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Abstract. The analysis of longitudinal trajectories is a longstanding
problem in medical imaging which is often tackled in the context of
Riemannian geometry: the set of observations is assumed to lie on an a
priori known Riemannian manifold. When dealing with high-dimensional
or complex data, it is in general not possible to design a Riemannian
geometry of relevance. In this paper, we perform Riemannian manifold
learning in association with the statistical task of longitudinal trajectory
analysis. After inference, we obtain both a submanifold of observations
and a Riemannian metric so that the observed progressions are geodesics.
This is achieved using a deep generative network, which maps trajectories
in a low-dimensional Euclidean space to the observation space.

Keywords: Riemannian geometry · Longitudinal progression · Medical
Imaging

1 Introduction

The analysis of the longitudinal aspects of a disease is key to understand its
progression as well as to design prognosis and early diagnostic tools. Indeed,
the time dynamic of a disease is more informative than static observations of
the symptoms, especially for neuro-degenerative diseases whose progression span
over years with early subtle changes. More specifically, we tackle in this paper
the issue of disease modelling: we aim at building a time continuous reference
of disease progression and at providing a low-dimensional representation of each
subject encoding his position with respect to this reference. This task must
be achieved using longitudinal datasets, which contain repeated observations of
clinical measurements or medical images of subjects over time. In particular, we
aim at being able to achieve this longitudinal modelling even when dealing with
very high-dimensional data.

The framework of Riemannian geometry is well suited for the analysis of
longitudinal trajectories. It allows for principled approaches which respect the
nature of the data -e.g. explicit constraints- and can embody some a priori
knowledge. When a Riemannian manifold of interest is identified for a given
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type of data, it is possible to formulate generative models of progression on this
manifold directly. In [3, 10,14], the authors propose a mixed-effect model which
assumes that each subject follows a trajectory which is parallel to a reference
geodesic on a Riemannian manifold. In [16], a similar approach is constructed
with a hierarchical model of geodesic progressions. All these approaches make
use of a predefined Riemannian geometry on the space of observations.

A main limitation of these approaches is therefore the need of this known Rie-
mannian manifold to work on. It may be possible to coin a relevant Riemannian
manifold in low-dimensional cases and with expert knowledge, but it is nearly
impossible in the more general case of high-dimensional data or when multiple
modalities are present. Designing a Riemannian metric is in particular very chal-
lenging, as the space of Riemannian metrics on a manifold is vastly large and
complex. A first possibility, popular in the literature, is to equip a submanifold
of the observation space with the metric induced from a metric on the whole
space of observations –e.g. `2 on images. However, we argue here that this choice
of larger metric is arbitrary and has no reason to be of particular relevance for
the analysis at hand. Another possibility is to consider the space of observations
as a product of simple manifolds, each equipped with a Riemannian metric. This
is only possible in particular cases, and even so, the product structure constrains
the shapes of the geodesics which need to be geodesics on each coordinate. Other
constructions of Riemannian metrics exist in special cases, but there is no simple
general procedure. Hence, there is a need for data-driven metric estimation.

A few Riemannian metric learning approaches do exist in the litterature.
In [6], the authors propose to learn a Riemannian metric which is defined by
interpolation of a finite set of tensors, and they optimize the tensors so as to
separate a set of data according to known labels. This procedure is intractable
as the dimension of the data increases. In [1] and in [17], the authors estimate a
Riemannian metric so that an observed set of data maximizes the likelihood of
a generative model. Their approaches use simple forms for the metric. Finally,
in [12], the authors show how to use transformation of the observation space to
pull-back a metric from a given space back to the observation space, and give a
density criterion for the obtained metric and the data.

We propose in this paper a new approach to learn a smooth manifold and
a Riemannian metric which are adapted to the modelling of disease progres-
sion. We describe each subject as following a straight line trajectory parallel
to a reference trajectory in a low-dimensional latent space Z, which is mapped
onto a submanifold of the observation space using a deep neural network Ψ , as
seen in [15]. Using the mapping Ψ , the straight line trajectories are mapped onto
geodesics of the manifold Ψ(Z) equipped with the push-forward of the Euclidean
metric on Z. After inference, the neural network parametrizes a manifold which
is close to the set of observations and a Riemannian metric on this manifold
which is such that subjects follow geodesics on the obtained Riemannian mani-
fold, which are all parallel to a common reference geodesic in the sense of [14].
This construction is motivated by the theorem proven in Appendix giving mild
conditions under which there exists a Riemannian metric such that a family of
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curves are geodesics. Additionally, this particular construction of a Riemannian
geometry allows very fast computations of Riemannian operations, since all of
them can be done in closed form in Z.

Section 2 describes the Riemannian structure considered, the model as well
as the inference procedure. Section 3 shows the results on various features ex-
tracted from the ADNI data base [7] and illustrates the advantages of the method
compared to the use of predefined simple Riemannian geometries.

2 Propagation model and deep generative models

2.1 Push-forward of a Riemannian metric

We explain here how to parametrize a family of Riemannian manifolds. We use
deep neural networks, which we view as non-linear mappings, since they have
the advantage of being flexible and computationally efficient.

Let Ψw : Rd 7→ RD be a neural network function with weights w, where
d,D ∈ N with d < D. It is shown in [15] that if the transfer functions of the
neural network are smooth monotonic and the weight matrices of each layer are of
full rank, then Ψ is differentiable and its differential is of full rank d everywhere.
Consequently, Ψ(Rd) = Mw is locally a d-dimensional smooth submanifold of
the space RD. It is only locally a submanifold: Mw could have self intersections
since Ψw is in general not one-to-one. Note that using architectures as in [8]
would ensure by construction the injectivity of Ψw.

A Riemannian metric on a smooth manifold is a smoothly varying inner
product on the manifold tangent space. Let g be a metric on Rd. The push-
forward of g onMw is defined by, for any smooth vector fields X,Y on Ψw(Rd):

Ψ∗w(g)(X,Y ) := g((Ψw)∗(X), (Ψw)∗(Y ))

where (Ψw)∗(X) and (Ψw)∗(Y ) are the pull-back of X and Y on Rd defined by
(Ψw)∗(X)(f) = X(f ◦ Ψ−1w ) for any smooth function f : Rd → R, and where
Ψ−1w is a local inverse of Ψw, which exists by the local inversion theorem.

By definition, Ψw is an isometry mapping a geodesic in (Rd, g) onto a geodesic
in (Mw, Ψ

∗
w(g)). Note that the function Ψw parametrizes both a submanifold

Mw of the space of observations and a metric Ψ∗w(g) on this submanifold. In
particular, there may be weights w1, w2 for which the manifolds Mw1 ,Mw2 are
the same, but the metrics Ψ∗w1

(g), Ψ∗w2
(g) are different.

In what follows, we denote gw = Ψ∗w(g) the push-forward of the Euclidean
metric g. Since (Rd, g) is flat, so is (Mw, gw). This neither means thatMw is flat
for the induced metric from the Euclidean metric on RD nor that the obtained
manifold is Euclidean (ruled surfaces like hyperbolic paraboloid are flat still non
euclidean). A study of the variety of Riemannian manifolds obtained under this
form would allow to better understand how vast or limiting this construction is.
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2.2 Model for longitudinal progression

We denote here (yij , tij)j=1,...,ni
the observations and ages of the subject i, for

i ∈ {1, . . . , N} where N ∈ N is the number of subjects and ni ∈ N is the number
of observation of the i-th subject. The observations lie in a D-dimensional space
Y. We model each individual as following a straight trajectory in Z = Rd with
d ∈ N:

li(t) = eηi(t− τi)e1 +

d∑
j=2

bjiej (1)

where (e1, . . . , ed) is the canonical basis of Rd.
With this writing, on average, the subjects follow a trajectory in the la-

tent space given by the direction e1. To account for inter-subject differences in
patterns of progression, each subject follows a parallel to this direction in the
direction

∑d
j=2 b

j
iej . Finally, we reparametrize the velocity of the subjects in

the e1 direction using ηi which encodes for the pace of progression and τi which
is a time shift. This writing is so that li(τi) is in Vec(e2, . . . , ed), the set of all
possible states at the time τi. Hence, after inference, all the subjects progression
should be aligned with similar values at t = τi. We denote, for each subject i,
ϕi = (ηi, τi, b

2
i , . . . , b

d
i ) ∈ Rd+1. ϕi is a low-dimensional vector which encodes the

progression of the subject.
As shown above, we map Z to Y using a deep neural network Ψw. The subject

reconstructed trajectories t 7→ yi(t) = Ψw (li(t)) are geodesics in the submanifold
(Mw, gw). The geodesics are parallel in the sense of [14] and [16]. Note that the
apparently constrained form of latent space trajectories (1) is not restrictive:
the family of functions parametrized by the neural network Ψw allows to curve
and move the image of the latent trajectories in the observation space, and for
example to align the direction e1 with any direction in Y.

2.3 Encoding the latent variables

To predict the variables ϕ for a given subject, we use a recurrent neural-network
(RNN), which is to be thought as an encoder network. As noted in [4, 5], the
use of a recurrent network allows to work with sequences which have variable
lengths. This is a significant advantage given the heterogeneity of the number
of visits in medical longitudinals studies. In practice, the observations of the
subject are not regularly spaced in time. To allow the network to adapt to this,
we provide the ages of the visit at each update of the RNN.

We use an Elman network, which has a hidden state h ∈ RH with H ∈
N, initialized to h0 = 0 and updated along the sequence according to hk =
ρh(Whyik + Uhhk−1 + bh) and the final value predicted by the network after a
sequence of length f ∈ N is ϕ = Wϕρϕ(hf ) + bz where ρϕ and ρh are activation
functions and Wh, Uh,Wϕ, bh, bϕ are the weights and biases of the network. We
denote θ = (Wh, Uh,Wϕ, bϕ) the parameters of the encoder.

When working with scalar data, we use this architecture directly. When work-
ing with images, we first use a convolutional neural network to extract relevant
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features from the images which are then fed to the RNN. In this case, both the
convolutional network and the recurrent network are trained jointly by back-
propagation. Figure 1 summarizes the whole procedure.

Fig. 1: The observed sequences are encoded into latent trajectories, which are
then decoded into geodesics on a submanifold of the observation space.

2.4 Regularization

To impose some structure in the latent space Z, we impose a regularization on
the individual variables ϕi = (ηi, τi, b

2
i , . . . , b

d
i ). The regularization cost used is:

r(η, τ, b2, . . . , bd) =
(η − η)2

σ2
η

+
(τ − τ)2

σ2
τ

+

d∑
j=2

(bj)2 (2)

This regularization requires the individual variables η and τ to be close to mean
values τ , η. The parameters η, τ are estimated during the inference. ση > 0 is
fixed but the estimation of η allows to adjust the typical variation of η with
respect to the mean pace η, while the neural network Ψw adjusts accordingly
the actual velocity in the observation space in the e1 direction. στ is set to the
empirical standard deviation of the time distribution (tij)ij , meaning that we
expect the delays between subjects to be of the same order as the standard
deviation of the visit ages.

2.5 Cost function and inference

Overall, we optimize the cost function:

c(θ, w, η, τ) =
∑
i

∑
j

‖yi(tij)− yij‖22
σ2

+
∑
i

r(ϕi) (3)
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where σ > 0 is a parameter controlling the trade-off reconstruction/regularity.
The first term contains the requirements that the geometry (Mw, gw) be

adapted to the observed progressions since it requires geodesics yi(t) to be good
reconstructions of the individual trajectories. As shown in the Appendix, there
exists solutions to problems of this kind: under mild conditions there exists a
metric on a Riemannian manifold that the subjects progressions are geodesics.
But this is only a partial constraint: there is a whole class of metrics which have
geodesics in common (see [13] for the analysis of metrics which have a given
family of trajectories as geodesics).

We infer the parameters of the model by stochastic gradient descent using
the Adam optimizer [9]. After each batch of subjects B, we balance regularity
and reconstruction by imposing a closed-form update on σ:

σ2 =
1

NBD

∑
i∈B

Ni∑
j=1

‖Ψw (li(tij))− yij‖22 (4)

where NB =
∑
i∈B Ni is the total number of observations in the batch b. This

automatic update of the trade-off criterion σ is inspired from Bayesian generative
models which estimate the variance of the residual noise, as in e.g. [14, 20].

3 Experimental results

The neural network architectures and the source code for these experiments is
available at gitlab.icm-institute.org/maxime.louis/unsupervised_geome_
longitudinal, tag IPMI 2019. For all experiments, the ages of the subjects are
first normalized to have zero mean and unit variance. This allows the positions
in the latent space to remain close to 0. We set ση = 0.5 and initialize η to 0.

3.1 On a synthetic set of images

Fig. 2: Each row repre-
sents a synthetic subject.

To validate the proposed methodology, we first per-
form a set of experiments on a synthetic data set. We
generate 64×64 gray level images of a white cross on
a black background. Each cross is described by the
arms length and angles. We prescribe a mean sce-
nario of progression for the arm lengths and sample
the arm angles for each subject from a zero-centered
normal distribution. Figure 2 shows subjects gener-
ated along this procedure. Note that with this set-
ting, an image varies smoothly with respect to the
arms lengths and angles and hence the whole set of
generated images is a smooth manifold.

We generate 10 training sets of 150 subjects and
10 test sets of 50 subjects. The number of observation of each subject is randomly
sampled from a Poisson distribution with mean 5. The times at which the subject

gitlab.icm-institute.org/maxime.louis/unsupervised_geome_longitudinal
gitlab.icm-institute.org/maxime.louis/unsupervised_geome_longitudinal
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are observed are equally spaced within a randomly selected time window. We
add different level of white noise on the images. We then run the inference on
the 10 training sets for each level of noise. We set the dimension of the latent
space Z to 3 for all the experiments.

For each run, we estimate the reconstruction error on both training set and
test set, as well as the reconstruction error to the de-noised images, which were
not seen during training. Results are shown on Figure 3.

0. 0.02 0.05 0.1
Standard deviation of added noise

0.

0.02
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M
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Test
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Fig. 3: Reconstruction error on train
and test sets and on denoised train and
test sets, unseen during training.

The model generalizes well to unseen
data and successfully denoises the im-
ages, with a reconstruction error on
the denoised images which does not
vary with the scale of the added white
noise. This means that the generated
manifold of images is close to the man-
ifold on which the original images lie.
Besides, as shown on Figure 4, the sce-
nario of progression along the e1 di-
rection is well captured, while orthog-
onal directions e2, e3 allow to change
the arm positions. Finally, we com-
pare the individual variables (b2i , b

3
i )

to the known arms angles which were
used to generate the images. Figure 5
shows the results: the latent space is
structured in a way that is faithful to
the original arm angles.

3.2 On cognitive scores

We use the cognitive scores grading the subjects memory, praxis, language and
concentration from the ADNI database as in [14]. Each score is renormalized to
vary between 0 and 1, with large values indicating poor performances for the
task. Overall, the data set consists of 223 subjects observed 6 times on average
over 2.9 years. We perform a 10-fold estimation of the model. The measured
mean squared reconstruction error is 0.079 ± 1.1e − 3 on the train sets, while
it is of 0.085 ± 1.5e − 3 for the test sets. Both are close to the uncertainty
in the estimation of these cognitive scores [18]. This illustrates the ability of
the model to generalize to unseen observations. First, this indicates that Mw is
a submanifold which is close to all the observations. Second, it indicates how
relevant the learned Riemannian metric is, since unobserved subject trajectories
are very close to geodesics on the Riemannian manifold.

Figure 6 shows obtained average trajectories t 7→ Ψw(eηe0(t − τ)) for a 10-
fold estimation of the model on the data set, with Z dimension set to 2. All
of these trajectories are brought back to a common time reference frame using
the estimated τ and η. All average trajectories are very similar, underlining the
stability of the proposed method. Note that despite the small average observation
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Fig. 4: First row is t 7→ Ψθ(e1t). Following rows
are t 7→ Ψθ(e1t + ei) for i ∈ {2, 3}. These parallel
directions of progression show the same arm length
reduction with different arm positions.

Fig. 5: Individual
variables b1i and b2i
colored by left (top)
and right (bottom)
arm angle.

time of the subjects, the method proposed here allows to robustly obtain a mean
scenario of progression over 30 years. Hence, despite all the flexibility that is
provided through the different neural networks and the individual parameters,
the model still exhibits a low variance.

We compare the results to the mean trajectory estimated by the model [14],
which is shown on Figure 8. Both cases recover the expected order of onset
of the different cognitive symptoms in the disease progression. Note that with
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Fig. 6: Learned main
progression of the cog-
nitive scores, for the 10-
fold estimation.
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Fig. 7: Mean geodesic
of progression and par-
allel variations t 7→
Ψ(eηe0(t− τ) +λe1) for
varying λ.
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Fig. 8: Mean geodesic of
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variations for the model
with user-defined met-
ric.
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our model the progression of the concentration score is much faster than the
progression of the memory score, although it starts later: this type of behaviour
is not allowed with the model described in [14] where the family of possible
trajectories is much narrower. Indeed, because it is difficult to craft a relevant
Riemannian metric for the data at hand, the authors modelled the data as lying
on a product Riemannian manifold. In this case, a geodesic on the product
manifold is a product of geodesics of each manifold. This strongly restricts the
type of dynamics spanned by the model and hence gives it a high bias.

The use of the product manifold also has an impact on the parallel variations
around the mean scenario: they can only delay and slow/accelerate one of the
component with respect to another, as shown on Figure 8. Figure 7 illustrates the
parallel variations Ψ(αe0(t− τ) + e1) one can observe with the proposed model.
The variation is less trivial since complex interactions between each features are
possible. In particular, the concentration score varies more in the early stages of
the disease than in the late stages.

The individual variables ϕ. To show that the individual variables ϕi did
capture information regarding the disease progression, we compare the distribu-
tion of the τi between subjects who have at least one APOE4 allele of the APOE
gene -an allele known to be a implicated in Alzheimer’s disease- and subjects
which have no APOE4 allele of this gene. We perform a Mann-Whitney test on
the distributions to see if they differ. For all folds, a p-value lower than 5% is
obtained. For all folds, carriers have a larger τ meaning that they have an earlier
disease onset than non-carriers. This is in accordance with [2]. Similarly, women
have on average an earlier disease onset for all folds, in accordance with [11].

Le
ar

ne
d 

ge
om

et
ry

Memory Concentration

Iso
m

ap

Fig. 9: Top (resp. Bottom) latent po-
sitions (resp. Isomap embedding) of
the observations colored by memory
and concentration score.

A closer look at the geometry We
look at the obtained Riemannian geome-
try by computing the latent position best
mapped onto each of the observation by
Ψw. We then plot the obtained latent po-
sitions to look at the structure of the
learned Riemannian manifold. We com-
pare the obtained structure with a visual-
isation of the structure induced by the `2

on the space of observations produced by
Isomap [19]. Isomap is a manifold learning
technique which attempts to reconstruct
in low dimensions the geodesic distances
computed from a set of observations. The
results are shown on Figure 9. The ge-
ometry obtained after inference is clearly
much more suited for disease progression
modelling. Indeed, the e1 direction does
correspond to typical increases in the dif-
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Fig. 10: t 7→ Ψθ(e0t) on the MRI dataset. The growth of the ventricles, caracter-
istic of aging and Alzheimer’s disease is clearly visible.

ferent scores. The induced metric is not as adapted. This highlights the relevance
of the learned geometry for disease modelling.

3.3 On anatomical MRIs

We propose here an estimation of the model on 3D MRIs preprocessed from
the ADNI database, to check the behaviour of the proposed method in high
dimension. We select subjects which ultimately convert to Alzheimer’s disease.
We obtain 325 subjects and a total of 1996 MRIs which we affinely align on the
Colin-27 template and resample to 64x64x64. We run a 5-fold estimation of the
model with dimZ = 10, using a GPU backend. We obtain a train mean squared
error of 0.002± 1e− 5 and a test mean squared error of 0.0024± 3e− 5. Figure
10 shows one of the learned mean trajectory.

Once the model is estimated, we compare the distributions of the pace of
progressions ηi between the individuals who have at least one APOE4 allele of
the APOE gene and the individuals who have no APOE4 allele. For all 5 folds,
the distributions of the paces of progression significantly differ, with p-values
lower than 5% and in each case, the APOE4 carriers have a greater pace of
progression, in accordance with [2]. The same analysis between the individuals
who have two APOE4 allele versus the individuals which have at maximum one
APOE4 allele shows a significative difference for all folds for the τ variable: the
APOE4 carriers have an earlier disease onset, as shown in [11]. This analysis
further shows the value of the individual variables ϕi learned for each subject.

4 Conclusion

We presented a way to perform Riemannian geometry learning in the context
of longitudinal trajectory analysis. We showed that we could build a local Rie-
mannian submanifold of the space of observations which is so that each subject
follows a geodesic parallel to a main geodesic of progression on this manifold.
We illustrated how the encoding of each subject into these trajectories is infor-
mative of the disease progression. The latent space Z built in this process is a
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low-dimensional description of the disease progression. There are several possi-
ble continuations of this work. First, there is the possibility to conduct the same
analysis on multiple modalities of data simultaneously. Then, after estimation,
the latent space Z could be useful to perform classification and prediction tasks.
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A Existence of a Riemannian metric such that a family
of curves are geodesics

Theorem 1. Let M be a smooth manifold and (γi)i∈{1,...,n} be a family of
smooth regular injective curves on M which do not intersect. There exists a
Riemannian metric g such that γi is a geodesic on (M, g) for all i ∈ {1, . . . , n}.

Proof. Open neighborhood of the curves. Let i ∈ I. Since γi is injective and
regular, γi([0, 1]) is a submanifold ofM. By the tubular neighborhood theorem,
there exists a vector bundle Ei on γi([0, 1]) and a diffeomorphism Φi from a
neighborhood Ui of the 0-section in Ei to a neighborhood Vi of γi([0, 1]) in M
such that Φi ◦ 0Ei = ii where ii is the embedding of γi([0, 1]) in M. Without
loss of generality, we can suppose γj([0, 1]) ∩ Ui = ∅ for all j 6= i.

Riemannian metric on the neighborhoods. To do so, we use the fact that Ei
is diffeomorphic to the normal bundle on the segment [0, 1] ∈ R which is trivial
and which we denote N . Let Ψi : Ei 7→ N be such a diffeomorphism. Now N can
be equipped with a Riemannian metric hi such that [0, 1] is a geodesic. Using Ψi
and Φi, we can push-forward the metric hi to get a metric gi on U which is so
that γi is a geodesic on (Ui, gi).

Stitching the metrics with a partition of unity. For each i ∈ {1, . . . , n}, pick
an open subset Vi such that Vi ⊂ Vi ⊂ Ui and which contains γi([0, 1]), and set
O =M\(∪iVi). O is open so that C = {O,U1, . . . , Un} is an open cover ofM. O
can be equipped with a metric gO (there always exists a Riemannian metric on a
smooth manifold). Finally, we use a partition of the unity ρO, ρ1, . . . , ρn on C and
set g = ρOgO+

∑
i ρigi. g is a Riemannian metric onM as a positive combination

of Riemannian metrics. Each γi is a geodesic on (M, g) by construction.

In [13], the authors deal with a more general case but obtain a less explicit
existence result. This theorem motivates our approach even if in equation (3)
we ask for more: we want the existence a system of coordinates adapted to the
progression.
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