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Branching processes in correlated random environment

XINXIN CHEN∗ , NADINE GUILLOTIN-PLANTARD†

March 26, 2019

We consider the critical branching processes in correlated random environment which is positively

associated and study the probability of survival up to the n-th generation. Moreover, when the envi-

ronment is given by fractional Brownian motion, we estimate also the tail of progeny as well as the tail

of width.

1 Introduction and results

In the theory of branching process, branching processes in random environment (BPRE), as an impor-

tant part, was introduced by Smith and Wilkinson [10] by supposing that the environment is i.i.d.. This

model has been well investigated by lots of authors. One can refer to [1],[2],[3] for various properties

obtained in this setting. In fact, for this so called Smith-Wilkinson model, the behaviour of BPRE de-

pends largely on the behaviour of the corresponding random walk constructed by the logarithms of

the quenched expectation of population sizes. As this random walk is of i.i.d. increments due to i.i.d.

environment, many questions on this model become quite clear.

However, we are interested in branching processes in correlated random environment. More pre-

cisely, we consider the Athreya-Karlin model of BPRE where the environment is assumed to be sta-

tionary and ergodic; and moreover correlated.

Let us introduce some notations. Consider a branching process (Zn)n≥0 in random environment

given by a sequence of random generating functions E = { f0, f1, . . . , fn, . . .}. Given the environment,

individuals reproduce independently of each other. The offspring of an individual in the n-th gener-

ation has generating function fn. If Zn denotes the number of individuals in the n-th generation, then

under the quenched probability PE (and the quenched expectation EE ),

EE [sZn+1 |Z0, · · · , Zn] = ( fn(s))Zn , ∀n ≥ 0.
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We will assume that Z0 = 1. Here the random environment { fn; n ≥ 0} is supposed to be stationary,

ergodic and correlated. The process (Zn)n≥0 will be called a branching process in correlated environment
(BPCE, for short).

First of all, the criterion for the process to be subcritical, critical or supercritical was proven by

Tanny [11]. In this paper, we only consider the non-sterile critical case, i.e.

(1.1) E[log f ′0(1)] = 0, PE (Z1 = 1) < 1,

where E(·) is the annealed expectation.

We are interested in some important quantities related to this branching process, such as the tail

distribution of its extinction time T, of its maximum population and of its total population size:

P(T > n), P
(

max
j≥0

Zj > N
)

, P
(

∑
j≥0

Zj > N
)

.

Let us mention that this problem was considered in [5] in the case where the offspring sizes are geomet-

rically distributed, using the well-known correspondence between recurrent random walks in random

environment and critical branching processes in random environment with geometric distribution of

offspring sizes. Our aim is to generalise the results obtained in [5] to more general generating functions

( fn)n≥0.

More precisely let Xi+1 := − log( f ′i (1)) for every i ≥ 0. Assume that (Xi)i≥1 is a stationary, ergodic

and centered sequence and define the sequence (S0 = 0)

Sn :=
n

∑
i=1

Xi for n ≥ 1.

We also assume that the scaling limit of (Sn)n≥0 is a stochastic process (W(t))t≥0:

(1.2)
(

n−H`(n)−1/2S[nt]

)
t≥0

L
=⇒
n→∞

(W(t))t≥0 ,

where H ∈ (0, 1) and ` is a slowly varying function at infinity such that as n→ ∞

(1.3) E[S2
n] ∼ n2H`(n)E[W2(1)].

We will also assume that the tail distribution of the random variable X1 decreases sufficiently fast,

namely there exist α ∈ (1,+∞) and γ ∈ (0,+∞) such that

(1.4) lim
x→+∞

x−α log P[|X1| ≥ x] = −γ.

Let us recall that a collection {Z1, . . . , Zn} of random variables defined on a same probability space

is said quasi-associated provided that

Cov
(

f (Z1, . . . , Zi), g(Zi+1, . . . , Zn)
)
≥ 0
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for any i = 1, . . . , n− 1 and all coordinatewise nondecreasing, measurable functions f : Ri → R and

g : Rn−i → R. We will say that {Z1, . . . , Zn} is positively associated if

Cov
(

f (Z1, . . . , Zn), g(Z1, . . . , Zn)
)
≥ 0

for all coordinatewise nondecreasing, measurable functions f , g : Rn → R. We refer to [6] for details

concerning positively associated random variables. Clearly positive association is a stronger assump-

tion than quasi-association. A sequence of random variables (Zi)i≥1 is said positively associated (resp.

quasi-associated) if for every n ≥ 2, the set {Z1, . . . , Zn} is positively associated (resp. quasi-associated).

For every i ≥ 0, we denote by σ2( fi) the variance of the probability distribution with generating

function fi. Remark that σ2( fi) = f ′′i (1) + f ′i (1) − ( f ′i (1))
2. Our main assumption concerning the

sequence (σ2( fn))n≥0 is the following one:

Assumption(A) There exist positive constants A, B and C such that for every i ≥ 0,

σ2( fi) ≤ A( f ′i (1))
2 + B f ′i (1) + C.

Remark that the assumption (A) is satisfied for the classical discrete probability distributions such

as the Poisson distribution, the Geometric distribution, the uniform distribution, the Binomial distri-

bution etc.

In this setup we obtain the following theorem.

Theorem 1. Assume that the sequence (Xi)i≥1 is positively associated. Under assumption (A), there exist
positive constants c, C such that for large enough n,

n−(1−H)
√
`(n)(log n)−c ≤ P

[
T > n

]
≤ Cn−(1−H)

√
`(n).

Remark 2. Actually we will prove that the upper bound holds for every n ≥ 1. This is due to the fact that we
use strong results on the persistence of the random walk (Sn)n namely Theorem 11 in [4].

From now on we will assume that (Xi)i≥1 is a standard Gaussian sequence with positive correla-

tions r(j) := E[X0Xj] = E[XkXj+k] satisfying as n→ +∞,

(1.5)
n

∑
i,j=1

r(i− j) = n2H`(n),

where H ∈ (0, 1) and ` is a slowly varying function at infinity. In that case the process (W(t))t≥0 is the

fractional Brownian motion BH with Hurst parameter H (see [13], [14, Theorem 4.6.1]). Recall that BH

is the real centered Gaussian process with covariance function

E[BH(t)BH(s)] =
1
2
(t2H + s2H − |t− s|2H).

When H ≥ 1/2, the sequence (Xi)i≥1 is positively associated as positively correlated Gaussian random

variables.
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Theorem 3. Under assumption (A), there exists a function L that is slowly varying at infinity such that for
large enough N

(log N)−
(1−H)

H

L(log N)
≤ P

[
max
k≥0

Zk > N
]
≤ (log N)−

(1−H)
H L(log N).

Note that

max
j≥0

Zj ≤ ∑
j≥0

Zj ≤ T max
j≥0

Zj.

As a consequence,

P
(

∑
j≥0

Zj > N2
)
−P(T > N) ≤ P(max

j≥0
Zj > N) ≤ P

(
∑
j≥0

Zj > N
)

.

so Theorems 1 and 3 lead to the following result.

Theorem 4. Under assumption (A), there exists a function L that is slowly varying at infinity such that for
large enough N

(log N)−
(1−H)

H

L(log N)
≤ P

[
∑
k≥0

Zk > N
]
≤ (log N)−

(1−H)
H L(log N).

2 Extinction time: Proof of Theorem 1

2.1 Upper bound

Observe that for any m ≤ n,

PE (T > n) ≤ PE (T > m) = PE (Zm ≥ 1) ≤ EE [Zm] = e−Sm .

Then,

(2.1) P(T > n) ≤ E[e−max0≤m≤n Sm ] =
∫ ∞

0
e−xP( max

0≤m≤n
Sm ≤ x)dx

as max0≤m≤n Sm ≥ 0. Let us bound P(max1≤m≤n Sm ≤ x) for x > 0. Let S∗n := max1≤m≤n Sm. Note that

for every K ≥ 0,

P(S∗n ≤ 0) ≥P(S∗n+K ≤ 0)

≥P( max
1≤j≤K−1

Sj ≤ 0; SK ≤ −x; max
1≤j≤n

(SK+j − SK) ≤ x)

≥P( max
1≤j≤K−1

Sj ≤ 0; SK ≤ −x)P(max
1≤j≤n

(SK+j − SK) ≤ x)(2.2)

by quasi-association of {Sk; 1 ≤ k ≤ n}. Note that by stationarity, we have

P(max
1≤j≤n

(SK+j − SK) ≤ x) = P(S∗n ≤ x).
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On the other hand, by positive association,

P( max
1≤j≤K−1

Sj ≤ 0; SK ≤ −x) ≥ P(S∗K ≤ 0)P(SK ≤ −x).

So,

P(S∗n ≤ x)P(S∗K ≤ 0)P(SK ≤ −x) ≤ P(S∗n ≤ 0).

Let us prove that the sequence (Sn)n≥1 satisfies the hypotheses of Theorems 2 and 4 in [4]. Due

to the convergence in law of ((n−H`(n)−1/2Sbntc)t) to (W(t))t as n goes to infinity, we can show that

for any p ∈ (1, 2) fixed, (n−pH l(n)−p/2|max1≤k≤n Sk|p) converges in distribution to (supt∈[0,1] W(t))p

as n goes to infinity (see Section 12.3 in [14]). Let us prove that (n−pH`(n)−p/2|S∗n|p)n≥1 is uniformly

integrable. To this end we will use the fact that the increments of (Sn)n≥1 are centered and positively

associated. Due to Theorem 2.1 of [8], there exists some constant C1 > 0 such that

E
[
|S∗n|

2
]
≤ E

[
max

j=1,...,n
|Sj|2

]
≤ C1 E

[
S2

n
]

,

The uniform integrability of (n−pH`(n)−p/2|S∗n|p)n≥1 follows from assumption (1.3), and then E[|S∗n|p] ∼
npH`(n)p/2E[(supt∈[0,1] W(t))p] as n goes to infinity. From Theorem 4 in [4], there exists c1 > 0 such

that for every K ≥ 2,

P(S∗K ≤ 0) ≥ c1
K−(1−H)

log K

√
l(K).

Moreover, if we choose x = KH l(K), the probability P( SK
x ≤ −1) converges to P(W(1) ≤ −1) ∈ (0, 1).

So, we get that (here c, C are two positive constants) for x large and for any n ≥ 1

P(S∗n ≤ x) ≤ c2
log x
˜̀(x)

x
1
H−1P(S∗n ≤ 0)

where ˜̀ is a slowly varying function at infinity. Then, from the upper bound in Theorem 2 in [4], we

get that for x large and for any n ≥ 1,

P(S∗n ≤ x) ≤ c3
log x
˜̀(x)

x
1
H−1n−(1−H)

√
`(n).

Plugging this into (2.1) implies that there exists C2 > 0 such that for every n ≥ 1,

P(T > n) ≤ C2 n−(1−H)
√
`(n).

2.2 Lower bound

Note that (see (2.1) in [7])

PE (T > n) = PE (Zn ≥ 1) = 1− f0 ◦ f1 ◦ · · · ◦ fn−1(0).
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It is known in [7] that

1
1− f0 ◦ f1 ◦ · · · ◦ fn−1(0)

=
n−1

∏
i=0

f ′i (1)
−1 +

n−1

∑
k=0

k−1

∏
i=0

f ′i (1)
−1 × ηk,n

where

ηk,n =: gk( fk+1 ◦ · · · ◦ fn−1(0))

with

gk(s) =
1

1− fk(s)
− 1

f ′k(1)(1− s)

From Lemma 2.1 in [7],

ηk,n ≤
f ′′k (1)
f ′k(1)

2 =
σ2( fk) + f ′k(1)

2 − f ′k(1)
f ′k(1)

2 .

This yields that

P(T > n) ≥ E

[
1

1 + ∑n−1
k=0 σ2( fk)eSk+1+Xk+1

]

≥E

[
1

1 + A + (A + B)∑n
k=1 eSk + C ∑n

k=1 eSk+Xk

]
from Assumption (A)

≥E

[
1

1 + A + (A + B)αneS∗αn + (A + B)nemaxαn+1≤j≤n Sj + CαneS∗αn+X∗αn + Cnemaxαn+1≤j≤n Sj+maxαn+1≤j≤n Xj

]
where X∗n := max1≤k≤n Xk.

Let us take {S∗αn
≤ 0; X∗αn

≤ an; Sαn ≤ −βn; max1≤j≤n−αn Sj+αn ≤ −βn; maxαn<j≤n Xj ≤ βn − log n}
with βn ≥ log n so that

1 + A + (A + B)αneS∗αn + (A + B)nemaxαn+1≤j≤n Sj + CαneS∗αn+X∗αn + Cnemaxαn+1≤j≤n Sj+maxαn+1≤j≤n Xj

is bounded by c4 + c5αn + c6αnean where (ci)i=4,5,6 are positive constants. It follows that

P(T > n)(2.3)

≥(c4 + c5αn + c6αnean)−1

×P

(
S∗αn
≤ 0; X∗αn

≤ an; Sαn ≤ −βn; max
1≤j≤n−αn

Sj+αn ≤ −βn; max
αn<j≤n

Xj ≤ βn − log n
)

By the fact that the increments of the sequence (Sn)n≥0 are positively associated, one sees that

P

(
S∗αn
≤ 0; X∗αn

≤ an; Sαn ≤ −βn; max
1≤j≤n−αn

Sj+αn ≤ −βn; max
αn<j≤n

Xj ≤ βn − log n
)

≥P

(
S∗αn
≤ 0; X∗αn

≤ an; Sαn ≤ −βn; max
1+αn≤j≤n

(Sj − Sαn) ≤ 0; max
αn<j≤n

Xj ≤ βn − log n
)

≥P(S∗αn
≤ 0)P(X∗αn

≤ an)P(Sαn ≤ −βn)P(S∗n−αn
≤ 0)P(X∗n ≤ βn − log n).
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Let βn = αH
n l(αn) where αn = b(β log n)

1
H−ε c with β > 2 and any ε ∈ (0, H) so that for n large enough

βn ≥ β/2 log n.

Consequently, by (1.4), for some α > 1 and c7 > 0,

P
(

X∗n > βn − log n
)
≤ nP

(
X1 ≥

(β

2
− 1
)

log n
)
≤ ne−c7(

β
2−1)α(log n)α

= e−Θ(1)(log n)α
.

Take an =
( 1

c7
log(2αn))1/α such that

P(X∗αn
> an) ≤ αnP(X1 > an) ≤ αne−c7aα

n =
1
2

.

Now by remarking that P(Sαn ≤ −βn) = P( Sαn
αH

n l(αn)
≤ −1) converges to P(W(1) ≤ −1) > 0 and by

applying Theorem 4 in [4], there exists some constant c > 0 such that for n large enough

P(T > n) ≥ n−(1−H)

(log n)c

√
`(n).

3 Maximal population and total population

3.1 Proof of Theorem 3

Let T̃(x) be the first passage time of the sequence (Sk)k≥0 above/below the level x 6= 0

T̃(x) :=
{

inf{k ∈N; Sk ≥ x} if x > 0,
inf{k ∈N; Sk ≤ x} if x < 0.

3.2 Upper bound

Let us define for every k ≥ 0, the random variable

Wk :=
Zk

EE [Zk]
=

Zk

∏k−1
i=0 f ′i (1)

.

It is well-known that (Wk)k≥0 is a martingale under the quenched probability. Note that for every

k ≥ 0,

Zk = WkEE [Zk] = Wke−Sk .

Observe that

P

(
max

0≤k<T
Zk ≥ N

)
=P

(
max

0≤k<T
Zk ≥ N; T ≤ n

)
+ P

(
max

0≤k<T
Zk ≥ N; T > n

)
First, from the upper bound in Theorem 1, there exists some constant c > 0 such that for n large (n will

be chosen later)

(3.1) P

(
max

0≤k<T
Zk ≥ N; T > n

)
≤ P(T > n) ≤ cn−(1−H)

√
`(n).
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On the other hand, let δ ∈ (0, 1),

P

(
max

0≤k<T
Zk ≥ N; T ≤ n

)
≤P

(
max

0≤k≤n
Wk · max

0≤k<T
EE [Zk] ≥ N; T ≤ n

)
≤P

(
max

0≤k≤n
Wk ≥ Nδ

)
+ P

(
max

0≤k<T
EE [Zk] ≥ N1−δ; T ≤ n

)
≤E

[
PE
(

max
0≤k≤n

Wk ≥ Nδ

)]
+ P

(
max

0≤k≤n
EE [Zk] ≥ N1−δ

)
(3.2)

Since (Wk)k≥0 is a martingale under the quenched distribution PE , we get

(3.3) PE
(

max
0≤k≤n

Wk ≥ Nδ

)
≤ EE [Wn]

Nδ
=

1
Nδ

.

By observing that EE [Zk] = e−Sk , the second probability in (3.2) is bounded from above by

P

(
min
k≤n

Sk ≤ −(1− δ) log N
)

which is equal, by symmetry of Gaussian variables, to P (maxk≤n Sk ≥ (1− δ) log N). Applying the

maximal inequality in Proposition 2.2 in [9] implies that

P

(
max
k≤n

Sk ≥ (1− δ) log N
)
≤ 2P (Sn ≥ (1− δ) log N)

= 2P
(
σ2

n X1 ≥ (1− δ) log N
)

≤ 2 exp
(
− (1− δ)2(log N)2

2σ2
n

)
where σ2

n := n2H`(n) is the variance of Sn by (1.5).

Let us choose n = sup{k; σk ≤ (log N)(log log N)−
q
2 } with q > 1. Then,

P

(
max

0≤k≤n
EE [Zk] ≥ N1−δ

)
≤ 2 exp

(
− (1− δ)2(log log N)q

2

)
(3.4)

The upper bound follows by gathering (3.1), (3.3) and (3.4).

3.3 Lower bound

On the other hand, for the lower bound, we take T̃(−x) and T̃(y) for certain x, y > 0. Then,

P

(
max

0≤k<T
Zk ≥ N

)
≥P

(
ZT̃(−x) ≥ N; T̃(−x) < T̃(y) ≤ n

)

≥P

WT̃(−x) ×EE [ZT̃(−x)]︸ ︷︷ ︸
e
−ST̃(−x)

≥ N; T̃(−x) < T̃(y) ≤ n


8



We will take x ≥ log(2N) so that EE [ZT̃(−x)] = e−ST̃(−x) ≥ 2N and obtain by Paley-Zygmund inequality

that

P

(
max

0≤k<T
Zk ≥ N

)
≥P

(
WT̃(−x) ≥ 1/2; T̃(−x) < T̃(y) ≤ n

)
≥E

[
PE
(

WT̃(−x) ≥ 1/2EE [WT̃(−x)]
)

; T̃(−x) < T̃(y) ≤ n
]

≥E

1
4

EE [WT̃(−x)]
2

EE [W2
T̃(−x)

]
; T̃(−x) < T̃(y) ≤ n


=

1
4

E

 1
EE [W2

T̃(−x)
]
; T̃(−x) < T̃(y) ≤ n


As (Wk)k≥0 is a martingale, the following equality holds

EE [W2
k ] = EE [W2

k−1] +
σ2( fk−1)E

E [Zk−1]

(EE [Zk])2

where EE [Zk] = ∏k−1
i=0 f ′i (1) = e−Sk and σ2( f j) = f ′′j (1) + f ′j (1)− ( f ′j (1))

2. It follows that

EE [W2
n ] = 1 +

n

∑
j=1

σ2( f j−1)E
E [Zj−1]

(EE [Zj])2 =1 +
n−1

∑
k=0

σ2( fk)eSk+1+Xk+1

≤1 + A + (A + B)
n

∑
k=1

eSk + C
n

∑
k=1

eSk+Xk from Assumption (A)

Thus,

P

(
max

0≤k<T
Zk ≥ N

)
≥ 1

4
E

 1

1 + A + (A + B)∑T̃(−x)
k=1 eSk + C ∑T̃(−x)

k=1 eSk+Xk

; T̃(−x) < T̃(y) ≤ n


It is enough to bound from below the following expectation (since S0 = 0)

E

 1

∑T̃(−x)
k=0 eSk + ∑T̃(−x)

k=1 eSk+Xk

; T̃(−x) < T̃(y) ≤ n


Let ε > 0. Let us consider the set GN defined by:

GN := G(1)N ∩ G
(2)
N ∩ G

(3)
N ,

with

G(1)N :=
{

T̃(− log(2N)) < T̃(1)
}

,

G(2)N :=
{

T̃(1) < (log N)
1+ε
H
}

,

G(3)N :=


T̃(− log(2N))

∑
k=0

eSk +
T̃(− log(2N))

∑
k=1

eSk+Xk

−1

≥ f (N)

 ,
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where f (N) := 1
κ(log log N)3/H with κ > 0 determined in (3.9). The lower bound will follow from the

following lemma.

Lemma 5. There exists a function L̃ that is slowly varying at infinity such that for large N,

P
(
GN
)
≥ (log N)−(

1−H
H ) L̃(log N).

Indeed,

P

(
max

0≤k<T
Zk ≥ N

)
≥ c8E

1GN

T̃(− log(2N))

∑
k=0

eSk +
T̃(− log(2N))

∑
k=1

eSk+Xk

−1


≥ c8 f (N)P
(
GN
)

≥ (log N)−(
1−H

H )L(log N)

where L is a function slowly varying at infinity.

The proof of Lemma 5 rests on the two following lemma.

Lemma 6. There exists a function L̃ slowly varying at infinity such that for large N,

P
[
G(1)N ∩ G

(3)
N

]
≥ (log N)−(

1−H
H ) L̃(log N).

Lemma 7.

P
[(
G(2)N

)c
]
= O

(
(log N)−

(1−H)
H (1+ε)

√
`
(
b(log N)

1+ε
H c
))

.

Proof of Lemma 5. Note that, by Lemma 7, there exists c9 > 0 such that for every N,

(3.5) P
[(
G(2)N

)c
]
≤ c9(log N)

−
(
(1−H)(1+ε)

H

)
`
(
(log N)

1+ε
H
)
.

Due to Lemma 6, for large N,

P
(
GN
)
≥ P

[
G(1)N ∩ G

(3)
N
]
−P

[(
G(2)N

)c] ≥ (log N)−(
1−H

H ) L̃(log N),

since the probability of the set
(
G(2)N

)c is of a lower order by (3.5).

Proof of Lemma 6. (see Step 1 in the proof of Lemma 9 in [5]) Let d := LK with K := KN := min{k ∈
N : k2H ≥ 33(2 log N)2} and L := LN :=

⌊
(log log N)

q
2H
⌋
, with q > H/2(1− H) and q > 2H. Then,

P
[
G(1)N ∩ G

(3)
N
]

= P

[
T̃(− log(2N)) < T̃(1);

1

∑
T̃(− log(2N))
k=0 eSk + ∑

T̃(− log(2N))
k=1 eSk+Xk

≥ f (N)

]

≥ P

[
T̃(− log(2N)) < d < T̃(1);

1

∑d
k=0 eSk + ∑d

k=1 eSk+Xk
≥ f (N)

]
= P

[
T̃(1) > d;

1

∑d
k=0 eSk + ∑d

k=1 eSk+Xk
≥ f (N)

]
(3.6)

− P

[
T̃(− log(2N)) ≥ d; T̃(1) > d;

1

∑d
k=0 eSk + ∑d

k=1 eSk+Xk
≥ f (N)

]
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We show that the last term in (3.6) is not relevant since it is bounded from above by the probability

P
[

max
k=1,...,d

|Sk| ≤ log(2N)
]
≤ (log N)−

(1−H)
H −1(3.7)

using inequality (35) in [5]. For the first term in (3.6), observe that

P

[
T̃(1) > d;

1

∑d
k=0 eSk + ∑d

k=1 eSk+Xk
≥ f (N)

]
≥ P

(
S∗αd
≤ 0; X∗αd

≤ ad; Sαd ≤ −βd; max
1≤j≤d−αd

Sj+αd ≤ −βd; max
αd<j≤d

Xj ≤ βd − log d
)

(3.8)

where αd, ad, βd are defined in the proof of the lower bound in Theorem 1 (see Section 2). On the set

inside the previous probability (Remark that for large N, d ≤ (log N)
2
H and that we take H− ε > H/3):

(3.9)
d

∑
k=0

eSk +
d

∑
k=1

eSk+Xk ≤ c9 + c10αd + c11αdead ≤ κ(log log N)3/H = f (N)−1.

Using techniques developed in the proof of the lower bound in Theorem 1, the probability (3.8) is

bounded from below by

d−(1−H)

(log d)c

√
`(d) ≥ (log N)−

(1−H)
H

L(log N)

for N large enough.

Proof of Lemma 7.

P
[(
G(2)N

)c
]

= P[T̃(1) ≥ (log N)(1+ε)/H ]

≤ P

(
max

k=0,...,[(log N)(1+ε)/H ]
Sk ≤ 1

)

= O
(
(log N)−

(1−H)
H (1+ε)

√
`
(
b(log N)

1+ε
H c
))

by applying Theorem 11 of [4].
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