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A two-stage ultrafiltration process for separating multiple 

components of Tetraselmis suecica after cell disruption 

Carl Safi• Dylan Z. Liu • Benjamin H. J. Yap • 

Gregory J. O. Martin • Carlos Vaca-Garcia • 

Pierre-Yves Pontalier 

Abstract A two-stage ultrafiltration process was applied to 

the aqueous phase of Tetraselmis suecica after breaking its cell 

wall by high-pressure homogenization. Microscopie observa

tion revealed that the cells were completely disrupted from 

600 bar and cell fragmentation of the cells was also noticeable 

after 800 bar. In addition, the highest concentration of all the 

molecules of interest in the aqueous phase was observed at 

1,000 bar and a temperature of 46 °C while preserving the 

integrity of the molecules of interest in the downstream pro

cess. After centrifugation, the aqueous phase was submitted to 

ultrafiltration through two consecutive membranes of different 

molecular weight cutoffs. Complete retention of starch was 

possible with a 100-kDa membrane and separation of sugars 

from proteins with a 10-kDa membrane on the remaining 

mixture. After testing the process with model solutions, the 

transmembrane pressure selected was 2.07 bar, which 

succeeded in retaining starch and pigments during the first 

part of the process, and proteins during the second part. A 

linear correlation between the permeate flux rate and the 

pressure was observed in both parts of the process. 
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Introduction 

Microalgae are considered as a promising feedstock for bio

fuel production due to their ability to couvert carbon dioxide 

into carbon-rich lipids (Wijffels and Barbosa 2010). They 

grow rapidly and do not need arable land. However, the 

feasibility of this new technology has not yet been exploited 

on an industrial scale due to its currently uncompetitive high 

production cost and its overall unsustainable production 

(Singh and Olsen 2011; Yang et al. 2011). The potential for 

large-scale commercial exploitation of these microorganisms 

is possible if they are completely valorised in the framework 

of a biorefinery (Wijffels and Barbosa 2010; Williams and 

Laurens 2010). 

The majority ofresearch into microalgal biotechnology has 

focused on the production and accumulation of lipids 

(Converti et al. 2009; Widjaja et al. 2009), methods for ex

traction (Araujo et al. 2013; Halim et al. 2012), analysis 

(Olmstead et al. 2013) and transformation oflipids to biofuel 

(Li et al. 2008). Sorne studies have also considered isolating 

other principal microalgal components such as proteins by 

solubilisation in alkaline solution followed by precipitation 

with acid (Barbarino and Lourenço 2005) or polysaccharides 

by precipitation with ethanol (Gloaguen et al. 2004; Shi et al. 

2007). 

In order to avoid using solvents and chemicals, alternative 

techniques to separate components by ultrafiltration already 

exist and can be scaled up to an industrial level (Susanto et al. 

2008). For microalgae, this technique has so far been used 

mainly for harvesting the cells (Frappart et al. 2011; Zhang 

et al. 2010), but its use in separating microalgal biomass 

components in an integrated process has yet to be established. 

To date, few studies have investigated this technique on 

microalgae to purify a single component such as the polysac

charides of Porphyridium cruentum (Patel et al. 2013), Spiru

lina platensis and Chlorella pyrenoidosa (Pugh et al. 2001) or 



to examine the role of exopolysaccharides of Chlore/la sp. and 

Porphyridium purpureum in the fouling of ultrafiltration 

membranes (Morineau-Thomas et al. 2002). However, there 

is currently a lack of studies in the literature dealing with 

separation of multiple components of microalgal biomass. 

The microalga concemed in this study is Tetraselmis 

suecica, which is an ovoid unicellular green flagellated 

species of 9-13 µm in length and 7-8 µm in width 

(Renaud et al. 1999). lts biochemical composition covers 

a variety of potentially valuable components. In particular, 

its protein content can be high (up to 44 % dry weight) 

and it has a balanced amino acid profile including both 

essential and non-essential amino acids (Brown 1991; 

Lourenço et al. 1998; Schwenzfeier et al. 2011). Carbo

hydrates represent 8-57 % dry weight, (D'Souza and 

Kelly 2000; Renaud et al. 1999; Whyte 1987), with starch 

being the dominant component when accumulated under 

nitrogen starvation and low irradiance (Yao et al. 2012). 

Glucose is the predominant intracellular monosaccharide, 

followed by galactose, xylose, rhamnose, mannose and 

arabinose that are present in the polysaccharide compo

nents of the cell wall (Brown 1991; Schwenzfeier et al. 

2011; Whyte 1987). Lipids can represent from 7 to 30 % 

of its dry weight, with a fatty acid composition suitable 

for biodiesel production (Dunstan et al. 1992; Fabregas 

et al. 1985; Volkman et al. 1989). Like all microalgae, its 

composition varies according to the growth conditions, 

which will affect the accumulation of the target 

components. 

The present study investigates the effectiveness of a 

two-stage ultrafiltration process for separating intemal cell 

components of T. suecica disrupted by high-pressure ho

mogenization. Two membranes with different molecular 

weight cutoffs are used to separate starch from proteins 

and sugars in the first step and then proteins from sugars 

in the second step. The process was first tested on model 

solutions containing starch, proteins and sugars and then 

applied to T. suecica. 

Materials and methods 

All chemicals and biomolecules including soluble starch 

(C12H22O11) and milk proteins (12-250 kDa) were purchased 

from Sigma-Aldrich (USA) and used as received. The Lowry 

assay kit was purchased from Fisher Scientific. 

Microalga Tetraselmis suecica (strain CS 187) was grown in 

outdoor photobioreactors in a medium with modified 'f-me

dium' nutrients and trace elements. This consisted of 

200 mg L-1 NaNO3 , 25 mg L-1 KH2PO4, 9.0 mg L-1 iron
(III) citrate, 9.0 mg L-1 citric acid, 0.360 mg L-1 MnClz· 

4H2O, 0.044 mg L-1 ZnSO4·7H2O, 0.022 mg L-1 CoClz·

6H2O, 0.020 mg L-1 CuSO4 · 5H2O, 0.008 mg L-1 Na2MoO4 · 

2H2O and trace levels of vitamins B 12, biotin and thiamine. 

Mixing in the photobioreactors was by compressed air aera

tion, and temperature and irradiance were dependent on local 

weather conditions in Melbourne, Victoria, Australia. 

Suspensions of T. suecica used in this study were obtained 

by mixing frozen microalgal paste (containing 5.5 % dry 

weight) in distilled water to a concentration of approximately 

1 7 g L -l dry weight. Aggregates in suspension were dispersed 

by stirring for up to 1 h prior to homogenization. 

High-pressure homogenization A GEA Panda2K NS1001L 

high-pressure homogenizer (GEA Niro Soavi, ltaly) with 

a cell disruption valve (Re+valve) attached was used for 

cell disruption. T. suecica cells were suspended in distilled 

water at 17 g L - l and then passed through the homoge

nizer at different pressures ranging from 200 to 1,000 bar. 

Temperature of the homogenized suspension was moni

tored to avoid denaturation of components in the medium. 

The aqueous extracts (supematants) were recovered after 

centrifugation at 10,000xg for 10 min at 21 °C for sub

sequent processing and analyses. 

Madel suspensions Model suspension 1 was composed of 

40 % milk proteins (12-250 kDa), 35 % soluble starch and 

25 % sugars. Model suspension 2 was composed of 60 % milk 

proteins (15-250 kDa) and 40 % sugars. Both suspensions 

were vigorously stirred for 2 h to ensure maximum 

solubilisation in distilled water (ratio 1 :5, w/v). 

Ultrafiltration Model suspensions and the supematant of the 

homogenized aqueous phase of T. suecica were fractionated 

by two-step ultrafiltration using a Labscale™ TFF system 

(Millipore, USA). The TFF system includes a 500-mL acrylic 

reservoir with a base containing a magnetic stirrer and a 

diaphragm pump, plus two pressure gauges with the retentate 

gauge indicating the pressure of the fluid exiting the Pellicon 

XL 50 ( cm2) device. Two different Pellicon XL 50 ( cm2) 

polyethersulfone membranes cartridges were used with differ

ent molecular weight cutoffs ( 100 and 10 kDa ). 

Two modes were tested for the model solutions, 

recycling mode and concentration mode. During the 

recycling mode, both retentates and permeates were 

recycled in order to select the appropriate transmembrane 

pressure from 0.69 to 2.07 bar, and then during the con

centration mode, the retentate was recycled while the 

permeate was recovered until it reached two thirds of 

the initial injected volume. During this step, samples were 

taken from both phases for further analysis, and the feed 

solution in both modes for each step of the process was 

filtered followed by the necessary analysis of the retentate 

and permeate. During both modes, the feed solution is 

constantly stirred in the feed chamber to ensure complete 



solubilisation of the components in the extract. The per
meate flux rate was evaluated from the following equa
tion: 

Permeate flux rate (kg h- 1 m-2) = permeate mass recovered 
(kg)/time (h) x membrane surface (m2) 

After each run, the membranes were cleaned using 
the following procedure: flushing with distilled water, 
then cleaning with 0.1 M NaOH solution for 60 min 
and then rinsing with distilled water for 30 min at 
1.38 bar. 

Pigment analysis A total of 200 µL of supernatant was mixed 
with 1,300 µL pure methanol and then incubated in the dark 
for 1 h at 45 °C. Samples were centrifuged at 10,000xg for 
10 min at 20 °C. The organic phase (methanol) containing the 
pigments was recovered, and constituents were determined 
using the equations ofRitchie (2006): 

Total chlorophyll(mgL-1) = (9.3443 x A652) + (4.3481 x A665) 

(1) 

Totalcarotenoids ( mg L -I) = 4 x A480 (2) 

Sugar analysis The procedure consists of adding 0.25 mL 
of the sample to 0.75 mL distilled water and 2 mL of 
DNS reagent. The mixture was vortexed and then heated 
at 90 °C for 5 min. Immediately after, 2 mL distilled 
water was added, and then the mixture was cooled at 
room temperature for 2-3 min after being vortexed. The 
colour of the mixture should be dark red and then mea
sured by a spectrophotometer (Varian Cary 3E UV visible 
spectrophotometer) at 570 nm after being zeroed with the 
blank solution, consisting of the same mixture with only 
distilled water replacing the sample. 

Starch-iodine assay The analysis consists of m1xmg 
0.25 mL of supematant sample with 5 mL of iodine 
reagent. The mixture is then vortexed for 5 s and then 
stranded for 2-5 min for the colour to stabilize. Absor
bance is measured at 620 nm against a blank of distilled 
water and iodine reagent. 

Protein analysis Lowry assay: The procedure involves reac
tion of proteins with cupric sulphate and tartare in an 
alkaline solution, leading to the formation of tetradentate 
copper protein complexes. The addition of the Folin
Ciocalteu reagent leads to the oxidation of the peptide 
bonds by forming molybdenum blue with the copper ions. 
Therefore, a calibration curve was prepared using a con
centration range of bovine standard albumin from O to 

1,500 µg mL-1
. In order to measure the protein content, 

0.2 mL of each standard or sample containing the crude 
protein extract was withdrawn and then 1 mL of modified 
Lowry reagent was added to each sample. They were then 
vortexed and incubated for exactly 10 min. After incuba
tion, 100 µL of Folin-Ciocalteu reagent (1 N) was added 
and again vortexed and incubated for exactly 30 min. The 
blue-coloured solution was then measured at 750 nm with 
a UV-1800 Shimadzu spectrophotometer after being zeroed 
with a blank sample containing all the chemicals minus 
the extract. SDS-PAGE: The protein content of the super
natants, the permeates and the retentates was analysed by 
SDS-PAGE using a BioRad Criterion Cell electrophoresis 
unit (BioRad Laboratories, USA). The SDS-PAGE was 
performed by diluting the samples four times with distilled 
water. First, 20 µL of diluted samples was mixed with 
22 µL of BioRad Laemmli buffer containing 5 % beta 
mercaptoethanol and placed in a boiling water bath for 
5 min. Next, aliquots (10 µL) of samples were loaded into 
8-16 % linear gradient precast Tris-HCl Criterion 18 well
gels and run at 100 V for 130 min. Gels were stained 
with Biosafe Coomassie Blue (BioRad) and digitally 
scanned and quantified using a BioRad Gel Doc XR + 
Imager (BioRad, USA). 

Optical microscopy All observations were performed using 
an Olympus BX51 light microscope with a DP72 digital 
camera attachment under white light without dyes. 

Results 

High-pressure homogenization was used to disrupt T suecica

to allow recovery and subsequently fractionate its intemal 
components. The efficiency of cell disruption as a function 
of homogenization pressure was examined microscopically 
(Fig. 1) and quantitatively by measuring the concentration of 
the biomolecules released in the aqueous phase (Fig. 2). It 
can be seen that 1,000 bar was the best pressure in terms of 
cell disruption and release of biomolecules in the aqueous 
phase. 

Correlation between the permeate flux rate and the different 
transmembrane pressures (TMP) was R2=0.88 (Fig. 3). Since 
the permeate flux rate for 30 min was greatest at 2.07 bar with 
a value of 47.83 kg h-1 m-2

, and the fouling was no worse 
than at lower pressures, 2.07 bar was used for subsequent tests 
performed in concentration mode. In the latter tests, the con
centration was managed until a volumetric concentration ratio 
of2.32±0.04 was obtained after 30 min, with a final permeate 
flux rate of 42.8 ±1.3 kg h-1 m-2

. Complete retention ofstarch 
was achieved, with none observed in the permeate. 



Fig. 1 Microscopie observation 

before and after cell disruption of 
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A more linear relationship between permeate flux rate 
and TMP was observed when operating the 10-kDa mem
brane in recycling mode using the second model solution 
containing sugars and milk proteins (Fig. 3) with no starch. 
The highest initial permeate flux rate of55.43 kg h-1 m-2 

was obtained at a TMP of 2.07 bar. This permeate flux rate 
decreased to 50.39 kg h-1 m-2 after 30 min of processing. 
Concentration mode was again operated at 2.07 bar with a 
stable permeate flux rate of 44.30 ±1.2 kg h-1 m-2 obtained 
for the 30 min of operation to reach a volumetric concen
tration ratio of3.0l±0.05. The mass balance indicated that 4 
to 5 % of the sugars were detected in the membrane due to 
the high concentration of these components in the solution, 
but protein loss was negligible ( < 1 % ) based on Lowry 
assay measurements of the permeate. Nearly complete reten
tion of the proteins was also verified by SDS-PAGE analysis 
of the permeates, showing only a very low intensity band of 
low molecular weight proteins, close in size to the 

Fig.2 Concentration of the 9 
components present in the 8 
aqueous phase after cell iî' 7 
disruption and before � 6 
ultrafiltration. Results are the 

� 
= 5 
0 ♦ ♦ 

mean of three replicates for three ,0 
4 

experiments±SD (n=9) � " 3 ... 
= 2 • • 0 

u 

0 El El 

• 

• 

El 

0 500 

200bar 400bar 

1 ...... .... 

800bar 

• 

t 1 ..... 1 

membrane cutoff (Fig. 4). Finally for sugars, the operation 
in concentration mode for 30 min at 2.07 bar allowed 63 % 
of the sugars to be transferred to the permeate. 

The process was then applied to the aqueous phase of 
T. suecica, less concentrated in the biomolecules of interest
compared to the model suspensions. The results of ultrafiltra
tion are presented in Tables 1 and 2. In addition, during the
concentration mode on both membranes, there was significant
correlation between the permeate flux rate and the homogeni
zation pressure (Fig. 5). Hence, at a TMP of 2.07 bar, the
highest fmal permeate flux rate was 262±2 kg h-1 m -2 for the
100-kDa membrane. This permeate flux decreased constantly
as a function of increasing homogenization pressure, reaching
174±2 kg h-1 m-2 for lysates obtained at 1,000 bar (Fig. 5). A
decline in permeate flux rate as a function of disruption
pressure was similary observed for UF with the 10-kDa mem
brane. Here, the maximum permeate flux was 229±
2 kg h -l m -2 for samples homogenized at 200 bar, decreasing
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Fig. 3 Recycling mode ofboth 
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to 181±1 kg h-1 m-2 for lysates obtained at 1,000 bar. In all 
cases, these fluxes are higher than those obtained with the 

model solution because of a lower initial concentration and 
also may be because of the presence of other compounds. 

Fig. 4 SDS-PAGE after 

ultrafiltration of the second model 
suspension with 10-kDa 

membrane 
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Table 1 Composition of penne-

ate 1 after ultrafiltration with 100- High-pressure Sugars (g Proteins Starch Chlorophyll Carotenoids 

kDa membrane of the aqueous homogenization (bar) GlcEqL-1) (g L -1) (g L -1) (mg L -1) (mg L -1)

phases after cell disruption of 

T. suecica. Results are the mean of 0 n.d. 0.10±0.01 n.d. n.d. n.d.

three replicates for three experi- 200 3.45±0.04 0.23±0.01 n.d. n.d. n.d.
ments±SD (n=9)

400 3.66±0.04 0.26±0.01 n.d. n.d. n.d.

600 4.55±0.01 0.33±0.03 n.d. n.d. n.d.

800 5.42±0.01 0.46±0.01 n.d. n.d. n.d.

1,000 5.98±0.16 0.70±0.03 n.d. n.d. n.d.
n.d. not detected

Discussion 

High-pressure homogenization 

The cells were resistant at pressures up to 400 bar, while the 

temperature increased only from 21 to 32 °C. However, the 

efficiency ofhigh-pressure homogenization started to be seen 

from 600 bar, with ruptured cells losing their globular shape. 

Then, besides being broken, it was observed that cells were 

also severely fragmenting after applying 800 or 1,000 bar with 

a continuing increase in temperature up to 46 °C, and com

plete disruption of the cell wall might be accompanied by 

possible alteration of the phospholipid bilayers of the intemal 

organelles. In parallel to the increase in cell rupture as a 

function of pressure, there was also an expected increase of 

intracellular components (starch, sugars, proteins and pig

ments) remaining in supematants of centrifuged lysates 

(Fig. 2). The rise in temperature resulting from homogeniza

tion (32 °C at 400 bar, 46 °C at 1,000 bar) may have also 

played a role in solubilising some components, especially 

starch and proteins. Without sufficient solubilisation resulting 

from the heating of the medium, the starch granules would 

remain in pelleted cell debris after centrifugation. However, 

even at 1,000 bar, the temperature rise to 46 °C was below that 

required for protein denaturation and starch gelatinization. 

Homogenization at 1,000 bar was thus effective at achieving 

cell disruption to release part of the intracellular components 

into the aqueous phase while not damaging the protein com

ponent. The increase in chlorophyll released as a function of 

homogenization pressure indicates that the chloroplast was 

Table 2 Concentration of the 
High-pressure Sugars (g 

broken, allowing water to penetrate the inter-thylakoid space 

where the green pigment and some carotenoids are located. 

However, these pigments are hydrophobie, and their presence 

in the aqueous phase involves adsorption onto very small cell 

debris that did not decant with the pellet after centrifugation or 

their presence inside small lipid droplets ( emulsion) or even 

attached to amphiphilic structures (phospholipids). 

Ultrafiltration process 

The first step of the ultrafiltration process employing a 100-

kDa membrane is to retain starch while allowing proteins and 

sugars to pass into the permeate. Then, since according to 

Schwenzfeier et al. (2011 ), T. suecica proteins are between 15 

and 50 kDa, the second step employs a-10 kDa membrane in 

order to retain proteins while allowing sugars to be concen

trated in the permeate. The process was first conducted on the 

concentrated model solutions in order to verify its feasibility 

on a highly concentrated suspension and to obtain the neces

sary parameters. Afterwards, it was extrapolated on the 

microalgal extract obtained after breaking the cell wall of 

T. suecica by high-pressure homogenization. Nonetheless,

after each trial, the concentration of the different biomolecules

was calculated for the retentates and the permeates to deter

mine the mass balance.

Model suspensions 

A 100-kDa amount was used to separate model suspension 1 

(proteins, starch and sugars), whereas a 10-kDa sample was 

Proteins Starch Chlorophyll Carotenoids sugars in penneate 2 after ultra-

filtration at 10 kDa. Results are homogenization (bar) GlcEq L-1) (g L-1) (g L-1) (mg L-1) (mg L-1)

the mean of three replicates for 

three experiments±SD (n=9) 0 n.d. n.d. n.d. n.d. n.d.

200 3.09±0.01 n.d. n.d. n.d. n.d.

400 3.34±0.05 n.d. n.d. n.d. n.d.

600 4.09±0.02 n.d. n.d. n.d. n.d.

800 4.65±0.03 n.d. n.d. n.d. n.d.

1,000 5.18±0.05 n.d. n.d. n.d. n.d.
n.d. not detected



 

Fig. 5 Concentration mode after 
30 min on the aqueous phase of 

T. suecica. Correlation between

the flow rate and the different 
pressures applied for cell 
disruption. Results are based on 
the three replicates for three 

experiments±SD (n=9)
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used to separate model suspension 2 (proteins and sugars ). For 
both membranes, permeate flux rate decreased with time for 
30 min to reach a steady state. With 100 kDa, the decrease 
seems to be related to a polarisation concentration layer due to 
the action of the large-sized polysaccharides (Eteshola et al. 
1996) that got retained by the 100 kDa membrane and strong
ly contributed to the fouling phenomenon (Morineau-Thomas 
et al. 2002) and thus the formation of an asymptotic curve. 
With 10 kDa, the decrease is lower, which may be due to the 
less important influence of this polarisation layer. The differ
ence between the compositions ofboth layers is the presence 
of starch, which can have gelling properties that may hinder 
filtration. However, in both cases, the steady permeate flux 
rate increases almost linearly with pressure, indicating the lack 
of such a gel layer. 

Aqueous phases after cell disruption of T. suecica 

Having demonstrated the effectiveness of a two-stage 
filtration process for fractionating biomass components 

Fig. 6 Overall process reflecting 
all the steps from growth to 

fractionation after 

homogenization at 1,000 bar. Red 

square is for sugars, blue for 
starch, yellow for proteins, and 

green for pigments 

Pellet 

Photobioreactor 

in model solutions, experiments were performed on actual 
lysates from microalgal material obtained at different ho
mogenization pressures using the concentration mode for 
30 min. For lysates obtained at all homogenization pres
sures, neither starch nor pigments were detected in per
meate 1, indicating complete retention of these compo
nents in retenta te 2 (Table 1 ). While the retenti on of the 
starch was expected given the size of the granule, the 
retention of the pigments could be explained by their 
presence in small lipid droplets or in very small cell 
debris remaining in the aqueous medium, and both are 
larger than the cutoff of the 100-kDa membrane. In addi
tion, given the highly hydrophilic characteristics of the 
membrane (polyethersulfone), it retains the former that are 
hydrophobie. 

While maintaining the TMP constant at 2.07 bar, the per
meate flux rate decreased when samples obtained at higher 
homogenization pressure were tested under the concentration 
mode for 30 min (Fig. 5). Despite the fact that the lysate 
obtained at 1,000 bar homogenization pressure contains twice 



more proteins than the lysate obtained at 200 bar (Fig. 2), the 

amount of proteins in permeate 1 increased only from 50 to 

80 % in the range. This suggests that the proteins are more 

aggregated at low homogenization pressure and are therefore 

retained more by the membrane. The fraction of sugars that 

was passed through the membrane increased from about 75 to 

90 % between 200 and 600 bar homogenization pressure and 

decreased to about 75 % for lysates produced at 1,000 bar. 

Permeate 1 was subsequently ultrafiltrated using a 10-kDa 

membrane until a volumetric concentration ratio of 2.57± 

0.03. According to Lowry assay measurements and SDS

PAGE analysis of permeates, no proteins were found in per

meate 2 but in retentate 2 for all the samples obtained at 

different homogenization pressures. The permeation rate of 

the sugars is approximately 90 % through the 10-kDa mem

brane regardless of the pressure used for cell rupture, and 65 % 

of total sugars present in the supernatant were found in per

meate 2. This indicates that at least 65 % of saccharides with 

an aldehyde function have a size less than 10 kDa (Table 2), 

and these results are consistent with the study conducted by 

Schwenzfeier et al. (2011 ), which showed that the proteins of 

T. suecica have a molecular weight range between 15 and 

50 kDa. Most of the proteins were enzymes with multiple 

polypeptide chains, including Rubisco that has two subunits 

of 50 and 15 kDa (Schwenzfeier et al. 2011; Wang and 

Kolattukudy 1996). Full retention of the proteins is therefore 

expected from ultrafiltration with a 10-kDa membrane. The 

results indicate that the separation between sugars and pro

teins is efficient. Nevertheless, under these conditions, sugar 

recovery yield is about 50 % but should be increased by 

diafiltration of the retentate using fresh water.

The global process (Fig. 6) on T. suecica was not 

jeopardised by any major hurdles, starting from breaking the 

cell wall until separating the target components by ultrafiltra

tion. These results show that it is possible to achieve good 

separation of intracellular microalgal biomass components 

using a two-stage sequential UF process. This process could 

be applied to other microalgae and could be used with various 

cell disruption techniques and membranes with different mo

lecular weight cutoffs depending on the properties of the algae 

such as the cell strength and protein composition. For in

stance, Chlore/la vulgaris proteins are mostly within a molec

ular weight range of 12 to 120 kDa (Morris et al. 2009) and 

Haematococcus pluvialis between 10 and 100 kDa (Kim et al. 

2006), and both have more resistant cell walls (Safi et al. 

2013). 

In conclusion, in this study, multiple microalgal compo

nents were fractionated using an integrated process that does 

not require solvents or environmently hannful chemicals. The 

overall process was shown to be effective on T. suecica, 

resulting in three streams enriched in pigments and starch, 

proteins and sugars respectively. The process could be extrap

o lated to other microalgal species, with some minor 

modifications with the cutoff of the membranes. lndeed addi

tional work is required to optimise the process especially 

conceming better conditions to maximise the solubilisation 

of some components of interest without denaturing the rest in 

the downstream process. Diafiltration would have to be eval

uated in order to increase the recovery yields and the separa

tion efficiency of each ultrafiltration step. In addition, life 

cycle assessment of the process would be necessary to evalu

ate the energy input and to ensure the sustainability and 

feasibility of the process on an industrial scale. 
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