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We consider the estimation of the variance and spatial scale parameters of the covariance function of a one-dimensional Gaussian process with xed smoothness parameter s. We study the xed-domain asymptotic properties of composite likelihood estimators. As an improvement of previous references, we allow for any xed number of neighbor observation points, both on the left and on the right sides, for the composite likelihood. First, we examine the case where only the variance parameter is unknown. We prove that for small values of s, the composite likelihood estimator converges at a sub-optimal rate and we provide its non-Gaussian asymptotic distribution. For large values of s, the estimator converges at the optimal rate. Second, we consider the case where the variance and the spatial scale are jointly estimated. We obtain the same conclusions as for the rst case for the estimation of the microergodic parameter. The theoretical results are conrmed in numerical simulations.

Introduction

Gaussian processes are widely used in statistical science to model spatial data. When tting a Gaussian eld, one has to deal with the issue of the estimation of its covariance function. In many cases, it is assumed that this function belongs to a given parametric model or family of covariance functions, which turns the problem into a parametric estimation problem. Within this framework, the maximum likelihood estimator (MLE) [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF] of the covariance parameters has been deeply studied in the last years in the two following asymptotic frameworks. The xed-domain asymptotic framework, sometimes called inll asymptotics [START_REF] Cressie | Statistics for spatial data[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], corresponds to the case where more and more data are observed in some xed bounded sampling domain in R d ; while the increasing-domain asymptotic framework corresponds to the case where the sampling domain, also in R d , increases with the number of observed data and the distance between any two sampling locations is bounded away from 0. The asymptotic behavior of the MLE of the covariance parameters can be quite dierent under these two frameworks [START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF]. Under increasing-domain asymptotics, generally speaking, for all (identiable) covariance parameters, the MLE is consistent and asymptotically normal under some mild regularity conditions. The asymptotic covariance matrix is equal to the inverse of the (asymptotic) Fisher information matrix [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Cressie | Asymptotics for REML estimation of spatial covariance parameters[END_REF][START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF][START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF]. The situation is signicantly dierent under xed-domain asymptotics. Indeed, two types of covariance parameters can be distinguished: microergodic and non-microergodic parameters. A covariance parameter is microergodic if, for two dierent values of it, the two corresponding Gaussian measures are orthogonal, see [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. It is non-microergodic if, even for two dierent values of it, the two corresponding Gaussian measures are equivalent. Non-microergodic parameters cannot be estimated consistently, but misspecifying them asymptotically results in the same statistical inference as specifying them correctly [START_REF] Stein | Asymptotically ecient prediction of a random eld with a misspecied covariance function[END_REF][START_REF] Stein | Bounds on the eciency of linear predictions using an incorrect covariance function[END_REF][START_REF] Stein | Uniform asymptotic optimality of linear predictions of a random eld using an incorrect second-order structure[END_REF][START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF]. In the case of isotropic Matérn covariance functions with d 3, [START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF] shows that only a reparametrized quantity obtained from the variance and the spatial scale parameters is microergodic. The asymptotic normality of the MLE of this microergodic parameter is then obtained in [START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF]. Similar results for the special case of the exponential covariance function were obtained previously in [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF].

The maximum likelihood method is generally considered as the best option for estimating the covariance parameters of a Gaussian process (at least in the framework of the present paper, where the true covariance function does belong to the parametric model, see also [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecication[END_REF][START_REF] Bachoc | Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecied case[END_REF]). Nevertheless, the evaluation of the likelihood function requires to solve a system of linear equations and to compute a determinant. For a data set of n observations, the computational burden is O(n 3 ), making this method computationally untractable for large data sets. This fact motivates the search for estimation methods with a good balance between computational complexity and statistical eciency. Among these methods, we can mention low rank approximation (see [START_REF] Stein | Limitations on low rank approximations for covariance matrices of spatial data[END_REF] and the references therein for a review), sparse approximation [START_REF] Hensman | Gaussian processes for big data[END_REF], covariance tapering [START_REF] Furrer | Covariance tapering for interpolation of large spatial datasets[END_REF][START_REF] Kaufman | Covariance tapering for likelihood-based estimation in large spatial data sets[END_REF], Gaussian Markov random elds approximation [START_REF] Datta | Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets[END_REF][START_REF] Rue | Gaussian Markov random elds, Theory and applications[END_REF], submodel aggregation [START_REF] Cao | Generalized product of experts for automatic and principled fusion of Gaussian process predictions[END_REF][START_REF] Deisenroth | Distributed Gaussian processes[END_REF][START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF][START_REF] Rullière | Nested Kriging predictions for datasets with a large number of observations[END_REF][START_REF] Tresp | A Bayesian committee machine[END_REF][START_REF] Van Stein | Optimally weighted cluster Kriging for big data regression[END_REF] and composite likelihood.

With composite likelihood we indicate a general class of objective functions based on the likelihood of marginal or conditional events [START_REF] Varin | An overview of composite likelihood methods[END_REF]. This kind of estimation method has two important benets: it is generally appealing when dealing with large data sets and it can be helpful when it is dicult to specify the full likelihood. Consider the observations y 1 = Y (x 1 ), . . . , y n = Y (x n ) of a Gaussian process Y corresponding to the observation points x 1 , . . . , x n . In this work, we focus on composite likelihood estimators (CLEs) of the covariance parameters that maximize the sum, over i = 1, . . . , n, of the conditional log likelihood of y i given a subset of {y 1 , . . . , y n }\{y i } that corresponds to observation points that are nearby x i . These estimators have been considered in several references, including [START_REF] Mateu | Fitting negative spatial covariances to geothermal eld temperatures in Nea Kessani (Greece)[END_REF][START_REF] Pardo-Igúzquiza | AMLE3D: A computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation[END_REF][START_REF] Stein | Approximating likelihoods for large spatial data sets[END_REF][START_REF] Vecchia | Estimation and model identication for continuous spatial processes[END_REF]. More generally, the principle of conditioning based on neighbor observation points rather than on the full set of observation points is widely applied for Gaussian processes [START_REF] Gramacy | Local Gaussian process approximation for large computer experiments[END_REF][START_REF] Gramacy | laGP: large-scale spatial modeling via local approximate Gaussian processes in R[END_REF]. Despite their popularity in practice, no general xed-domain asymptotic results exist for the above CLEs. The existing results address the exponential covariance function in dimension one. In this case, letting x 1 . . .

x n be the observation points, the CLE coincides with the MLE due to the Markov property when the likelihood of each y i is evaluated conditionally to the previous observations y i-1 , . . . , y i-K for any arbitrary value of K 1 (see [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]). The CLE of the microergodic parameter is asymptotically Gaussian in this special case. When each y i is evaluated conditionally to its two neighbor observations y i-1 , y i+1 , then the CLE of the microergodic parameter is also asymptotically Gaussian [START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF]. Finally, we remark that also pairwise likelihood estimators have been analyzed recently, in the case of the exponential covariance function in dimension one [START_REF] Bachoc | Composite likelihood estimation for a gaussian process under xed domain asymptotics[END_REF]. In this work, we provide a xed-domain asymptotic analysis of composite likelihood, for Gaussian processes in dimension one, that extends the previous references considerably, in terms of generality. Indeed, we allow for covariance functions σ 2 k α where k α (t) = 1 -|αt| s + r(αt) where the remainder r(αt) is negligible compared to |αt| s as t → 0. Here σ 2 is the variance parameter, α is the spatial scale parameter and s is the xed smoothness parameter, with 0 < s < 3/2. In contrast, only the special case with s = 1 corresponding to exponential covariance functions is considered in [START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. In particular, we allow for general Matérn covariance functions with parameter ν between 0 and 0.75, while in [START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF], only the case ν = 0.5 is considered. Furthermore, we allow for any xed number of neighbor observation points, both on the left and on the right, for the composite likelihood, as opposed to two neighbor points or only points on the left in [START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. First we consider the case where only the variance parameter σ 2 0 is estimated. We show that if 0 < s < 1/2, then the CLE converges at the sub-optimal rate n s , with an explicit asymptotic variance and is not asymptotically Gaussian, regardless of the number of neighbors used. Furthermore, we provide its non-Gaussian asymptotic distribution. This result is somehow surprising since, in this setting, quadratic variation estimators, also having a small computational cost compared to the MLE, would converge at rate n 1/2 [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF]. This could motivate practical adjustments of composite likelihood for Gaussian processes with small smoothness. For 1/2 s < 3/2, the CLE converges at the optimal rate n 1/2 . Second, we consider the case where the variance σ 2 0 and the spatial scale α 0 are jointly estimated, in which case σ 2 0 α s 0 is microergodic. We obtain the same conclusions as above. For 0 < s < 1/2, the CLE has sub-optimal rate n s and we provide its non-Gaussian asymptotic approximation. Furthermore, the CLE has rate n 1/2 for 1/2 s < 3/2. Many of the proof techniques we suggest are original, notably to take into account several neighbor points, on the left and on the right, for the composite likelihood. This situation was not explored theoretically in the references [START_REF] Bachoc | Composite likelihood estimation for a gaussian process under xed domain asymptotics[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF]. In particular, we approximate the conditional expectations and variances, given a xed number of neighbor observations under xed-domain asymptotics, see [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF] and [START_REF] Mateu | Fitting negative spatial covariances to geothermal eld temperatures in Nea Kessani (Greece)[END_REF] in the proofs. Furthermore, we apply some concepts from the literature of quadratic variation estimators [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF][START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF] to composite likelihood, such as nite sequences applied to functions with given orders of dierentiability. In numerical simulations in the case 0 < s < 1/2 , we conrm the rate n s and the expression of the asymptotic variance. We observe that the number of observations n may need to be very large for the asymptotic results to provide an accurate approximation of the nite sample results. The rest of the paper is organized as follows. In Section 2, we introduce the model and the CLE. In Section 3, we provide the results for the estimation of the variance parameter σ 2 0 while Section 4 is dedicated to the estimation of the microergodic parameter σ 2 0 α s 0 . Section 5 presents the numerical results. Concluding remarks are given in Section 6. All the proofs are given in the appendix.

2

The context and notation

We consider a centered Gaussian process Y dened on [0, 1], real-valued. We consider a parametric model of stationary covariance functions of the form {σ 2 k α ; σ 2 0, α ∈ A}, with A ⊂ R p and where k α is a correlation function for α ∈ R p . We let Y have covariance function σ 2 0 k α 0 for some xed σ 2 0 > 0 and α 0 ∈ R p . We consider the observation points 0 x 1 . . . x n 1 and the corresponding observed values y 1 = Y (x 1 ), . . . , y n = Y (x n ). Classically, the covariance parameters σ 2 0 and α 0 are estimated by maximum likelihood [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. The MLE is given by

(σ 2 M L , αML ) ∈ argmin σ 2 0,α∈A n log(σ 2 ) + log(det(R α )) + y R -1 α y , (1) 
where R α is the n × n matrix [K α (x i , x j )] 1 i,j n and where y = (y 1 , . . . , y n ) . The computation cost of the likelihood criterion in (1) is O(n 3 ) and is prohibitive when n becomes larger than, say, 10 4 .

To tackle this problem, several references [START_REF] Mateu | Fitting negative spatial covariances to geothermal eld temperatures in Nea Kessani (Greece)[END_REF][START_REF] Pardo-Igúzquiza | AMLE3D: A computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation[END_REF][START_REF] Stein | Approximating likelihoods for large spatial data sets[END_REF][START_REF] Vecchia | Estimation and model identication for continuous spatial processes[END_REF] have studied and used composite likelihood, that we now present. The principle is to sum the conditional log likelihood of each observation, given the K (resp. L) observations corresponding to the left (resp. right) nearest neighbor observation points. We let K ∈ N and L ∈ N be xed. For any i ∈ {K + 1, . . . , n -L}, we dene the vector r α,K,L;i by

r α,K,L;i = (k α (x i-K , x i ), . . . , k α (x i-1 , x i ), k α (x i+1 , x i ), . . . , k α (x i+L , x i )) ,
the vector of local observations y K,L;i by y K,L;i = (y i-K , . . . , y i-1 , y i+1 , . . . , y i+L )

and the submatrix R α,K,L;i by

R α,K,L;i =           k α (x i-K , x i-K ) . . . k α (x i-K , x i-1 ) k α (x i-K , x i+1 ) . . . k α (x i-K , x i+L ) . . . . . . k α (x i-1 , x i-K ) . . . k α (x i-1 , x i-1 ) k α (x i-1 , x i+1 ) . . . k α (x i-1 , x i+L ) k α (x i+1 , x i-K ) . . . k α (x i+1 , x i-1 ) k α (x i+1 , x i+1 ) . . . k α (x i+1 , x i+L ) . . . . . . k α (x i+L , x i-K ) . . . k α (x i+L , x i-1 ) k α (x i+L , x i+1 ) . . . k α (x i+L , x i+L )           .
The CLE estimator is then given by

(σ 2 , α) ∈ argmin σ 2 0,α∈A n-L i=K+1 L σ 2 ,α (y i |y i-K , . . . , y i-1 , y i+1 , . . . , y i+L ) , (2) 
where L σ 2 ,α (y i |y i-K , . . . , y i-1 , y i+1 , . . . , y i+L ) is dened as (-2) times the logarithm of the conditional probability density function of y i given y i-K , . . . , y i-1 , y i+1 , . . . , y i+L under the covariance parameters σ 2 , α. We remark that, by Gaussian conditioning (see e.g. [29, Appendix A]), for i = K + 1, . . . , n -L, we have

L σ 2 ,α (y i |y i-K , . . . , y i-1 , y i+1 , . . . , y i+L ) = log σ 2 1 -r α,K,L;i R -1 α,K,L;i r α,K,L;i + y i -r α,K,L;i R -1 α,K,L;i y K,L;i 2 σ 2 1 -r α,K,L;i R -1 α,K,L;i r α,K,L;i .
The computational cost of computing the composite likelihood criterion in [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model mispecication[END_REF] is O(n) if K and L are xed, as opposed to O(n 3 ) for the likelihood criterion in [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF].

In the rest of the paper, to lighten notation, we write r i and R i for r α,K,L;i and R α,K,L;i .

Remark 2.1. We have dened the CLE for Gaussian processes in dimension one. Indeed, all the asymptotic results in the paper hold for one-dimensional Gaussian processes. It should however be remarked that the CLE is well dened and used for Gaussian processes in dimension larger than one [START_REF] Mateu | Fitting negative spatial covariances to geothermal eld temperatures in Nea Kessani (Greece)[END_REF][START_REF] Pardo-Igúzquiza | AMLE3D: A computer program for the inference of spatial covariance parameters by approximate maximum likelihood estimation[END_REF][START_REF] Stein | Approximating likelihoods for large spatial data sets[END_REF][START_REF] Vecchia | Estimation and model identication for continuous spatial processes[END_REF]. In fact, the principle of composite likelihood is applicable whenever a relevant distance can be considered on the input space of the Gaussian process. This generality and exibility is an asset of composite likelihood.

3 Estimation of a variance parameter

Main assumptions and expression of the estimator

In the rest of the paper, we consider the regular design of observation points given by {x 1 = 1/n, ..., x n = 1}. Although the proofs in the paper could be extended to other types of designs of observation points, we state and prove our theoretical results in the case of the regular design, for a better readability. Furthermore, we let A be a compact subset of (0, ∞) and we let k α (t) = k(αt), where k is a xed stationary correlation function. Hence, in the parametric model considered in this paper, the parameters are the variance σ 2 and the spatial scale α.

In this section, we let A be reduced to the singleton {1}, we let α 0 = 1 (that is the correlation function is known) and we aim at deriving the asymptotic properties of the CLE of the unknown variance σ 2 0 . We then remark that k = k α 0 . Recall that the observation vector is (Y (x 1 ), . . . , Y (x n )) T which is the vector of observations at times x 1 , ..., x n and that y i = Y (x i ) for i = 1, . . . , n. Let us introduce the process Z such that Y = σ 0 Z. The process Z is centered and Gaussian with covariance function k leading to the reduced observations z i = y i /σ 0 . Analogously to y K,L;i , we dene z K,L;i . For i = K + 1, . . . , n -L, let the prediction be given by

ẑi := E[z i |z K,L;i ] = r i R -1
i z K,L;i and the prediction variance be given by

σ2 i := Var(z i |z K,L;i ) = 1 -r i R -1 i r i .
Then, after simple computations, one may derive the value of σ2 in (2):

σ2 σ 2 0 = 1 n -L -K n-L i=K+1 (z i -ẑi ) 2 σ2 i . (3) 
Obviously, this estimator is unbiased and its variance is given by

Var σ2 σ 2 0 = 2 (n -L -K) 2 n-L i,j=K+1 Cov (z i -ẑi , z j -ẑj ) 2 σ2 i σ2 j (4) 
after application of Mehler's formula.

In the rest of the paper, we assume that the correlation function k satises the following condition.

Condition 3.1. The correlation function k has the following expansion

k(t) = 1 -|t| s + r(t), (5) 
where r is twice dierentiable, r(0) = 0 and 0 < s < 3/2. Furthermore, for 1/2 s < 3/2, r is bounded.

Condition 3.1 means that the Gaussian process Y is continuous but not dierentiable. The quantity s is interpreted as a smoothness parameter and, for instance, s = 1 enables to recover the exponential covariance function exp{-|t|}, as considered in [START_REF] Bachoc | Composite likelihood estimation for a gaussian process under xed domain asymptotics[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]. Condition 3.1 holds for the Matérn covariance function with parameter ν when s = 2ν, see Section 3.4. Remark that in Condition 3.1, r(t) = O(t) for any 0 < s < 3/2 and r(t) = O(t 2 ) for 1/2 s < 3/2. We also note that one may easily extend the results of this section to any α 0 > 0. In fact, we have considered the case α 0 = 1 for the ease of the readability of the proofs.

Main results

Let us dene the (K + L) × (K + L) matrix b as the inverse of the (K + L) × (K + L) matrix B given by B i,j = i s + j s -|i -j| s . It has been proved in [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF]Proposition 2.4] that B is invertible. Let us dene additionally the (K + L) × (K + L) matrix C given by C i,j = i s j s .

In the case 0 < s < 1/2, the additional condition will also be needed.

Condition 3.2. We assume that K ∈ N, L ∈ N and 0 < s < 1/2 are such that

K+L k=1 b K,k k s = 0.
In fact, we can show that Condition 3.2 holds when K = 0 or L = 0 (see Lemma A.5 in the appendix). When both K and L are non-zero, we are not able to prove that Condition 3.2 holds for all values of K ∈ N, L ∈ N and 0 < s < 1/2. Anyway, we have seen numerically that Condition 3.2 holds for all the numerous values of K, L and s that we have tried.

We remark that we have the following identity, after some simple computations,

K+L k=1 b K,k k s 2 = (bCb) K,K . (6) 
In the next theorem, we provide the asymptotic order of magnitude of the variance of the CLE.

Theorem 3.3. We assume that Condition 3.1 holds and we let K 0 and L 0 be xed such that K + L 2.

(i

) If 0 < s < 1/2, then Var σ2 σ 2 0 = O 1 n 2s . (7) 
Furthermore if Condition 3.2 is fullled,

Var σ2 σ 2 0 ∼ 4 n 2s (bCb) 2 K,K b 2 K,K 1 0 (1 -t)(1 -t s + r(t)) 2 dt. ( 8 
) (ii) If 1/2 s < 3/2, then Var σ2 σ 2 0 = O 1 n . (9) 
Obviously, one may now derive the consistency of σ2 as soon as 0 < s < 3/2 since its variance goes to zero.

Corollary 3.4 (Consistency). We assume that Condition 3.1 holds. Then, for 0 < s < 3/2 and for all K 0 and L 0 such that K + L 2, σ2 is consistent:

σ2 P -→ n→∞ σ 2 0 .
Theorem 3.3 shows that for 0 < s < 1/2, the CLE converges at a sub-optimal rate n s < n 1/2 , while there exist estimators of σ 2 0 with optimal rate n 1/2 , for instance the MLE in (1). This may be considered as a drawback of the CLE, since other estimators with small computational cost O(n) exist that converge at the optimal rate n 1/2 for any 0 < s < 3/2, for instance quadratic variation estimators (see Section 3.3 below). We also remark that the values of the number K and L of neighbors has no impact on the rate of convergence, but has an impact on the asymptotic variance in the case 0 < s < 1/2.

The next corollary provides the asymptotic variance when 0 < s < 1/2 in two particular cases.

Corollary 3.5 (Particular cases). We assume that Condition 3.1 holds and that 0 < s <

1/2. (i) For K = 1 and L = 1, one gets Var σ2 σ 2 0 ∼ 1 n 2s (1 -2 s-1 ) 4 (1 -2 s-2 ) 2 1 0 (1 -t)(1 -t s + r(t)) 2 dt.
(i) For K = 2 and L = 0, one gets

Var σ2 σ 2 0 ∼ 1 n 2s 2 2s-4 (1 -2 s-2 ) 2 1 0 (1 -t)(1 -t s + r(t)) 2 dt.
When K + L = 1, the proof of Theorem 3.3 can not be applied. Anyway, one may easily prove that (8) and ( 9) still hold. Proposition 3.6. We consider the case K = 1 and L = 0 (or by symmetry K = 0 and L = 1). We assume that Condition 3.1 holds and that 0 < s < 1/2. Then one gets

Var σ2 σ 2 0 ∼ 1 n 2s 1 0 (1 -t)(1 -t s + r(t)) 2 dt. (10) 
When 1/2 s < 3/2, (9) still holds.

In the next proposition, we show that the CLE σ2 converges to a non-Gaussian random variable when 0 < s < 1/2.

Proposition 3.7. We assume that Conditions 3.1 and 3.2 hold. Then for 0 < s < 1/2, for K 0 and L 0 such that K + L 1, the random variable n s (σ 2 /σ 2 0 -1) does not converge in distribution to a Gaussian random variable. In fact, we prove that

n s σ2 σ 2 0 -1 L -→ n→∞ (bCb) K,K b K,K 1 0 Z(t) 2 dt -1 .
This proposition is a direct consequence of Theorem 4.1 below, with α = α 0 = 1, see also Remark 4.3.

Quadratic a-variations

The aim of this section is to compare the previous asymptotic results to the ones obtained with the estimator based on quadratic variations in [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF]. In that view, we consider a nonzero nite support sequence a = (a m ) m∈N of real numbers with zero sum. Let L(a) be the length of a: the indices of rst and last non-zero elements of a have dierence L(a). Since the starting point of the sequence plays no particular role, we will assume when possible that the rst non-zero element of a is a 0 . Hence, the last non-zero element is a L(a)-1 . We dene the order M (a) as the rst non-zero moment of the sequence a:

L(a)-1 m=0 a m m k = 0, for 0 k < M (a)
and

L(a)-1 m=0 a m m M (a) = 0.
To any nite sequence a, with length L(a), we dene the quadratic a-variation of Y by

V a,n = n-L(a)+1 i=1   L(a)-1 j=0 a j y i+j   2 . ( 11 
)
Guided by the moment method, the authors of [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF] dene an estimator C a,n of σ 2 0 from V a,n . They prove that C a,n is asymptotically unbiased (see Section 3.3 in [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF]) and such that, for

0 < s < 3/2, E[(C a,n -σ 2 0 ) 2 ] = O 1 n . (12) 
In the simplest case where a has non-zero elements a 0 = 1 and a 1 = -1 only, [START_REF] Deisenroth | Distributed Gaussian processes[END_REF] means that basing the estimator C a,n on the dierences y i -y i-1 yields the optimal rate n 1/2 . In contrast, using the dierences y i -E[y i |y i-1 ] yields the sub-optimal rate n s when 0 < s < 1/2 from Proposition 3.6. Hence, while it could be intuitive that using y i -E[y i |y i-1 ] would be more ecient than using y i -y i-1 , this intuition is inrmed by our asymptotic results. Similarly, our results show that using y i -E[y i |y i-K , . . . , y i-1 , y i+1 , . . . , y i+L ] is less ecient than using L(a)-1 j=0 a j y i+j when 0 < s < 1/2, which is not obvious to anticipate.

Application to the Matérn covariance functions

Let, for

0 < σ 2 < ∞, 0 < α < ∞ and 0 < ν < ∞, k σ,α,ν : R + → R + be dened by k σ,α,ν (t) = σ 2 (αt) ν 2 ν-1 Γ(ν) K ν (αt)
where Γ is the Gamma function and K ν is the modied Bessel function of the second kind. The function (x, y) → k σ,α,ν (|x -y|) is the Matérn covariance function [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Loh | Estimating the smoothness of a Gaussian random eld from irregularly spaced data via higher-order quadratic variations[END_REF]. When ν is not an integer, we have [START_REF] Loh | Estimating the smoothness of a Gaussian random eld from irregularly spaced data via higher-order quadratic variations[END_REF] 

k σ,α,ν (t) = σ 2 ∞ k=0 α 2k t 2k 2 2k k! k i=1 (i -ν) - πσ 2 Γ(ν) sin(νπ) ∞ k=0 α 2k+2ν t 2k+2ν 2 2k+2ν k!Γ(k + 1 + ν) . ( 13 
)
To shorten notation, we simply write k ν for k 1,1,ν . In view of Condition 3.1, we prove the following lemma.

Lemma 3.8. When 0 < ν < 1, we have with a xed nite non-zero

A ν k ν (t) = 1 -A ν t 2ν + g ν (t)t 2 . ( 14 
)
Furthermore,

g ν is C 2 -dierentiable on R + .
Consequently, Condition 3.1 holds for the Matérn covariance function kν dened by kν (t

) = k ν (A -1/2ν ν t) with s = 2ν and r(t) = O(t 2 ).
4

Joint estimation of the variance and spatial scale parameters

We now let A be a general compact subset of (0, ∞), that is we consider the joint estimation of the variance and the spatial scale parameters. As in Section 3, we assume that k satises Condition 3.1. In the case where k is a Matérn covariance function, it is well-known from [START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF] that the parameters σ 2 and α are non-microergodic but that the parameter σ 2 α 2ν is microergodic. Hence, recalling that s = 2ν for the correspondence between our assumptions and the Matérn model, we will provide asymptotic results for the estimation of σ 2 0 α s 0 only. We assume that the true σ 2 0 and α 0 are xed in (0, ∞), but we do not need to assume that α 0 belongs to A. This is because σ 2 is unrestricted in (2), thus there always exists (σ 2 , α) ∈ (0, ∞) × A such that σ 2 α s = σ 2 0 α s 0 . The next theorem provides the rate of convergence of the CLE σ2 αs of the microergodic parameter.

Theorem 4.1. We assume that k satises Condition 3.1 and we let K 0 and L 0 be such that K + L 2.

(i) If 0 < s < 1/2, then σ2 αs σ 2 0 α s 0 -1 = αs n s (bCb) K,K b K,K αs α s 0 1 0 Z(t) 2 dt -1 + o P 1 n s . ( 15 
) (ii) If 1/2 s < 3/2, then σ2 αs σ 2 0 α s 0 -1 = O 1 √ n . ( 16 
)
The interpretation of Theorem 4.1 is the same as the one of Theorem 3.3 in Section 3 for the estimation of the variance parameter. The CLE converges at the sub-optimal rate n s for 0 < s < 1/2. For 1/2 s < 3/2, the CLE converges at the optimal rate n 1/2 . We remark that in Section 3, we state our results in terms of the asymptotic order of magnitude of the variance of σ2 . In this section, we can not analyze the variance of σ2 αs , because αs does not have an explicit expression. This is why Theorem 4.1 is stated in terms of convergence in distribution and probability rather than with variances or mean square errors. We remark that in Theorem 4.1, when 0 < s < 1/2, the asymptotic approximation of σ2 αs /σ 2 0 α s 0 -1 depends on the distribution of αs , for which little is known ( [START_REF] Zhang | Towards reconciling two asymptotic frameworks in spatial statistics[END_REF] considers the exponential covariance function for which s = 1). Nevertheless, the random variable

αs (bCb) K,K b K,K αs α s 0 1 0 Z(t) 2 dt -1 (17) 
is non-Gaussian, because its minimum is -A s sup (bCb) K,K /b K,K > -∞ where A sup is the supremum of the compact set A. Furthermore, this random variable is non-constant because α2s 1 0 Z(t) 2 dt is non-constant. Indeed, 1 0 Z(t) 2 dt has a non-zero variance and has a non-zero probability to belong to any set [0, ] with arbitrarily small > 0 (see [START_REF] Li | Approximation, metric entropy and small ball estimates for gaussian measures[END_REF][START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF]) and α2s is bounded by A 2s

sup . With this argument, we see that the random variable [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF] can not converge to a Gaussian distribution (including a constant) as n → ∞. Hence the CLE is asymptotically non-Gaussian for 0 < s < 1/2. Finally, if A = {α 1 } with a xed α 1 ∈ (0, ∞), then n s (σ 2 αs /σ 2 0 α s 0 -1) converges to a xed non-Gaussian random variable, which variance is proportional to α 4s 1 . As in Section 3, the proof of Theorem 4.1 does not apply when K +L = 1, but its conclusion still holds. Proposition 4.2. We consider the case K = 1 and L = 0 (or by symmetry K = 0 and L = 1). We assume that k satises Condition 3.1 and that 0 < s < 1/2. Then one gets

σ2 αs σ 2 0 α s 0 -1 ∼ αs 2n s αs α s 0 1 0 Z(t) 2 dt -1 . ( 18 
)
When 1/2 s < 3/2, (16) still holds.

The next remark shows the correspondence between the results of Section 3 and Theorem 3.3. 

σ2 σ 2 0 -1 ∼ 1 n s (bCb) K,K b K,K 1 0 Z(t) 2 dt -1 , (19) 
from which we deduce that (σ 2 /σ 2 0 -1) is asymptotically unbiased. Moreover, computing the variance of 1 0 Z(t) 2 dt leads to the same expression as in [START_REF] Cressie | Asymptotics for REML estimation of spatial covariance parameters[END_REF] in Proposition 3.6.

5

Numerical experiments

Now we compare the asymptotic variance of the CLE with its exact nite sample variance. We consider the setting of Section 3, where a single variance parameter is estimated and the correlation function k is known and satises Condition 3.1. Since the CLE σ2 has an explicit expression, its variance can be written explicitly as

2 (n -L -K) 2 1 σ4 K+1 n-L i,j=K+1 k(x i , x j ) -r i R -1 i r i,j -r j R -1 j r j,i + r i R -1 i R i,j R -1 j r j 2 , ( 20 
)
with the notation of Section 2, with r a, being the column covariance vector between y K,L;a and y under covariance function k and R a, being the covariance matrix between y K,L;a and y K,L; under covariance function k. Equation ( 20) directly follows from (4). We consider the case where 0 < s < 1/2 in Condition 3.1, so that the asymptotic variance of σ2 is given explicitly in Theorem 3.3. As correlation functions, we consider the generalized Slepian function [START_REF] Slepian | On the zeros of Gaussian noise[END_REF] given by k(t) = (1 -|t| s ) + and the Matérn covariance function given by k(t) = k 1,1,ν (A -1/2ν ν t) with s = 2ν and with the notation of Section 3.4. In Figure 5, for s = 0.15 and s = 0.30, for these two correlation functions and for various values of K and L, we plot the ratios of the exact nite sample variance in [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF] over the asymptotic variance in Theorem 3.3. We observe that these ratios do converge to one as n increases, which conrms Theorem 3.3. We also observe that n may need to be very large for the ratios to be close to one. Hence, the asymptotic approximation given by Theorem 3.3 may become accurate only for very large n. For moderate values of n, the ratios are larger than one, so that the asymptotic variance underestimates the nite sample variance. We also observe that the ratios are larger when K and L are larger. In other words, when the CLE is based on more neighbors, n needs to be larger for the asymptotic variance to be close to the nite sample one. Furthermore, s = 0.3 leads to larger ratios than s = 0.15 and we have observed in other (unreported) experiments that for xed n, the ratios increase with s. Hence, for xed n, the asymptotic variance provides a more accurate approximation of the exact variance when s is small. Finally, the ratios are similar between the generalized Slepian and Matérn covariance functions. [START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF] Concluding remarks

We have provided a xed-domain asymptotic analysis of the CLE, for one-dimensional Gaussian processes that are non-dierentiable and are characterized by a general smoothness parameter 0 < s < 3/2. Our analysis improves the previous references [START_REF] Bachoc | Composite likelihood estimation for a gaussian process under xed domain asymptotics[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under xed-domain asymptotics[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] by allowing for general covariance functions and general numbers of neighbors for the composite likelihood. A conclusion that we obtain, which was not obvious to anticipate, is that the CLE converges at a sub-optimal rate, for 0 < s < 1/2, independently of the number of neighbors used for the composite likelihood.

There are some possible extensions of our results that, we believe, could be obtained by following the same proof structures. These extensions include obtaining the asymptotic q q q q q 1e+03 1e+04 1e+05 1e+06 1e+07 1 10 100 1000 n ratio q q q q q q q q q q q q q q q K 2, L 0 K 2, L 2 K 4, L 0 K 4, L 4 q q q q q 1e+03 1e+04 1e+05 1e+06 1e+07 1 10 100 1000 n ratio q q q q q q q q q q q q q q q K 2, L 0 K 2, L 2 K 4, L 0 K 4, L 4 q q q q q 1e+03 1e+04 1e+05 1e+06 1e+07 1 10 100 1000 n ratio q q q q q q q q q q q q q q q K 2, L 0 K 2, L 2 K 4, L 0 K 4, L 4 q q q q q 1e+03 1e+04 1e+05 1e+06 1e+07 1 10 100 1000 n ratio q q q q q q q q q q q q q q q K 2, L 0 K 2, L 2 K 4, L 0 K 4, L 4 Other open problems remain, that would potentially require more work and new approaches. For instance, it would be interesting to obtain asymptotic results for dierentiable processes and in the multi-dimensional case.

A Proofs

In the paper, (Const) stands for a generic constant that may dier from one line to another.

A.1 Discrete a-dierences

Some of the proofs of this paper rely on the notion of discrete a-dierences already introduced in Section 3.3 and used in the literature of quadratic variation estimators [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF][START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF]. Some technical results are collected in the following lemma. 

(ii) Let f be a M -times continuously dierentiable function. Then, as n → +∞, sup

t∈[0,1] +∞ m=-∞ a m f t + m n = O 1 n M . (22) 
Proof. (i) By a Taylor expansion with integral reminder of |n + m| s near n at order (M -1), one gets, for n large enough,

|n + m| s = |n| s + ms |n| s-1 + • • • + m M -1 (M -1)! s(s -1) . . . (s -M + 2) |n| s-M +1 + m M (M -1)! s(s -1) . . . (s -M + 1) 1 0 (1 -η) M -1 |n + mη| s-M dη. (23) 
Hence, using the vanishing moments of the sequence a = (a m ) m , we have

+∞ m=-∞ a m |n + m| s = |s(s -1) . . . (s -M + 1)| (M -1)! +∞ m=-∞ |a m | |m| M 1 0 (1 -η) M -1 |n + mη| s-M dη |s(s -1) . . . (s -M + 1)| (M -1)! |n| s-M +∞ m=-∞ |a m | |m| M 1 0 (1 -η) M -1 1 + m n η s-M dη.
For a xed value of m, the term |1 + mη/n| s-M is bounded by 2 for n large enough. Then the proof is complete.

(ii) We follow the same lines as in (i). By a Taylor expansion with integral reminder of f (t + m/n) near t at order M -1, one gets

f t + m n = M -1 k=0 1 k! m n k f (k) (t) + t+m/n t f (M ) (η) (M -1)! t + m n -η M -1
dη.

Hence, using the vanishing moments of the sequence a = (a m ) m , one gets

+∞ m=-∞ a m f t + m n M -1 k=0 1 k! f (k) (t) n k +∞ m=-∞ a m m k + +∞ m=-∞ |a m | t+m/n t f (M ) (η) (M -1)! t + m n -η M -1 dη (Const) (M -1)! +∞ m=-∞ |a m | m n M (Const) n M .
Then the proof is complete.

A.2 Proof of Theorem 3.3(i)

We recall the expression of the variance of the estimator

Var σ2 σ 2 0 = 2 (n -L -K) 2 n-L i,j=K+1 Cov (z i -ẑi , z j -ẑj ) 2 σ2 i σ2 j . ( 24 
)
By the well-known virtual Leave-One-Out (LOO) formulas (see [2, Proposition 3.1]), the prediction variance is given by

σ2 i = Var(z i |z K,L;i ) = Var(z K+1 |z K,L;K+1 ) = Var(z K+1 |z 1 , . . . , z K , z K+2 , . . . , z K+L+1 ) = Var |1 (z K+1 |z 2 , . . . , z K , z K+2 , . . . , z K+L+1 ) = 1 Cov |1 (z 2 , . . . , z K , z K+1 , z K+2 , . . . , z K+L+1 ) -1 K,K
where we recall that z K,L;i = (z i-K , . . . , z i-1 , z i+1 , . . . , z i+L ) and where Var |1 and Cov |1 stand for the variance and the covariance matrices conditionally to z 1 . To shorten notation, we denote r(|i -j|/n) by r n (i, j). Now, for 2 i, j K + L + 1, one has, by Gaussian conditioning,

Cov |1 (z i , z j ) = Cov(z i , z j ) -Cov(z i , z 1 ) Var(z 1 ) -1 Cov(z 1 , z j ) = 1 - |i -j| s n s + r n (i, j) -1 - |i -1| s n s + r n (i -1, 0) 1 - |j -1| s n s + r n (0, j -1) =: 1 n s B i-1,j-1 - 1 n 2s C i-1,j-1 + R (n) i-1,j-1
using Var(z 1 ) = 1, where B, C and R (n) ∈ M K+L,K+L (R) are given by

B i,j = i s + j s -|i -j| s C i,j = i s j s R (n) i,j = r n (i, j) -r n (i, 0) 1 - j s n s -r n (0, j) 1 - i s n s -r n (i, 0)r n (0, j).
In addition, we introduce the following notation b (n) := (B -n -s C + n s R (n) ) -1 and we recall that b = B -1 . Finally, the prediction variance writes as

σ2 i = 1 n s 1 b (n) K,K , for i = K + 1, . . . , n -L.
Since the matrix B is invertible, by continuuity and the assumption on r, we obtain

b (n) = b + o (1) (25) 
leading to

σ2 i ∼ 1 n s 1 b K,K . (26) 
Let us turn to the computation of the covariances in [START_REF] Loh | Estimating the smoothness of a Gaussian random eld from irregularly spaced data via higher-order quadratic variations[END_REF]. Using again the well-known virtual LOO formulas (see [2, Proposition 3.1]), the prediction error is given by

z i -ẑi = z i -E[z i |z i-K , . . . , z i-1 , z i+1 , . . . , z i+L ] = z i -E |i-K [z i ] -E |i-K z i -E |i-K [z i ] |z i-K+1 , . . . , z i-1 , z i+1 , . . . , z i+L = 1 Cov |1 (z 2 , . . . , z K , z K+1 , z K+2 , . . . , z K+L+1 ) -1 K,K ×            Cov |1 (z 2 , . . . , z K , z K+1 , z K+2 , . . . , z K+L+1 ) -1            z i-K+1 -E [z i-K+1 |z i-K ]
. . .

z i-1 -E [z i-1 |z i-K ] z i -E [z i |z i-K ] z i+1 -E [z i+1 |z i-K ] . . . z i+L -E [z i+L |z i-K ]                       K = 1 b (n) K,K K+L k=1 b (n) K,k (z i-K+k -E [z i-K+k |z i-K ]) = 1 b (n) K,K K+L k=1 b (n) K,k z i-K+k -1 - k s n s + r n (k, 0) z i-K , (27) 
where E |l stands for the expectation conditionally to z l . Now,

n-L i,j=K+1 Cov (z i -ẑi , z j -ẑj ) 2 = 1 b (n) K,K 4 n-L i,j=K+1 K+L k,l=1 b (n) K,k b (n) K,l (28) 
× Cov z i-K+k -1 - k s n s + r n (k, 0) z i-K , z j-K+l -1 - l s n s + r n (0, l) z j-K 2 = 1 b (n) K,K 4 n-L i,j=K+1 (α i,j + β i,j ) 2 , (29) 
where

α i,j = 1 n 2s K+L k=1 b (n) K,k k s 2 1 - |i -j| s n s + r n (i, j)
and β i,j is self explanatory. Now, we establish two lemmas in order to complete the proof of Theorem 3.3(i).

Lemma A.2. Assume that n-L i,j=K+1

β 2 i,j = o n-L i,j=K+1 α 2 i,j , (30) 
then n-L i,j=K+1

(α i,j + β i,j ) 2 ∼ n-L i,j=K+1 α 2 i,j .
Proof. The result directly comes from the use of Cauchy-Schwarz inequality.

Lemma A.3. We assume that 0 < s < 1/2.

(i) One has n-L i,j=K+1 α 2 i,j = o(n 2-4s ). Moreover, if Condition 3.2 holds, then n-L i,j=K+1 α 2 i,j ∼ 2n 2-4s (bCb) 2 K,K 1 0 (1 -t)(1 -t s + r(t)) 2 dt.
(ii) The array (β i,j ) i,j=K+1,...,n is such that n-L i,j=K+1 β 2 i,j = o(n 2-4s ). Applying Lemmas A.2 and A.3 together with ( 24), ( 26) and ( 29) completes the proof of Theorem 3.3(i).

Proof of Lemma A.3. (i) Recalling identity ( 6) and the denition of α i,j , one has

n-L i,j=K+1 α 2 i,j = 1 n 4s K+L k=1 b (n) K,k k s 4 n-L i,j=K+1 1 - |i -j| s n s + r n (i, j) 2 = 2 n 4s (bCb) 2 K,K (1 + o(1)) n-L-(K+1) m=0 (n -L -K -1 -m) 1 - m s n s + r m n 2 = 2n 2-4s (bCb) 2 K,K (1 + o(1)) 1 0 (1 -t)(1 -t s + r(t)) 2 dt (31) 
by the convergence theorem of Riemann sums.

(ii) For xed k and l in {1, . . . , K + L}, one can show that b

(n) K,k b (n) K,l Cov z i-K+k -1 - k s n s + r n (k, 0) z i-K , z j-K+l -1 - l s n s + r n (0, l) z j-K = α k,l i,j + β k,l i,j , with α k,l i,j = b (n) K,k b (n) K,l k s l s n 2s 1 - |i -j| s n s + r n (i, j)
and β k,l i,j consists in the remaining terms:

β k,l i,j = b (n) K,k b (n) K,l γ k,l i,j + δ k,l i,j + k,l i,j + φ k,l i,j + ψ k,l i,j + µ k,l i,j + ν k,l i,j (32) 
where

γ k,l i,j = 1 n s (|i -j -l| s + |i + k -j| s -|i + k -j -l| s -|i -j| s ) , δ k,l i,j = k s n 2s (|i -j| s -|i -j -l| s ) + l s n 2s (|i -j| s -|i + k -j| s ), k,l i,j =r n (i + k, j + l) -r n (i + k, j) -r n (i, j + l) + r n (i, j), φ k,l i,j = -r n (0, l) 1 - |i + k -j| s n s -1 - k s n s 1 - |i -j| s n s -r n (k, 0) 1 - |i -j -l| s n s -1 - l s n s 1 - |i -j| s n s , ψ k,l i,j = k s n s (r n (i, j + l) -r n (i, j)) + l s n s (r n (i + k, j) -r n (i, j)) , µ k,l i,j =r n (0, l) r n (i, j) 1 - k s n s -r n (i + k, j) + r n (k, 0) r n (i, j) 1 - l s n s -r n (i, j + l) , ν k,l i,j =r n (k, 0)r n (0, l)r n (i, j) + r n (k, 0)r n (0, l) 1 - |i -j| s n s . Since (a + b) 2 2a 2 + 2b 2 , using (25) and since b (n) K,k b (n) 
K,l does not depend of i and j, it suces to prove that, for t k,l i,j being any term in the sum [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF],

n-L i,j=K+1 t k,l i,j 2 = o n 2-4s (33) 
for any xed k and l.

• Term γ k,l i,j . We consider the sequence

a 0 = -1, a k = 1, a -l = 1, a k-l = -1 and a m = 0 for m / ∈ {0, k, -l, k -l}
if k = l and we consider the sequence

a 0 = -2, a k = 1, a -k = 1 and a m = 0 for m / ∈ {0, k, -k} if k = l.
Those sequences are of order 2. Hence, by Lemma A.

1(i) with r = i -j, for |i -j| 2, γ k,l i,j (Const) n s |i -j| s-2 . Now, n-L i,j=K+1 γ k,l i,j 2 (Const)     n 1-2s + 1 n 2s i,j=(K+1),...,(n-L) |i-j| 2 |i -j| 2s-4     (Const)   n 1-2s + 2 n 2s n-L-(K+1) m=2 (n -L -K -1 -m)m 2s-4   (34) 
(Const) n 1-2s + 2 n 2s-1 +∞ m=2 m 2s-4 (Const)n 1-2s , which is o (n 2-4s ) since 0 < s < 1/2.
• Term δ k,l i,j . Similarly to γ k,l i,j , we show that

n-L i,j=K+1 δ k,l i,j 2 = O n 1-4s = o n 2-4s . • Term k,l i,j . We want to use Lemma A.1(ii). If k = l, k,k i,j =2r n (i, j) -r n (i + k, j) -r n (i, j + k) = 2r i -j n -r i -j n + k n -r i -j n - k n .
Thus we can apply Lemma A.1(ii), with t = (i -j)/n and the variation dened by a k = a -k = -1 and a 0 = 2 of order 2. This yields

k,k i,j = O(1/n 2 ). Otherwise if k = l, k,k i,j =r n (i + k, j + l) -r n (i + k, j) -r n (i, j + l) + r n (i, j) = r i -j n + k -l n -r i -j n + k n -r i -j n - l n + r i -j n .
Thus we can apply Lemma A.1(ii), with t = (i-j)/n and the variation dened by a k-l = 1, a -l = a k = -1 and a 0 = 1 of order 2. This yields k,l i,j = O(1/n 2 ). Hence

n-L i,j=K+1 k,l i,j 2 = O n -2 = o n 2-4s .
• Term φ k,l i,j . One has

|r n (0, l)| 1 - |i + k -j| s n s -1 - k s n s 1 - |i -j| s n s = |r n (0, l)| |i -j| s n s - |i + k -j| s n s + k s n s 1 - |i -j| s n s o(n -1 ) (Const) |i -j| s-1 n s + 1 n s o(n -1-s )
using Lemma A.1(i) applied to the sequence of order 1: a 0 = 1 and a k = -1. Analogously, the second term in φ k,l i,j is also o(n -1-s ). Since the o(n -1-s ) above do not depend on i, j, one gets that φ k,l i,j i,j satises Condition [START_REF] Slepian | On the zeros of Gaussian noise[END_REF] for any xed k and l.

• Term ψ k,l i,j . Using Lemma A.1(ii), we derive that

ψ k,l i,j = O 1 n s+1 , implying that ψ k,l i,j i,j
satises Condition [START_REF] Slepian | On the zeros of Gaussian noise[END_REF] for any xed k and l.

• Term µ k,l i,j . Using Lemma A.1(ii), one has µ k,l i,j = o (n -1 ) O (n -1 + n -s ) = o (n -1-s ). Thus, µ k,l i,j i,j satises Condition [START_REF] Slepian | On the zeros of Gaussian noise[END_REF] for any xed k and l.

• Term ν k,l i,j . Straightforwardly, one gets

n-L i,j=K+1 ν k,l i,j 2 = O n 2-2 = o n 2-4s .
The proof is now complete.

A.3 Proof of Theorem 3.3(ii)

The proof follows the same lines as the proof of Theorem 3.3(i) except that Lemma A.3 is updated to Lemma A.4.

Lemma A.4. We assume that 1/2 s < 3/2.

(i) One has n-L i,j=K+1 α 2 i,j = O(n 1-2s ).

(ii) The array (β i,j ) i,j=K+1,...,n-L is also such that n-L i,j=K+1 β 2 i,j = O(n 1-2s ).

Proof. The proof of (i) is straightforward from [START_REF] Rullière | Nested Kriging predictions for datasets with a large number of observations[END_REF] in Lemma A.3. As in the proof of Lemma A.3, the proof of (ii) only requires to prove that, for t k,l i,j being any term in the sum [START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF],

n-L i,j=K+1 t k,l i,j 2 = O n 1-2s (35) 
for any xed k and l.

• Term γ k,l i,j . By [START_REF] Stein | Asymptotically ecient prediction of a random eld with a misspecied covariance function[END_REF], the sequence (γ k,l i,j ) i,j satises [START_REF] Stein | Bounds on the eciency of linear predictions using an incorrect covariance function[END_REF] since the sum at the line after (34) converges as soon as s < 3/2 for any xed k and l.

• Term δ k,l i,j . Analogously, one has

n-L i,j=K+1 δ k,l i,j 2 (Const) n 4s i,j=(K+1),...,(n-L) |i -j| 2s-2 (Const)n 1-4s n-L-(K+1) m=0 m 2s-2 (Const)n 1-4s (Const) + n 2 t 2s-2 dt (Const)n 1-4s (Const) + n 2s-1 (Const)n -2s = O n 1-2s .
• Term k,l i,j . Using the proof of Lemma A.3, we still get that k,l i,j = O(1/n 2 ) that leads to the result as soon as s < 3/2.

• Term φ k,l i,j . Since r(t) = O(t 2 ) for 1/2 s < 3/2,

n-L i,j=K+1 φ k,l i,j 2 = O n 2 .n -4 = O n 1-2s .
• Term ψ k,l i,j . Similarly, from Lemma A.3(ii), we derive that

n-L i,j=K+1 ψ k,l i,j 2 = O n 2 n 2s+2 = O n 1-2s .
• Term µ k,l i,j . Analogously, the sequence (µ k,l i,j ) i,j satises (35) as soon as s < 3/2 for any xed k and l.

• Term ν k,l i,j . Using once again r(t) = O(t 2 ) for 1/2 s < 3/2, one gets that the sequence (ν k,l i,j ) i,j satises [START_REF] Stein | Bounds on the eciency of linear predictions using an incorrect covariance function[END_REF]. The proof is now complete.

The proof of Theorem 3.3(ii) then follows straightforwardly.

A.4 Proof of Proposition 3.6 We only prove the result in the case K = 1 and L = 0. When K = 0 and L = 1, we get the result by symmetry. Here, r i and R i reduce to

r i = k (x i-1 , x i ) = 1 -1 n s + r n (1, 0) and R i = k (x i-1 , x i-1 ) = 1. Hence, setting i -j = a, one gets Cov z i -r i R -1 i z 1,0;i , z j -r j R -1 j z 1,0;j = g(a) n s + 1 -g(a) n 2s - |a| s n 3s + 1 n 2s r n (a, 0) + t n (a)
where g is the quadratic variation of order 2 given by g(a) = |a + 1| s -2 |a| s + |a -1| s and t n is a remaining term involving the rest function r. Moreover, the variance term σ2 i reduces to

σ2 i = 1 n s 2 - 1 n s -r n (1, 0) r n (1, 0) + 2 1 - 1 n s ∼ 2 n s .
Finally,

Var σ2 σ 2 0 = 2 (n -1) 2 n i,j=2 Cov z i -r i R -1 i z 1,0;i , z j -r j R -1 j z 1,0;j 2 (1 -r i R -1 i r i )(1 -r j R -1 j r j ) = 4n (n -1) 2 1 4 + o(1) n-2 a=0 1 - a n g(a) + 1 -g(a) n s - a s n 2s + 1 n s r n (a, 0) + t n (a) 2 .
The terms in g(a), namely, the terms proportional to g(a) 2 , g(a) and g(a)a s are O(1/n). Indeed, if we consider the term in g(a) 2 for example, one has, by Lemma A.1(i), A.6 Proof of Lemma 3.8 From (13), we have

A ν = π Γ(ν) sin(νπ)2 2ν Γ(1 + ν) and g ν (t) = ∞ k=0 t 2k 2 2k+2 (k + 1)! k+1 i=1 (i -ν) - π Γ(ν) sin(νπ) ∞ k=1 t 2(k-1)+2ν 2 2k+2ν k!Γ(k + 1 + ν) .
Hence, the function g ν is C 2 -dierentiable on R + by dominated convergence.

A.7 Proof of Theorem 4.1(i)

Since we have

(σ 2 , α) ∈ argmin (σ 2 ,α)∈(0,∞)×A n-L i=K+1 L(y i |y K,L;i ),
the value of σ2 is given by, with ẑi,α = r α,K,L;i R -1 α,K,L;i z K,L;i and σ2

i, α = 1-r α,K,L;i R -1 α,K,L;i r α,K,L;i , σ2 σ 2 0 = 1 n -K -L n-L i=K+1 (z i -ẑi,α ) 2 σ2 i, α
.

Let rn (i, j) = r(α |i -j| /n). Let us dene the (K + L) × (K + L) matrix b (n, α) as the inverse of the (K + L) × (K + L) matrix B -(α s /n s )C + (n s /α s )R (n, α) , where R (n, α) is given by

R (n, α) i,j
= rn (i, j) -rn (i, 0) 1 -αs j s n s -rn (0, j) 1 -αs i s n s -rn (i, 0)r n (0, j).

We remark that we have

Cov 1, α(z 2 , . . . , z K+L+1 ) = αs n s B - αs n s C + n s αs R (n, α) .
Then, using the fact that r(t) = O(t) for 0 < s < 1/2 and r(t

) = O(t 2 ) for 1/2 s < 3/2, one gets b (n, α) = b + αs n s bCb 1 + o 1 n s =: b + αs n s bCb.
The variance term σ2 i, α reduces to

σ2 i, α = Var(z i |z K,L;i ) = 1 Cov |1, α(z 2 , . . . , z K , z K+2 , . . . , z K+L+1 ) -1 K,K = αs n s 1 b (n, α) K,K
, from which we derive straightforwardly that

σ2 i, α = αs n s 1 b K,K 1 - αs n s ( bCb) K,K b K,K + o 1 n s .
Moreover, similarly as in [START_REF] Mateu | Fitting negative spatial covariances to geothermal eld temperatures in Nea Kessani (Greece)[END_REF],

b (n, α) K,K (z i -ẑi,α ) = K+L k=1 b (n, α) K,k z i-K+k -z i-K + αs n s k s z i-K -rn (k, 0)z i-K = K+L k=1 b K,k (z i-K+k -z i-K ) + αs n s K+L k=1 ((bCb) K,k (z i-K+k -z i-K ) + b K,k k s z i-K ) + α2s n 2s K+L k=1 ( bCb) K,k k s z i-K + a k,i,n , where sup i=K+1,...,n-L k=1,...,K+L |a k,i,n | max o 1 n 2s , O 1 n 2 .
Consequently, the ratio σ2 /σ 2 0 equals

1 n -K -L n s αs 1 b K,K 1 - αs n s ( bCb) K,K b K,K + o 1 n s n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) + (37) 
αs n s K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) + b K,k k s z i-K + α2s n 2s K+L k=1 ( bCb) K,k k s z i-K + a k,i,n 2 
.

• We start by computing the squares in [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF].

First, we study the term

n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) 2 .
Its expectation is given by

E   n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) 2   = n-L i=K+1 K+L k,l=1 b K,k b K,l E [(z i-K+k -z i-K ) (z i-K+l -z i-K )] = α s 0 n s n-L i=K+1 K+L k,l=1 b K,k b K,l B k,l = α s 0 n s n-L i=K+1 K+L k=1 b K,k (bB) K,k = α s 0 n s n-L i=K+1 K+L k=1 b K,k δ K,k ∼ α s 0 n 1-s b K,K .
In addition, its variance is asymptotically in n 1-2s using Proposition 5 in [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF] with a variation of order greater than 1 and D = 0. This yields a variation coecient in n -1/2 from which we conclude that

n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) 2 = α s 0 n 1-s b K,K + O P n 1/2-s .
Second, using (6), we study the term

α2s n 2s n-L i=K+1 K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) + b K,k k s z i-K 2 = α2s n 2s n-L i=K+1 K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) 2 + α2s n 2s (bCb) K,K n-L i=K+1 z 2 i-K + 2 α2s n 2s K+L k=1 b K,k k s n-L i=K+1 z i-K K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) .
We have

α2s n 2s (bCb) K,K n-L i=K+1 z 2 i-K ∼ α2s n 1-2s (bCb) K,K 1 0 Z(t) 2 dt.
Moreover, using the Hölder property of the process at order β < 1/2, we get, almost surely,

|z i-K+k -z i-K | max i=K+1,...,n-L |z i-K+k -z i-K | (Const) max k=1,...,K+L k β n β (Const) (K + L) β n β = O P n -β . Consequently, α2s n 2s n-L i=K+1 K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) 2 = O P n 1-2s = o P n 1-2s .
By Cauchy-Schwarz inequality, we conclude to

α2s n 2s n-L i=K+1 K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) + b K,k k s z i-K 2 = α2s n 1-2s (bCb) K,K 1 0 Z(t) 2 dt + o P n 1-2s .
Third, we study the term

α4s n 4s K+L k=1 ( bCb) K,k k s 2 n-L i=K+1 z 2 i-K = α4s n 4s K+L k=1 (bCb) K,k k s 2 O P (n) = o P n 1-2s .
• Now, let us turn to the double products in [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. First,

2 αs n s n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) K+L k=1 ( bCb) K,k (z i-K+k -z i-K ) + b K,k k s z i-K =2 αs n s n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) K+L l=1 ( bCb) K,l (z i-K+l -z i-K ) + 2 αs n s K+L k=1 b K,k k s n-L i=K+1 z i-K K+L k=1 b K,k (z i-K+k -z i-K ) . (38) 
The rst term in the right hand side of the previous equation is

2 αs n s n-L i=K+1 K+L k=1 b K,k (z i-K+k -z i-K ) K+L l=1 ( bCb) K,l (z i-K+l -z i-K ) = 2 αs n s n-L i=K+1 K+L k,l=1 b K,k ( bCb) K,l (z i-K+k -z i-K ) (z i-K+l -z i-K )
where the expectation of the double sum provides

2α s α s 0 n 1-2s K+L k,l=1 b K,k ( bCb) K,l B k,l + o n 1-2s = 2α s α s 0 n 1-2s ( bCb) K,K + o n 1-2s
while its variance is O (n 1-s ) by similar arguments.

Taking the expectation of the sums in [START_REF] Stein | Limitations on low rank approximations for covariance matrices of spatial data[END_REF] gives

2 αs n s E K+L k=1 b K,k k s n-L i=K+1 z i-K K+L k=1 b K,k (z i-K+k -z i-K ) = 2 αs n s K+L k=1 b K,k k s n-L i=K+1 K+L k=1 b K,k E [z i-K (z i-K+k -z i-K )] = -2α s α s 0 n 1-2s K+L k=1 b K,k k s 2 + o n 1-2s = -2α s α s 0 n 1-2s (bCb) K,K + o n 1-2s .
In addition, after tedious computations, taking the variance of the sums in (38) provides Cov ((z i-K+k -z i-K )z i-K , (z j-K+l -z j-K )z j-K )

and is proven to be O(n 1-s ). Indeed, for xed k and l, we study n-L i,j=K+1

Cov ((z i-K+k -z i-K )z i-K , (z j-K+l -z j-K )z j-K ) = n-L i,j=K+1

Cov (z i-K+k z i-K , z j-K+l z j-K ) -Cov z i-K+k z i-K , z 2 j-K -Cov z 2 i-K , z j-K+l z j-K + Cov z 2 i-K , z 2 The term (|i -j + k| s + |i -j -l| s -|i -j + k -l| s -|i -j| s ) is a variation of order 2 implying that the rst sum is α s 0 n 1-s . The second sum is bounded by

α 2s 0 n 1-2s C + n-L-K-1 a=0
a s-1 α 2s 0 n 1-2s C + n 2 t s-1 dt α 2s 0 n 1-s .
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Finally, we conclude that the left hand side of ( 38) is given by 2α s α s 0 n 1-2s ( bCb) K,K -2α s α s 0 n 1-2s (bCb) K,K + o n 1-2s .

Second, turning to the second double product in [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], we get, by Cauchy-Schwarz inequality, = O P n 1-5s/2

= o P n 1-2s .

Third, for the last double product in [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], we proceed analogously: = o P n 1-2s .

One can show straightforwardly that the eect of a k,i,n in (37) is negligible. Hence, plugging the asymptotic behaviors of the three squares and the three double products into (37) leads to [START_REF] Gramacy | laGP: large-scale spatial modeling via local approximate Gaussian processes in R[END_REF] which concludes the proof.

A.8 Proof of Theorem 4.1(ii)

The proof directly comes following the same lines as the proofs of Theorems 3.3(ii) and 4.1(i).

A.9 Proof of Proposition 4.2

In the case K = 1 and L = 0, the value of σ2 is given by:

σ2 σ 2 0 = 1 n -1 n i=2 (z i -ẑi,α ) 2 σ2 i, α . (39) 
The variance term σ2 i, α reduces to σ2 i, α = Var(z i |z K,L;i ) = Var(z i -r i R -1 i z 1,0;i ) = 1 -r i, αR -1 i, αr i, α = αs n s 2 -

αs n s + O 1 n . (40) 
Moreover,

(z i -ẑi,1 ) 2 = z i -1 - αs n s + rn (1) z i-1 2 = (z i -z i-1 ) 2 + 2 αs n s (z i -z i-1 ) z i-1 + α2s n 2s z 2 i-1 + a i,n (41) 
where sup i=2,...,n |a i,n | = O P (1/n).

• First, we study the variance of the term n i=2 (z i -z i-1 ) 2 . By Melher's formula and letting a = |i -j|, one gets The proof of ( 18) is now complete.

Remark 4 . 3 .

 43 If A = {1} and α 0 = 1, then α = 1 and Theorem 4.1 reduces to
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Let us turn now to the preponderant term: one has

by the convergence theorem of Riemann sums.

Finally, the terms involving t n (a) can be treated as in the proof of Theorem 3.3(i) and using extensively Lemma A.1(ii). Thus, they are negligible with respect to the preponderant term. The proof of ( 10) is now complete. The proof for the case 1/2 s < 3/2 is carried out similarly.

A. 

Now let M I be the covariance matrix of (I

n ). The matrix M I is invertible since it is the covariance matrix of an invertible linear transformation of (B(1), . . . , B(n)), which has an invertible covariance matrix from [START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF]. Hence we obtain, with m I the inverse of M I , again from the virtual LOO formulas,

We have, for i = j, i, j ∈ {1, . . . , n},

i , I

by strict concavity of the function |.| s on [0, ∞). Hence the matrix M I has positive diagonal elements, negative o-diagonal elements and is strictly positive denite. Hence, from Theorem 2.5.3 of [START_REF] Horn | Matrix analysis[END_REF], the elements of m I are non-negative. This shows that n i=1 b n,i i s > 0 from [START_REF] Stein | Uniform asymptotic optimality of linear predictions of a random eld using an incorrect second-order structure[END_REF].

• Second, (1/n) n i=2 z 2 i-1 is a sequence of random variables converging in the L 2 sense to 1 0 Z(t) 2 dt (see, e.g. [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Cramér | Stationary and related stochastic processes. Sample function properties and their applications[END_REF]) and thus,

• Third, let us turn to the double product in [START_REF] Van Stein | Optimally weighted cluster Kriging for big data regression[END_REF]. We use the following result:

where (X, Y, Z, T ) is a centered Gaussian vector. We have, after some tedious computations,