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Chiral building units must pack into chiral crystal structures. However, chiral structures can also be induced from achiral building units. In this letter, the 
later well-known phenomenon is illustrated with the simple synthesis of a new chiral compound from commonly used achiral organic molecules. Thus, 
the new compound cyclohexylammonium sulfanilate was synthesized at room temperature and character-ized by single crystal X-ray diffraction, 
spectroscopy (UV/Visible and FT-IR), and thermal analysis. The compound is chiral and crystallizes in orthorhombic system with space group P212121. 
Noncentrosymmetry was confirmed by Second Harmonic Generation (SHG) measurements using solid potassium dihydrogenphosphate (KDP) as 
reference. The organic ions which form this chiral compound namely cyclohexylammonium (CyNH3) and sulfanilate (NH2PhSO3

�) are both low-cost 
achiral building units. A statistical investigation of previously reported structures shows that NH2PhSO3

� stabilized by noncentrosymmetric cations more 
likely lead to noncentrosymmetric materials.

1. Introduction

The synthesis of noncentrosymmetric (NCS) compounds is of

high importance in optics or chemistry owing to their interesting

physical properties such as catalysis, dichroism, piezoelectricity,

ferroelectricity, pyroelectricity, or Second Harmonic Generation

(SHG) [1–10]. These multiple applications require simple synthetic

methods of NCS compounds. A well-known method to produce

successfully such solids is to use enantiomerically pure molecules

because such units must pack into chiral crystal structures [11].

But this method is commonly expensive as the molecules must

be enantioenriched and should survive the growth methods with-

out racemization [12]. Another approach is to use achiral building

blocks [1,13–15]. However, in this method, the arrangement of the

achiral building blocks in the solid must be NCS. For this reason,

understanding the packing of achiral molecules into NCS arrange-

ments is a key for the future design of noncentrosymmetric (NCS)

functional materials. Previous works reported SHG active chiral

compounds from NCS, achiral building units [16,17]. Herein, we

aim at understanding the packing of two achiral molecules through

hydrogen bonding into an SHG active chiral compound.

The NCS achiral sulfanilate anion was previously stabilized into

diverse materials with counterions such as ammonium, rubidium,

lithium or potassium [18–21]. In this letter, we used the NCS achi-

ral cyclohexylamine and obtained a new chiral compound exhibit-

ing a Second Harmonic Generation (SHG) response. A statistical

analysis of the arrangement of the sulfanilate anion with different

CS or NCS cations provides new insights in the future design of NCS

materials.

2. Materials and methods

Sulfanilic acid (99%) and cyclohexylamine (99%) were pur-

chased from Aldrich and used without further purification. Cyclo-

hexylammonium sulfanilate was prepared by mixing

cyclohexylamine (0.04 mol) and sulfanilic acid (0.04 mol) in dis-

tilled water at room temperature. The solution was stirred for

two hours. Large colourless crystals suitable for X-ray diffraction

were obtained after slow evaporation of the water. For spectro-

scopic measurements, these colourless crystals were firstly ground

with KBr and pressed into pellets. FT-IR spectra were obtained with

a Bruker Vertex 70 instrument, 100 scans were collected with
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a resolution of 4 cm�1 from 400 to 4000 cm�1. A background

spectrum was subtracted. Diffuse reflectance spectrum of the

ground crystals was collected with a Perkin Elmer UV–visible-

NIR spectrometer (Lambda 1050) equipped with an integrating

sphere. The obtained data were treated by Kubelka-Munk transfor-

mation. Single-crystal X-ray diffraction was performed using a

Bruker-Nonius Kappa CCD diffractometer (MoKa radiation/crystal

to detector distance = 60 mm). Absorption corrections were con-

sidered using SADABS [22]. Direct methods were used to deter-

mine the crystal structure through the program SIR2004 [23].

The crystal structure was refined with SHELXL-2013 [24]. Addi-

tional symmetry elements were checked using PLATON [25]. More

information on the crystal structure is available in Table S1–3. Dif-

ferential Scanning Calorimetry (DSC) measurements was carried

out with a Setaram Sensys Evo under Argon flow, from room tem-

perature to 800 �C, with a heating rate of 5 �C.min�1. A Ti:Sa laser

from Spectra Physics (Hurricane model) delivering pulse of 100 fs

at 800 nm (1 kHz) was used to detect SHG signals. SHG was col-

lected at 400 nm with a streak camera C7700 from Hamamatsu

coupled with a spectrometer from Princeton instruments.

3. Results and discussion

3.1. Structure description

The compound crystallizes in orthorhombic system (space

group P212121). The asymmetric unit contains the cyclohexylam-

monium cation and the sulfanilate anion. The crystal packing

shows supramolecular self-assembly through the three axes a, b

and c, resulting from the interactions sulfanilate-sulfanilate and

sulfanilate-cyclohexylammonium. The sulfanilate-sulfanilate

interactions through N–H� � �O–S connections generate chains. The

cyclohexylammonium connects these chains via hydrogen bonding

N–H� � �O–S, leading to a 3D network of hydrogen bonds (Fig. 1).

Comparing with previously reported sulfanilate compounds with

counterions such as ammonium, rubidium, lithium or potassium

[18–21], this resulting crystal structure is chiral. The main differ-

ence between the different crystal structures is the symmetry of

the cations: while cations are centrosymmetric in these previously

reported compounds, cyclohexylammonium is non-chiral but polar

(Fig. 2). Thus, the use of this polar unit might be an important

parameter for inducing a NCS material. In our compound, the polar

units pack along perpendicular 21 axes. For this reason, the net

dipole moments of the molecules are cancelled out but chirality

is generated from the molecular packing. However, the analysis

of crystal habit did not allow to simply distinguish between the

opposite chirality senses. To better understand the role of the sym-

metries of the cations/anions on the final packing, one can per-

formed statistical analysis of the Cambridge Crystallographic

Database. Over 88 crystal structures containing the sulfanilate

anion, 24 which contain molecular cations were selected for fur-

ther investigation. Our analysis shows that the ratio of NCS crystal

structures is 29% (close to the ratio for all compounds: 22%).

Among the CS structures, 41% result from the combination of sul-

fanilate with NCS cations. On the other hand, among the NCS struc-

tures, 86% result from the combination of sulfanilate with NCS

cations. The statistical results also show that the packing of sulfani-

late with NCS cations through hydrogen bonding network is more

likely to lead to NCS structures (54%) than when using CS cations

(46%) as if the overall occurence of NCS structures is much lower

(29%). For this reason, one can conclude that combining two NCS

molecules might be an interesting strategy to target NCS com-

pound. This could be explained by the fact that each NCS molecule

offers an acentric environment for the packing of the other.

3.2. UV/Visible and FT-IR spectra

Diffuse reflectance shows strong absorption below 350 nm for

the title compound. This intense UV absorption is mainly due to

p–p* transition in the aromatic nucleus, confirming the presence

of phenyl (sulfanilate) (Fig. 3). The low absorption around

375 nm can be identified as the substitution effect on the phenyl,

namely NH2 and SO3 groups. The FT-IR Spectrum is shown in

Fig. 4. The full attribution of the main absorption bands is available

in Supporting information (Table S4). Absorption bands in the

range of 3450–3200 cm�1 are assigned to tN–H vibration modes.

dN–H vibration mode is also located from 1650 to 1600 cm�1 and

cN–H is in the range of 850–820 cm�1. From 3100 to 2850 cm�1,

there are several bands attributed to tC–H of the aromatic nucleus

and the tC–H (CH2) of cyclohexyl. The ones at 600 and 700 cm�1 are

assigned to dC–H of the aromatic nucleus. dC–H (CH2) of cyclohexyl

also appears from 1466 to 1387 cm�1. According to the literature

Fig. 1. Crystal structure of cyclohexylammonium sulfanilate (Hydrogen bonds are

represented in green dotted lines). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Symmetry elements of the achiral constituents (anion/left and cation/right)

of the title compound (Hydrogen atoms have been removed for clarity).
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[26,27], the vibration tape at 1214, 1184 and 1169 cm�1 are due to

tas of –SO3
� group while the ones at 1030 cm�1 and 1011 cm�1 are

assigned to ts of the same group. tC–N appears at 1000 cm�1.

3.3. Second Harmonic Generation measurements

The differential scanning calorimetry performed on the sulfani-

late shows its decomposition at about 250 �C. Thus, Second Har-

monic Generation measurement can be carried out without the

risk of important degradation due to the excitation power laser

(Fig. S1). Every noncentrosymmetric material except the ones in

the point-group 432 can be SHG active [7,28]. As our compound

crystallizes in the space group P212121, this material is potentially

SHG active. To confirm the noncentrosymmetry of this material,

SHG measurement was performed with potassium dihydrogen-

phosphate (KDP) as reference (Fig. 5). The measurements per-

formed on powder samples at k = 800 nm show the same

response at 400 nm confirming the simple synthesis of noncen-

trosymmetric compound from the achiral building units.

4. Conclusion

The new compound cyclohexylammonium sulfanilate was syn-

thesized at room temperature by mixing sulfanilic acid and cyclo-

hexylamine in 1/1 M ratio. The material is chiral and crystalizes in

P212121 space group. The crystal structure consists of a tridimen-

sional network of hydrogen bonds formed by chains of sulfanilate

anions interconnected with cyclohexylammonium cations. A sta-

tistical analysis showed that the acentric polar sulfanilate is more

likely to lead to NCS crystal structures when using NCS cations

than CS ones. In this letter, the simple achiral building units (cyclo-

hexylamine and sulfanilic acid) lead, through an easy synthetic

approach, to a chiral material exhibiting a SHG response. Thus,

we believe this investigation will serve as a simple illustration of

the induction of chiral materials which do not require

enantioenrichment.
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Fig. 4. FT-IR spectrum of cyclohexylammonium sulfanilate compound.

Fig. 5. Second Harmonic Generation response of cyclohexylammonium sulfanilate with incident beam at k = 800 nm (Inset: SHG response of the standard KDP).

Fig. 3. Kubelka-Munk transformed reflection spectrum of cyclohexylammonium

sulfanilate.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.matlet.2019.01.034.
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