10



variance of σ̂2. In this section, we can not analyze the variance of σ̂2α̂s, because α̂s does
not have an explicit expression. This is why Theorem 4.1 is stated in terms of convergence
in distribution and probability rather than with variances or mean square errors.
We remark that in Theorem 4.1, when 0 < s < 1/2, the asymptotic approximation of
σ̂2α̂s/σ2

0α
s
0 − 1 depends on the distribution of α̂s, for which little is known ([46] considers

the exponential covariance function for which s = 1). Nevertheless, the random variable

α̂s
(bCb)K,K
bK,K

(
α̂s

αs0

∫ 1

0

Z(t)2dt− 1

)
(17)

is non-Gaussian, because its minimum is −As
sup

(bCb)K,K/bK,K > −∞ where Asup is the
supremum of the compact set A. Furthermore, this random variable is non-constant be-
cause α̂2s

∫ 1

0
Z(t)2dt is non-constant. Indeed,

∫ 1

0
Z(t)2dt has a non-zero variance and has

a non-zero probability to belong to any set [0, ε] with arbitrarily small ε > 0 (see [23, 25])
and α̂2s is bounded by A2s

sup
.

With this argument, we see that the random variable (17) can not converge to a Gaus-
sian distribution (including a constant) as n → ∞. Hence the CLE is asymptotically
non-Gaussian for 0 < s < 1/2. Finally, if A = {α1} with a �xed α1 ∈ (0,∞), then
ns(σ̂2α̂s/σ2

0α
s
0 − 1) converges to a �xed non-Gaussian random variable, which variance is

proportional to α4s
1 .

As in Section 3, the proof of Theorem 4.1 does not apply whenK+L = 1, but its conclusion
still holds.

Proposition 4.2. We consider the case K = 1 and L = 0 (or by symmetry K = 0 and
L = 1). We assume that k satis�es Condition 3.1 and that 0 < s < 1/2. Then one gets

σ̂2α̂s

σ2
0α

s
0

− 1 ∼ α̂s

2ns

(
α̂s

αs0

∫ 1

0

Z(t)2dt− 1

)
. (18)

When 1/2 6 s < 3/2, (16) still holds.

The next remark shows the correspondence between the results of Section 3 and Theorem
3.3.

Remark 4.3. If A = {1} and α0 = 1, then α̂ = 1 and Theorem 4.1 reduces to

σ̂2

σ2
0

− 1 ∼ 1

ns
(bCb)K,K
bK,K

(∫ 1

0

Z(t)2dt− 1

)
, (19)

from which we deduce that (σ̂2/σ2
0 − 1) is asymptotically unbiased. Moreover, computing

the variance of
∫ 1

0
Z(t)2dt leads to the same expression as in (10) in Proposition 3.6.

11



5 Numerical experiments

Now we compare the asymptotic variance of the CLE with its exact �nite sample variance.
We consider the setting of Section 3, where a single variance parameter is estimated and
the correlation function k is known and satis�es Condition 3.1. Since the CLE σ̂2 has an
explicit expression, its variance can be written explicitly as

2

(n− L−K)2
1

σ̂4
K+1

n−L∑
i,j=K+1

(
k(xi, xj)− r>i R−1i ri,j − r>j R−1j rj,i + r>i R

−1
i Ri,jR

−1
j rj

)2
, (20)

with the notation of Section 2, with ra,` being the column covariance vector between yK,L;a
and y` under covariance function k and Ra,` being the covariance matrix between yK,L;a
and yK,L;` under covariance function k. Equation (20) directly follows from (4).
We consider the case where 0 < s < 1/2 in Condition 3.1, so that the asymptotic variance of
σ̂2 is given explicitly in Theorem 3.3. As correlation functions, we consider the generalized
Slepian function [33] given by k(t) = (1− |t|s)+ and the Matérn covariance function given

by k(t) = k1,1,ν(A
−1/2ν
ν t) with s = 2ν and with the notation of Section 3.4.

In Figure 5, for s = 0.15 and s = 0.30, for these two correlation functions and for various
values of K and L, we plot the ratios of the exact �nite sample variance in (20) over the
asymptotic variance in Theorem 3.3. We observe that these ratios do converge to one as n
increases, which con�rms Theorem 3.3. We also observe that n may need to be very large
for the ratios to be close to one. Hence, the asymptotic approximation given by Theorem
3.3 may become accurate only for very large n. For moderate values of n, the ratios are
larger than one, so that the asymptotic variance underestimates the �nite sample variance.
We also observe that the ratios are larger when K and L are larger. In other words, when
the CLE is based on more neighbors, n needs to be larger for the asymptotic variance to be
close to the �nite sample one. Furthermore, s = 0.3 leads to larger ratios than s = 0.15 and
we have observed in other (unreported) experiments that for �xed n, the ratios increase
with s. Hence, for �xed n, the asymptotic variance provides a more accurate approximation
of the exact variance when s is small. Finally, the ratios are similar between the generalized
Slepian and Matérn covariance functions.

6 Concluding remarks

We have provided a �xed-domain asymptotic analysis of the CLE, for one-dimensional
Gaussian processes that are non-di�erentiable and are characterized by a general smooth-
ness parameter 0 < s < 3/2. Our analysis improves the previous references [5, 6, 44] by
allowing for general covariance functions and general numbers of neighbors for the com-
posite likelihood. A conclusion that we obtain, which was not obvious to anticipate, is that
the CLE converges at a sub-optimal rate, for 0 < s < 1/2, independently of the number of
neighbors used for the composite likelihood.
There are some possible extensions of our results that, we believe, could be obtained by
following the same proof structures. These extensions include obtaining the asymptotic

12
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Figure 1: Plot of the ratios of the �nite sample variance in (20) over the asymptotic
variance in Theorem 3.3. Top: generalized Slepian correlation function. Bottom: Matérn
covariance function. Left: s = 0.15. Right: s = 0.30.
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distribution of the CLE when 1/2 6 s < 3/2, treating the case 3/2 6 s 6 2, and allowing
for irregularly spaced observation points.
Other open problems remain, that would potentially require more work and new ap-
proaches. For instance, it would be interesting to obtain asymptotic results for di�er-
entiable processes and in the multi-dimensional case.

A Proofs

In the paper, (Const) stands for a generic constant that may di�er from one line to another.

A.1 Discrete a-di�erences

Some of the proofs of this paper rely on the notion of discrete a-di�erences already intro-
duced in Section 3.3 and used in the literature of quadratic variation estimators [1, 20].
Some technical results are collected in the following lemma.

Lemma A.1. Let (am)m be a sequence of order M .
(i) As n→ ±∞, one has

+∞∑
m=−∞

am |n+m|s = O
(
|n|s−M

)
. (21)

(ii) Let f be a M-times continuously di�erentiable function. Then, as n→ +∞,

sup
t∈[0,1]

∣∣∣∣∣
+∞∑

m=−∞

amf
(
t+

m

n

)∣∣∣∣∣ = O

(
1

nM

)
. (22)

Proof. (i) By a Taylor expansion with integral reminder of |n+m|s near n at order (M−1),
one gets, for n large enough,

|n+m|s = |n|s +ms |n|s−1 + · · ·+ mM−1

(M − 1)!
s(s− 1) . . . (s−M + 2) |n|s−M+1

+
mM

(M − 1)!
s(s− 1) . . . (s−M + 1)

∫ 1

0

(1− η)M−1 |n+mη|s−M dη. (23)

Hence, using the vanishing moments of the sequence a = (am)m, we have∣∣∣∣∣
+∞∑

m=−∞

am |n+m|s
∣∣∣∣∣

=
|s(s− 1) . . . (s−M + 1)|

(M − 1)!

+∞∑
m=−∞

|am| |m|M
∫ 1

0

(1− η)M−1 |n+mη|s−M dη

6
|s(s− 1) . . . (s−M + 1)|

(M − 1)!
|n|s−M

+∞∑
m=−∞

|am| |m|M
∫ 1

0

(1− η)M−1
∣∣∣1 +

m

n
η
∣∣∣s−M dη.

14



For a �xed value of m, the term |1 +mη/n|s−M is bounded by 2 for n large enough. Then
the proof is complete.

(ii) We follow the same lines as in (i). By a Taylor expansion with integral reminder of
f(t+m/n) near t at order M − 1, one gets

f
(
t+

m

n

)
=

M−1∑
k=0

1

k!

(m
n

)k
f (k)(t) +

∫ t+m/n

t

f (M)(η)

(M − 1)!

(
t+

m

n
− η
)M−1

dη.

Hence, using the vanishing moments of the sequence a = (am)m, one gets∣∣∣∣∣
+∞∑

m=−∞

amf
(
t+

m

n

)∣∣∣∣∣
6

∣∣∣∣∣
M−1∑
k=0

1

k!

f (k)(t)

nk

+∞∑
m=−∞

amm
k

∣∣∣∣∣+
+∞∑

m=−∞

|am|
∫ t+m/n

t

∣∣f (M)(η)
∣∣

(M − 1)!

∣∣∣t+
m

n
− η
∣∣∣M−1 dη

6
(Const)

(M − 1)!

+∞∑
m=−∞

|am|
∣∣∣m
n

∣∣∣M
6

(Const)

nM
.

Then the proof is complete.

A.2 Proof of Theorem 3.3(i)

We recall the expression of the variance of the estimator

Var

(
σ̂2

σ2
0

)
=

2

(n− L−K)2

n−L∑
i,j=K+1

Cov (zi − ẑi, zj − ẑj)2

σ̂2
i σ̂

2
j

. (24)

By the well-known virtual Leave-One-Out (LOO) formulas (see [2, Proposition 3.1]), the
prediction variance is given by

σ̂2
i = Var(zi|zK,L;i)

= Var(zK+1|zK,L;K+1)

= Var(zK+1|z1, . . . , zK , zK+2, . . . , zK+L+1)

= Var|1(zK+1|z2, . . . , zK , zK+2, . . . , zK+L+1)

=
1(

Cov|1(z2, . . . , zK , zK+1, zK+2, . . . , zK+L+1)−1
)
K,K

where we recall that zK,L;i = (zi−K , . . . , zi−1, zi+1, . . . , zi+L)> and where Var|1 and Cov|1
stand for the variance and the covariance matrices conditionally to z1. To shorten notation,
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we denote r(|i − j|/n) by rn(i, j). Now, for 2 6 i, j 6 K + L + 1, one has, by Gaussian
conditioning,

Cov|1(zi, zj) = Cov(zi, zj)− Cov(zi, z1) Var(z1)
−1 Cov(z1, zj)

=

(
1− |i− j|

s

ns
+ rn(i, j)

)
−
(

1− |i− 1|s

ns
+ rn(i− 1, 0)

)(
1− |j − 1|s

ns
+ rn(0, j − 1)

)
=:

1

ns
Bi−1,j−1 −

1

n2s
Ci−1,j−1 +R

(n)
i−1,j−1

using Var(z1) = 1, where B, C and R(n) ∈MK+L,K+L(R) are given by

Bi,j = is + js − |i− j|s

Ci,j = isjs

R
(n)
i,j = rn(i, j)− rn(i, 0)

(
1− js

ns

)
− rn(0, j)

(
1− is

ns

)
− rn(i, 0)rn(0, j).

In addition, we introduce the following notation b(n) := (B − n−sC + nsR(n))−1 and we
recall that b = B−1. Finally, the prediction variance writes as

σ̂2
i =

1

ns
1

b
(n)
K,K

, for i = K + 1, . . . , n− L.

Since the matrix B is invertible, by continuuity and the assumption on r, we obtain

b(n) = b+ o (1) (25)

leading to

σ̂2
i ∼

1

ns
1

bK,K
. (26)

Let us turn to the computation of the covariances in (24). Using again the well-known
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virtual LOO formulas (see [2, Proposition 3.1]), the prediction error is given by

zi − ẑi = zi − E[zi|zi−K , . . . , zi−1, zi+1, . . . , zi+L]

=
(
zi − E|i−K [zi]

)
− E|i−K

[(
zi − E|i−K [zi]

)
|zi−K+1, . . . , zi−1, zi+1, . . . , zi+L

]
=

1(
Cov|1(z2, . . . , zK , zK+1, zK+2, . . . , zK+L+1)−1

)
K,K

×


Cov|1(z2, . . . , zK , zK+1, zK+2, . . . , zK+L+1)

−1



zi−K+1 − E [zi−K+1|zi−K ]
...

zi−1 − E [zi−1|zi−K ]
zi − E [zi|zi−K ]

zi+1 − E [zi+1|zi−K ]
...

zi+L − E [zi+L|zi−K ]




K

=
1

b
(n)
K,K

K+L∑
k=1

b
(n)
K,k (zi−K+k − E [zi−K+k|zi−K ])

=
1

b
(n)
K,K

K+L∑
k=1

b
(n)
K,k

(
zi−K+k −

(
1− ks

ns
+ rn(k, 0)

)
zi−K

)
, (27)

where E|l stands for the expectation conditionally to zl. Now,

n−L∑
i,j=K+1

Cov (zi − ẑi, zj − ẑj)2 =
1(

b
(n)
K,K

)4 n−L∑
i,j=K+1

(
K+L∑
k,l=1

b
(n)
K,kb

(n)
K,l (28)

× Cov

(
zi−K+k −

(
1− ks

ns
+ rn(k, 0)

)
zi−K , zj−K+l −

(
1− ls

ns
+ rn(0, l)

)
zj−K

))2

=
1(

b
(n)
K,K

)4 n−L∑
i,j=K+1

(αi,j + βi,j)
2 , (29)

where

αi,j =
1

n2s

(
K+L∑
k=1

b
(n)
K,kk

s

)2(
1− |i− j|

s

ns
+ rn(i, j)

)
and βi,j is self explanatory. Now, we establish two lemmas in order to complete the proof
of Theorem 3.3(i).

Lemma A.2. Assume that

n−L∑
i,j=K+1

β2
i,j = o

(
n−L∑

i,j=K+1

α2
i,j

)
, (30)
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then
n−L∑

i,j=K+1

(αi,j + βi,j)
2 ∼

n−L∑
i,j=K+1

α2
i,j.

Proof. The result directly comes from the use of Cauchy-Schwarz inequality.

Lemma A.3. We assume that 0 < s < 1/2.

(i) One has
∑n−L

i,j=K+1 α
2
i,j = o(n2−4s). Moreover, if Condition 3.2 holds, then

n−L∑
i,j=K+1

α2
i,j ∼ 2n2−4s(bCb)2K,K

∫ 1

0

(1− t)(1− ts + r(t))2dt.

(ii) The array (βi,j)i,j=K+1,...,n is such that
∑n−L

i,j=K+1 β
2
i,j = o(n2−4s).

Applying Lemmas A.2 and A.3 together with (24), (26) and (29) completes the proof of
Theorem 3.3(i). �

Proof of Lemma A.3. (i) Recalling identity (6) and the de�nition of αi,j, one has

n−L∑
i,j=K+1

α2
i,j =

1

n4s

(
K+L∑
k=1

b
(n)
K,kk

s

)4 n−L∑
i,j=K+1

(
1− |i− j|

s

ns
+ rn(i, j)

)2

=
2

n4s
(bCb)2K,K(1 + o(1))

n−L−(K+1)∑
m=0

(n− L−K − 1−m)

(
1− ms

ns
+ r

(m
n

))2

= 2n2−4s(bCb)2K,K(1 + o(1))

(∫ 1

0

(1− t)(1− ts + r(t))2dt

)
(31)

by the convergence theorem of Riemann sums.

(ii) For �xed k and l in {1, . . . , K + L}, one can show that

b
(n)
K,kb

(n)
K,l Cov

(
zi−K+k −

(
1− ks

ns
+ rn(k, 0)

)
zi−K , zj−K+l −

(
1− ls

ns
+ rn(0, l)

)
zj−K

)
= αk,li,j + βk,li,j ,

with

αk,li,j = b
(n)
K,kb

(n)
K,l

ksls

n2s

(
1− |i− j|

s

ns
+ rn(i, j)

)
and βk,li,j consists in the remaining terms:

βk,li,j = b
(n)
K,kb

(n)
K,l

(
γk,li,j + δk,li,j + εk,li,j + φk,li,j + ψk,li,j + µk,li,j + νk,li,j

)
(32)
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where

γk,li,j =
1

ns
(|i− j − l|s + |i+ k − j|s − |i+ k − j − l|s − |i− j|s) ,

δk,li,j =
ks

n2s
(|i− j|s − |i− j − l|s) +

ls

n2s
(|i− j|s − |i+ k − j|s),

εk,li,j =rn(i+ k, j + l)− rn(i+ k, j)− rn(i, j + l) + rn(i, j),

φk,li,j =− rn(0, l)

(
1− |i+ k − j|s

ns
−
(

1− ks

ns

)(
1− |i− j|

s

ns

))
− rn(k, 0)

(
1− |i− j − l|

s

ns
−
(

1− ls

ns

)(
1− |i− j|

s

ns

))
,

ψk,li,j =
ks

ns
(rn(i, j + l)− rn(i, j)) +

ls

ns
(rn(i+ k, j)− rn(i, j)) ,

µk,li,j =rn(0, l)

(
rn(i, j)

(
1− ks

ns
)
− rn(i+ k, j)

)
+ rn(k, 0)

(
rn(i, j)

(
1− ls

ns
)
− rn(i, j + l)

)
,

νk,li,j =rn(k, 0)rn(0, l)rn(i, j) + rn(k, 0)rn(0, l)

(
1− |i− j|

s

ns

)
.

Since (a + b)2 6 2a2 + 2b2, using (25) and since b
(n)
K,kb

(n)
K,l does not depend of i and j, it

su�ces to prove that, for tk,li,j being any term in the sum (32),

n−L∑
i,j=K+1

(
tk,li,j

)2
= o

(
n2−4s) (33)

for any �xed k and l.

• Term γk,li,j . We consider the sequence

a0 = −1, ak = 1, a−l = 1, ak−l = −1 and am = 0 for m /∈ {0, k,−l, k − l}

if k 6= l and we consider the sequence

a0 = −2, ak = 1, a−k = 1 and am = 0 for m /∈ {0, k,−k}

if k = l. Those sequences are of order 2. Hence, by Lemma A.1(i) with r = i − j, for
|i− j| > 2, ∣∣∣γk,li,j ∣∣∣ 6 (Const)

ns
|i− j|s−2 .
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Now,

n−L∑
i,j=K+1

(
γk,li,j

)2
6 (Const)

n1−2s +
1

n2s

∑
i,j=(K+1),...,(n−L)

|i−j|>2

|i− j|2s−4


6 (Const)

n1−2s +
2

n2s

n−L−(K+1)∑
m=2

(n− L−K − 1−m)m2s−4

 (34)

6 (Const)

(
n1−2s +

2

n2s−1

+∞∑
m=2

m2s−4

)
6 (Const)n1−2s,

which is o (n2−4s) since 0 < s < 1/2.

• Term δk,li,j . Similarly to γk,li,j , we show that

n−L∑
i,j=K+1

(
δk,li,j

)2
= O

(
n1−4s) = o

(
n2−4s) .

• Term εk,li,j . We want to use Lemma A.1(ii). If k = l,

εk,ki,j =2rn(i, j)− rn(i+ k, j)− rn(i, j + k)

= 2r

(
i− j
n

)
− r

(
i− j
n

+
k

n

)
− r

(
i− j
n
− k

n

)
.

Thus we can apply Lemma A.1(ii), with t = (i − j)/n and the variation de�ned by ak =
a−k = −1 and a0 = 2 of order 2. This yields εk,ki,j = O(1/n2). Otherwise if k 6= l,

εk,ki,j =rn(i+ k, j + l)− rn(i+ k, j)− rn(i, j + l) + rn(i, j)

= r

(
i− j
n

+
k − l
n

)
− r

(
i− j
n

+
k

n

)
− r

(
i− j
n
− l

n

)
+ r

(
i− j
n

)
.

Thus we can apply Lemma A.1(ii), with t = (i−j)/n and the variation de�ned by ak−l = 1,
a−l = ak = −1 and a0 = 1 of order 2. This yields εk,li,j = O(1/n2). Hence

n−L∑
i,j=K+1

(
εk,li,j

)2
= O

(
n−2
)

= o
(
n2−4s) .
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• Term φk,li,j . One has

|rn(0, l)|
∣∣∣∣1− |i+ k − j|s

ns
−
(

1− ks

ns

)(
1− |i− j|

s

ns

)∣∣∣∣
= |rn(0, l)|

∣∣∣∣ |i− j|sns
− |i+ k − j|s

ns
+
ks

ns

(
1− |i− j|

s

ns

)∣∣∣∣
6 o(n−1)

(
(Const)

|i− j|s−1

ns
+

1

ns

)
6 o(n−1−s)

using Lemma A.1(i) applied to the sequence of order 1: a0 = 1 and ak = −1. Analogously,
the second term in φk,li,j is also o(n

−1−s). Since the o(n−1−s) above do not depend on i, j,

one gets that
(
φk,li,j

)
i,j

satis�es Condition (33) for any �xed k and l.

• Term ψk,li,j . Using Lemma A.1(ii), we derive that

ψk,li,j = O

(
1

ns+1

)
,

implying that
(
ψk,li,j

)
i,j

satis�es Condition (33) for any �xed k and l.

• Term µk,li,j . Using Lemma A.1(ii), one has µk,li,j = o (n−1)O (n−1 + n−s) = o (n−1−s). Thus,(
µk,li,j

)
i,j

satis�es Condition (33) for any �xed k and l.

• Term νk,li,j . Straightforwardly, one gets

n−L∑
i,j=K+1

(
νk,li,j

)2
= O

(
n2−2) = o

(
n2−4s) .

The proof is now complete.

A.3 Proof of Theorem 3.3(ii)

The proof follows the same lines as the proof of Theorem 3.3(i) except that Lemma A.3 is
updated to Lemma A.4.

Lemma A.4. We assume that 1/2 6 s < 3/2.

(i) One has
∑n−L

i,j=K+1 α
2
i,j = O(n1−2s).

(ii) The array (βi,j)i,j=K+1,...,n−L is also such that
∑n−L

i,j=K+1 β
2
i,j = O(n1−2s).
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Proof. The proof of (i) is straightforward from (31) in Lemma A.3. As in the proof of
Lemma A.3, the proof of (ii) only requires to prove that, for tk,li,j being any term in the sum
(32),

n−L∑
i,j=K+1

(
tk,li,j

)2
= O

(
n1−2s) (35)

for any �xed k and l.

• Term γk,li,j . By (34), the sequence (γk,li,j )i,j satis�es (35) since the sum at the line after (34)
converges as soon as s < 3/2 for any �xed k and l.

• Term δk,li,j . Analogously, one has

n−L∑
i,j=K+1

(
δk,li,j

)2
6

(Const)

n4s

∑
i,j=(K+1),...,(n−L)

|i− j|2s−2

6 (Const)n1−4s
n−L−(K+1)∑

m=0

m2s−2

6 (Const)n1−4s
(

(Const) +

∫ n

2

t2s−2dt

)
6 (Const)n1−4s ((Const) + n2s−1)
6 (Const)n−2s = O

(
n1−2s) .

• Term εk,li,j . Using the proof of Lemma A.3, we still get that εk,li,j = O(1/n2) that leads to
the result as soon as s < 3/2.

• Term φk,li,j . Since r(t) = O(t2) for 1/2 6 s < 3/2,

n−L∑
i,j=K+1

(
φk,li,j

)2
= O

(
n2.n−4

)
= O

(
n1−2s) .

• Term ψk,li,j . Similarly, from Lemma A.3(ii), we derive that

n−L∑
i,j=K+1

(
ψk,li,j

)2
= O

(
n2

n2s+2

)
= O

(
n1−2s) .

• Term µk,li,j . Analogously, the sequence (µk,li,j )i,j satis�es (35) as soon as s < 3/2 for any
�xed k and l.

• Term νk,li,j . Using once again r(t) = O(t2) for 1/2 6 s < 3/2, one gets that the sequence

(νk,li,j )i,j satis�es (35).
The proof is now complete.

The proof of Theorem 3.3(ii) then follows straightforwardly. �
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A.4 Proof of Proposition 3.6

We only prove the result in the case K = 1 and L = 0. When K = 0 and L = 1, we get
the result by symmetry. Here, ri and Ri reduce to ri = k (xi−1, xi) = 1− 1

ns + rn(1, 0) and
Ri = k (xi−1, xi−1) = 1. Hence, setting i− j = a, one gets

Cov
(
zi − r>i R−1i z1,0;i, zj − r>j R−1j z1,0;j

)
=
g(a)

ns
+

1− g(a)

n2s
− |a|

s

n3s
+

1

n2s
rn(a, 0) + tn(a)

where g is the quadratic variation of order 2 given by g(a) = |a+ 1|s − 2 |a|s + |a− 1|s
and tn is a remaining term involving the rest function r. Moreover, the variance term σ̂2

i

reduces to

σ̂2
i =

1

ns

(
2− 1

ns

)
− rn(1, 0)

(
rn(1, 0) + 2

(
1− 1

ns

))
∼ 2

ns
.

Finally,

Var

(
σ̂2

σ2
0

)
=

2

(n− 1)2

n∑
i,j=2

Cov
(
zi − r>i R−1i z1,0;i, zj − r>j R−1j z1,0;j

)2
(1− r>i R−1i ri)(1− r>j R−1j rj)

=
4n

(n− 1)2
1

4 + o(1)

n−2∑
a=0

(
1− a

n

)(
g(a) +

1− g(a)

ns
− as

n2s
+

1

ns
rn(a, 0) + tn(a)

)2

.

The terms in g(a), namely, the terms proportional to g(a)2, g(a) and g(a)as are O(1/n).
Indeed, if we consider the term in g(a)2 for example, one has, by Lemma A.1(i),

g(a)2 = O
(
a2s−4

)
.

Now since

1

n

n−2∑
a=0

a2s−4 6
1

n

+∞∑
a=0

a2s−4 = O

(
1

n

)
by Lemma A.1(i), one gets that

1

n

n−2∑
a=0

g(a)2 = O

(
1

n

)
as soon as s < 3/2. The same reasoning and conclusion hold for

1

ns+1

n−2∑
a=0

g(a) and
1

n2s+1

n−2∑
a=0

g(a)as.
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Let us turn now to the preponderant term: one has

1

n

n−2∑
a=0

(
1− a

n

) 1

n2s

(
1− as

ns
+ rn(a, 0)

)2

∼ 1

n2s

∫ 1

0

(1− t)(1− ts + r(t))2dt

by the convergence theorem of Riemann sums.

Finally, the terms involving tn(a) can be treated as in the proof of Theorem 3.3(i) and using
extensively Lemma A.1(ii). Thus, they are negligible with respect to the preponderant
term. The proof of (10) is now complete. The proof for the case 1/2 6 s < 3/2 is carried
out similarly. �

A.5 On Condition 3.2

Lemma A.5. Condition 3.2 holds for K = 0 or L = 0.

Proof. LetM be the fractional Brownian motion (FBM) process, de�ned by Cov(B(t), B(r)) =

|r|s + |t|s − |t− r|s for r, t > 0. For i > 1, we de�ne I
(1)
i = B(i)−B(i− 1).

From the well-known virtual LOO formulas (see [2, Proposition 3.1]), we have, for n > 2,

n∑
i=1

bn,ii
s =bn,n

(
|n|s − E

(
B(n)| (B(i) = |i|s)i=1,...,n−1

))
=bn,n

(
|n|s − |n− 1|s − E

(
I(1)n

∣∣ (I(1)i = |i|s − |i− 1|s)i=1,...,n−1

))
.

Now letMI be the covariance matrix of (I
(1)
1 , . . . , I

(1)
n ). The matrixMI is invertible since it

is the covariance matrix of an invertible linear transformation of (B(1), . . . , B(n)), which
has an invertible covariance matrix from [1]. Hence we obtain, with mI the inverse of MI ,
again from the virtual LOO formulas,

n∑
i=1

bn,ii
s =

bn,n
mI,n,n

(
n∑
i=1

mI,n,i (|i|s − |i− 1|s)

)
. (36)

We have, for i 6= j, i, j ∈ {1, . . . , n},

Cov(I
(1)
i , I

(1)
j ) = Cov(B(i)−B(i− 1), B(j)−B(j − 1))

= −|i− j|s + |i− j + 1|s + |i− j − 1|s − |i− j|s

< 0,

by strict concavity of the function |.|s on [0,∞). Hence the matrix MI has positive diag-
onal elements, negative o�-diagonal elements and is strictly positive de�nite. Hence, from
Theorem 2.5.3 of [18], the elements ofmI are non-negative. This shows that

∑n
i=1 bn,ii

s > 0
from (36).
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A.6 Proof of Lemma 3.8

From (13), we have

Aν =
π

Γ(ν) sin(νπ)22νΓ(1 + ν)

and

gν(t) =
∞∑
k=0

t2k

22k+2(k + 1)!
∏k+1

i=1 (i− ν)
− π

Γ(ν) sin(νπ)

∞∑
k=1

t2(k−1)+2ν

22k+2νk!Γ(k + 1 + ν)
.

Hence, the function gν is C
2-di�erentiable on R+ by dominated convergence. �

A.7 Proof of Theorem 4.1(i)

Since we have

(σ̂2, α̂) ∈ argmin(σ2,α)∈(0,∞)×A

n−L∑
i=K+1

L(yi|yK,L;i),

the value of σ̂2 is given by, with ẑi,α̂ = r>α̂,K,L;iR
−1
α̂,K,L;izK,L;i and σ̂

2
i,α̂ = 1−r>α̂,K,L;iR−1α̂,K,L;irα̂,K,L;i,

σ̂2

σ2
0

=
1

n−K − L

n−L∑
i=K+1

(zi − ẑi,α̂)2

σ̂2
i,α̂

.

Let r̂n(i, j) = r(α̂ |i− j| /n). Let us de�ne the (K + L) × (K + L) matrix b(n,α̂) as the
inverse of the (K + L)× (K + L) matrix

(
B − (α̂s/ns)C + (ns/α̂s)R(n,α̂)

)
, where R(n,α̂) is

given by

R
(n,α̂)
i,j = r̂n(i, j)− r̂n(i, 0)

(
1− α̂s j

s

ns

)
− r̂n(0, j)

(
1− α̂s i

s

ns

)
− r̂n(i, 0)r̂n(0, j).

We remark that we have

Cov1,α̂(z2, . . . , zK+L+1) =
α̂s

ns

(
B − α̂s

ns
C +

ns

α̂s
R(n,α̂)

)
.

Then, using the fact that r(t) = O(t) for 0 < s < 1/2 and r(t) = O(t2) for 1/2 6 s < 3/2,
one gets

b(n,α̂) = b+
α̂s

ns
bCb

(
1 + o

(
1

ns

))
=: b+

α̂s

ns
b̃Cb.

The variance term σ̂2
i,α̂ reduces to

σ̂2
i,α̂ = Var(zi|zK,L;i) =

1(
Cov|1,α̂(z2, . . . , zK , zK+2, . . . , zK+L+1)−1

)
K,K

=
α̂s

ns
1

b
(n,α̂)
K,K

,
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from which we derive straightforwardly that

σ̂2
i,α̂ =

α̂s

ns
1

bK,K

(
1− α̂s

ns
(b̃Cb)K,K
bK,K

+ o

(
1

ns

))
.

Moreover, similarly as in (27),

b
(n,α̂)
K,K (zi − ẑi,α̂) =

K+L∑
k=1

b
(n,α̂)
K,k

(
zi−K+k − zi−K +

α̂s

ns
kszi−K − r̂n(k, 0)zi−K

)

=
K+L∑
k=1

bK,k (zi−K+k − zi−K) +
α̂s

ns

K+L∑
k=1

((bCb)K,k (zi−K+k − zi−K) + bK,kk
szi−K)

+
α̂2s

n2s

(
K+L∑
k=1

(b̃Cb)K,kk
s

)
zi−K + ak,i,n,

where

sup
i=K+1,...,n−L
k=1,...,K+L

|ak,i,n| 6 max

{
o

(
1

n2s

)
, O

(
1

n2

)}
.

Consequently, the ratio σ̂2/σ2
0 equals

1

n−K − L
ns

α̂s
1

bK,K

(
1− α̂s

ns
(b̃Cb)K,K
bK,K

+ o

(
1

ns

)) n−L∑
i=K+1

[
K+L∑
k=1

bK,k (zi−K+k − zi−K) +

(37)

α̂s

ns

K+L∑
k=1

(
(b̃Cb)K,k (zi−K+k − zi−K) + bK,kk

szi−K

)
+
α̂2s

n2s

(
K+L∑
k=1

(b̃Cb)K,kk
s

)
zi−K + ak,i,n

]2
.

• We start by computing the squares in (37).
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First, we study the term
n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)2

. Its expectation is given by

E

 n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)2


=
n−L∑
i=K+1

K+L∑
k,l=1

bK,kbK,lE [(zi−K+k − zi−K) (zi−K+l − zi−K)]

=
αs0
ns

n−L∑
i=K+1

K+L∑
k,l=1

bK,kbK,lBk,l

=
αs0
ns

n−L∑
i=K+1

K+L∑
k=1

bK,k(bB)K,k

=
αs0
ns

n−L∑
i=K+1

K+L∑
k=1

bK,kδK,k

∼ αs0n
1−sbK,K .

In addition, its variance is asymptotically in n1−2s using Proposition 5 in [1] with a variation
of order greater than 1 and D = 0. This yields a variation coe�cient in n−1/2 from which
we conclude that

n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)2

= αs0n
1−sbK,K +OP

(
n1/2−s) .

Second, using (6), we study the term

α̂2s

n2s

n−L∑
i=K+1

(
K+L∑
k=1

(
(b̃Cb)K,k (zi−K+k − zi−K) + bK,kk

szi−K

))2

=
α̂2s

n2s

n−L∑
i=K+1

(
K+L∑
k=1

(b̃Cb)K,k (zi−K+k − zi−K)

)2

+
α̂2s

n2s
(bCb)K,K

(
n−L∑
i=K+1

z2i−K

)

+ 2
α̂2s

n2s

(
K+L∑
k=1

bK,kk
s

)
n−L∑
i=K+1

zi−K

(
K+L∑
k=1

(b̃Cb)K,k (zi−K+k − zi−K)

)
.

We have
α̂2s

n2s
(bCb)K,K

(
n−L∑
i=K+1

z2i−K

)
∼ α̂2sn1−2s(bCb)K,K

∫ 1

0

Z(t)2dt.
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Moreover, using the Hölder property of the process at order β < 1/2, we get, almost surely,

|zi−K+k − zi−K | 6 max
i=K+1,...,n−L

|zi−K+k − zi−K |

6 (Const) max
k=1,...,K+L

kβ

nβ

6 (Const)
(K + L)β

nβ

= OP
(
n−β

)
.

Consequently,

α̂2s

n2s

n−L∑
i=K+1

(
K+L∑
k=1

(b̃Cb)K,k (zi−K+k − zi−K)

)2

= OP
(
n1−2s) = oP

(
n1−2s) .

By Cauchy-Schwarz inequality, we conclude to

α̂2s

n2s

n−L∑
i=K+1

(
K+L∑
k=1

(
(b̃Cb)K,k (zi−K+k − zi−K) + bK,kk

szi−K

))2

= α̂2sn1−2s(bCb)K,K

∫ 1

0

Z(t)2dt+ oP
(
n1−2s) .

Third, we study the term

α̂4s

n4s

(
K+L∑
k=1

(b̃Cb)K,kk
s

)2( n−L∑
i=K+1

z2i−K

)
=
α̂4s

n4s

(
K+L∑
k=1

(bCb)K,kk
s

)2

OP (n) = oP
(
n1−2s) .

• Now, let us turn to the double products in (37). First,

2
α̂s

ns

n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)(
K+L∑
k=1

(
(b̃Cb)K,k (zi−K+k − zi−K) + bK,kk

szi−K

))

=2
α̂s

ns

n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)(
K+L∑
l=1

(b̃Cb)K,l (zi−K+l − zi−K)

)

+ 2
α̂s

ns

(
K+L∑
k=1

bK,kk
s

)
n−L∑
i=K+1

zi−K

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)
. (38)

The �rst term in the right hand side of the previous equation is

2
α̂s

ns

n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)(
K+L∑
l=1

(b̃Cb)K,l (zi−K+l − zi−K)

)

= 2
α̂s

ns

n−L∑
i=K+1

K+L∑
k,l=1

bK,k(b̃Cb)K,l (zi−K+k − zi−K) (zi−K+l − zi−K)
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where the expectation of the double sum provides

2α̂sαs0n
1−2s

K+L∑
k,l=1

bK,k(b̃Cb)K,lBk,l + o
(
n1−2s) = 2α̂sαs0n

1−2s(b̃Cb)K,K + o
(
n1−2s)

while its variance is O (n1−s) by similar arguments.

Taking the expectation of the sums in (38) gives

2
α̂s

ns
E

[(
K+L∑
k=1

bK,kk
s

)
n−L∑
i=K+1

zi−K

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)]

= 2
α̂s

ns

(
K+L∑
k=1

bK,kk
s

)
n−L∑
i=K+1

K+L∑
k=1

bK,kE [zi−K (zi−K+k − zi−K)]

= −2α̂sαs0n
1−2s

(
K+L∑
k=1

bK,kk
s

)2

+ o
(
n1−2s)

= −2α̂sαs0n
1−2s(bCb)K,K + o

(
n1−2s) .

In addition, after tedious computations, taking the variance of the sums in (38) provides

4
α̂2s

n2s

(b̃Cb)K,K
b4K,K

K+1∑
k,l=1

bK,kbK,l

n−L∑
i,j=K+1

Cov ((zi−K+k − zi−K)zi−K , (zj−K+l − zj−K)zj−K)

and is proven to be O(n1−s). Indeed, for �xed k and l, we study

n−L∑
i,j=K+1

Cov ((zi−K+k − zi−K)zi−K , (zj−K+l − zj−K)zj−K)

=
n−L∑

i,j=K+1

Cov (zi−K+kzi−K , zj−K+lzj−K)− Cov
(
zi−K+kzi−K , z

2
j−K
)

− Cov
(
z2i−K , zj−K+lzj−K

)
+ Cov

(
z2i−K , z

2
j−K
)

=
αs0
ns

n−L∑
i,j=K+1

(|i− j + k|s + |i− j − l|s − |i− j + k − l|s − |i− j|s)

+
α2s
0

n2s

n−L∑
i,j=K+1

[|i− j|s (|i− j + k − l|s − 2 |i− j + k|s − |i− j − l|s + 2 |i− j|s)

+ |i− j − l|s (|i− j + k|s − |i− j|s)) .

The term (|i− j + k|s + |i− j − l|s − |i− j + k − l|s − |i− j|s) is a variation of order 2
implying that the �rst sum is αs0n

1−s. The second sum is bounded by

α2s
0 n

1−2s

(
C +

n−L−K−1∑
a=0

as−1

)
6 α2s

0 n
1−2s

(
C +

∫ n

2

ts−1dt

)
6 α2s

0 n
1−s.
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Finally, we conclude that the left hand side of (38) is given by

2α̂sαs0n
1−2s(b̃Cb)K,K − 2α̂sαs0n

1−2s(bCb)K,K + o
(
n1−2s) .

Second, turning to the second double product in (37), we get, by Cauchy-Schwarz inequal-
ity,

2
α̂2s

n2s

n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)(
K+L∑
k=1

(b̃Cb)K,kk
s

)
zi−K

6 2
α̂2s

n2s

 n−L∑
i=K+1

(
K+L∑
k=1

bK,k (zi−K+k − zi−K)

)2
1/2(

n−L∑
i=K+1

z2i−K

)1/2(K+L∑
k=1

(b̃Cb)K,kk
s

)
= n−2sOP

(
n1/2−s/2)OP

(
n1/2

)
= OP

(
n1−5s/2)

= oP
(
n1−2s) .

Third, for the last double product in (37), we proceed analogously:

2
α̂3s

n3s

(
K+L∑
k=1

(b̃Cb)K,kk
s

)
n−L∑
i=K+1

zi−K

(
K+L∑
k=1

(
(b̃Cb)K,k (zi−K+k − zi−K) + bK,kk

szi−K

))

6 2
α̂3s

n3s

(
K+L∑
k=1

(b̃Cb)K,kk
s

)(
n−L∑
i=K+1

z2i−K

)1/2

(
n−L∑
i=K+1

(
K+L∑
k=1

(
(b̃Cb)K,k (zi−K+k − zi−K) + bK,kk

szi−K

)))1/2

= n−3sOP
(
n1/2

)
OP
(
n1/2

)
= OP

(
n1−3s)

= oP
(
n1−2s) .

One can show straightforwardly that the e�ect of ak,i,n in (37) is negligible. Hence, plugging
the asymptotic behaviors of the three squares and the three double products into (37) leads
to (15) which concludes the proof. �

A.8 Proof of Theorem 4.1(ii)

The proof directly comes following the same lines as the proofs of Theorems 3.3(ii) and
4.1(i). �
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A.9 Proof of Proposition 4.2

In the case K = 1 and L = 0, the value of σ̂2 is given by:

σ̂2

σ2
0

=
1

n− 1

n∑
i=2

(zi − ẑi,α̂)2

σ̂2
i,α̂

. (39)

The variance term σ̂2
i,α̂ reduces to

σ̂2
i,α̂ = Var(zi|zK,L;i) = Var(zi − r>i R−1i z1,0;i) = 1− r>i,α̂R−1i,α̂ri,α̂ =

α̂s

ns

(
2− α̂s

ns

)
+O

(
1

n

)
.

(40)

Moreover,

(zi − ẑi,1)2 =

(
zi −

(
1− α̂s

ns
+ r̂n(1)

)
zi−1

)2

= (zi − zi−1)2 + 2
α̂s

ns
(zi − zi−1) zi−1 +

α̂2s

n2s
z2i−1 + ai,n (41)

where supi=2,...,n |ai,n| = OP (1/n).

• First, we study the variance of the term
∑n

i=2 (zi − zi−1)2. By Melher's formula and
letting a = |i− j|, one gets

Var

(
n∑
i=2

(zi − ẑi,α̂)2
)
6 (Const)

α2s
0

n2s−1

n−2∑
a=0

(
1− a

n

)
as−2

6 (Const)
α2s
0

n2s−1

n−2∑
a=0

as−2

= O
(
n1−2s) .

Consequently,

n∑
i=2

(
(zi − ẑi,1)2 − E

[
(zi − ẑi,1)2

])
= OP

(
n1/2−s) .

But, since

E

[
n∑
i=2

(zi − ẑi,1)2
]

=
n∑
i=2

Cov (zi − ẑi,1, zi − ẑi,1) = 2n1−sαs0 +O(1),

then

n∑
i=2

(zi − zi−1)2 = 2n1−sαs0 +OP
(
n1/2−s) . (42)
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• Second, (1/n)
∑n

i=2 z
2
i−1 is a sequence of random variables converging in the L2 sense to∫ 1

0
Z(t)2dt (see, e.g. [37, 8]) and thus,

n∑
i=2

α̂2s

n2s
z2i−1 ∼P n

1−2sα̂2s

∫ 1

0

Z(t)2dt. (43)

• Third, let us turn to the double product in (41). We use the following result:

Cov(XY,ZT ) = Cov(X,Z) Cov(Y, T ) + Cov(X,T ) Cov(Y, Z) (44)

where (X, Y, Z, T ) is a centered Gaussian vector. We have, after some tedious computa-
tions,

4
α̂2s

n2s
Var

(
n∑
i=2

(zi − zi−1) zi−1

)
= 4

α̂2s

n2s

n∑
i,j=2

Cov ((zi − zi−1) zi−1, (zj − zj−1) zj−1)

=4
α̂2s

n2s

n∑
i,j=2

Cov (zizi−1, zjzj−1)− Cov
(
zizi−1, z

2
j−1
)
− Cov

(
z2i−1, zjzj−1

)
+ Cov

(
z2i−1, z

2
j−1
)

=4
α̂2sαs0
n3s

n∑
i,j=2

(|i− j + 1|s + |i− j − 1|s − 2 |i− j|s) +
1

n2s
OP

(
n2 1

n

)
+ 4

α̂2sα2s
0

n4s
×

n∑
i,j=2

(
3 |i− j|2s + |i− j − 1|s |i− j + 1|s − 2 |i− j|s (|i− j + 1|s + |i− j − 1|s)

)
.

Using Lemma A.1, the �rst sum gives

n∑
i,j=2

(|i− j + 1|s + |i− j − 1|s − 2 |i− j|s)

6 2
n−2∑
a=0

(n− a) (|a+ 1|s + |a− 1|s − 2as)

6 2n
n−2∑
a=0

as−2 = O (n) .
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Analogously, the second sum gives

n∑
i,j=2

(
3 |i− j|2s + |i− j − 1|s |i− j + 1|s − 2 |i− j|s (|i− j + 1|s + |i− j − 1|s)

)
∼ 2

n−2∑
a=0

(n− a)
(
3a2s + |a− 1|s |a+ 1|s − 2as (|a+ 1|s + |a− 1|s)

)
= 2

n−2∑
a=0

(n− a) (2as(as − |a+ 1|s) + as(as − |a− 1|s) + |a− 1|s (|a+ 1|s − as))

6 8n

(
(Const) +

n−2∑
a=2

a2s−1

)

6 8n

(
(Const) +

∫ n−2

1

t2s−1dt

)
∼ 8n1+2s = O

(
n1+2s

)
.

Hence, the variance of the double product is O (n1−2s) while the expectation provides

2
α̂s

ns
E

[
n∑
i=2

(zi − zi−1) zi−1

]
= 2

α̂s

ns

n∑
i=2

((
1− αs0

ns
+ r̂n(1)

)
− 1
)

= −2αs0α̂
sn1−2s +OP

(
n−s
)
.

Consequently,

2
α̂s

ns

n∑
i=2

(zi − zi−1) zi−1 = −2αs0α̂
sn1−2s +O

(
n1/2−s) . (45)

Now, (42), (43) and (45) together with (40) lead to

σ̂2

σ2
0

∼ 1

2n1−sα̂s

(
2n1−sαs0 +OP

(
n1/2−s)+

α̂s

2ns
2n1−sαs0 + n1−2sα̂2s

∫ 1

0

Z2(t)dt

− 2n1−2sα̂sαs0 +OP
(
n−1/2

) )
.

Finally, one gets

σ̂2α̂s

σ2
0α

s
0

− 1 ∼ α̂s

2ns

(
α̂s

αs0

∫ 1

0

Z2(t)dt− 1

)
.

The proof of (18) is now complete. �
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