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Abstract

Realistic modeling of biological mechanisms requires a large volume of prior
knowledge and leads to heavy mathematical models. On the other hand, the
classical Machine Learning algorithms, such as Neural Networks, need a large
quantity of data to be fitted. Nevertheless, to predict the evolution of biological
variables we are often facing a lack of knowledge and a lack of data, especially
in the livestock sector. Therefore, we explored an intermediate approach, called
"Data-Model Coupling". We demonstrated that parametrized Partial Differential
Equations (PDEs) can be embedded in a data fitting process and then in an
efficient predictive Statistical Learning tool. We postulated that all the physico-
chemical phenomena occurring in an animal body can be summarized by the
circulation, the evolution and the action of an overall information flow. We built
the PDE system which mathematically translates our assumption and we fitted
it on data.

The applications of our approach to data relative to the growth of farm ani-
mals showed that it increases the forecasting accuracy and reduces the training
data dependency of the resulting predictive tool. Moreover, learning the dynamics
linking the inputs and the outputs confers to the tool the capability to be trained
on a given range of data and then to be accurately applied outside this range of
data. This extrapolation capability is a real improvement over existing predictive
tools.

keywords : Statistical Learning, PDE, Forecasting, Data Assimilation, Data-
Model Coupling, Biological Mathematical Modeling.

1 Introduction
Smart Farming corresponds to the use of new technologies to make the farm production
processes more efficient.

As it can be identified in [1], [2], [3], [4], [5] and [6], in the agri-food sector, simulating
and predicting the effects of nutrition on animal performances are two decisive and
strategic goals for breeders and companies to optimize animal efficiency. However,
the biological phenomena linking the nutrition and the performances of animals are
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complex. Furthermore, in most cases, to build tools able to predict the evolution of
biological variables, it is necessary to jointly manage the complexity of the phenomena
occurring in the studied biological system and the lack of data available to fit those
tools.

Data Assimilation is an approach that embeds mathematical theories, Data Science
and Computer Science processes to estimate the most likely state of a connected system
at an instant t (See [7], [8], [9] and [10]). To do so, it combines the information given by
a predictive tool and the one contained in a more or less continuous stream of collected
data. To very briefly sum up, it consists of considering that data flows are gathered to
correct at a given frequency the simulation done by the predictive tool. This correction
takes into account that collected data contain noise and the predictive tool embeds an
intrinsic model error.

This combination of information could permit to know the state of an animal or a
group of animals, in terms of health and performances, according to their ingestions and
the drugs that are administered to them. Hence, this concept constitutes an interesting
and promising way to oversee future livestock and address the Smart Farming issues
([11], [12] and [13]).

Biological data are not easy to collect and generally contain a large variability ([14]
and [15]). Hence, to perform Data Assimilation in the livestock sector it is necessary to
develop efficient and light predictive tools able to be fitted on few and scattered data
relative to complex phenomena.

According to Vázquez-Cruz et al. [16], there are currently two general approaches
to build tools predicting biological responses.

On the one hand, realistic modeling of biological mechanisms requires a large vol-
ume of prior knowledge and generally leads to heavy mathematical models ([17] and
[18]). However, the complex implementation of these models limits their adaptability,
in particular when it comes to processing or assimilating field data.

On the other hand, the structure of classical Machine Learning (ML) algorithms,
such as Neural Networks, have limited ability to take into account the existence of
complex underlying phenomena and need to be fitted on a large quantity of data to
compensate for the absence of prior biological expertise ([19], [20], [21] and [22]).

Hence, due to their lack of adaptability or their inability to be fitted to few data
the existing tools are not entirely appropriate for achieving Data Assimilation in the
context of "Biological Small Data".

We assumed that a global and synthetic consideration of the biological processes may
help gain precision, in comparison with a classical ML tool which integrates no prior
knowledge. We also assumed that this synthetic consideration permits us to do it while
keeping a flexible and light tool, in comparison with a tool based on realistic models.
Therefore, we explored an intermediate approach, named "Data-Model Coupling" to
build predictive tools able to deal with both the complexity of the biological responses
and the current lack of data.

This emerging approach is midway between the realistic modeling and the "Black
Box" approach. As seen in [23], [24], [25] and [26], Data-Model Coupling approach
consists of building a mathematical model, corresponding to a mathematical synthesis
of the studied system. Then, the parameters contained in the model are fitted to data.
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As in the above-cited studies, the construction of our tool is based on an optimal com-
bination of knowledge, to design a relevant mathematical model, and data, to optimize
the model parameters. In our approach, the mathematical model is a wisely designed
parametrized PDE system.

Data Assimilation is a long-term objective of our research work. Nevertheless, to
finally obtain a tool particularly suitable to perform Data Assimilation, this long-term
objective has strongly guided the whole modeling approach introduced in this paper.

Several contributions can be identified in this paper.
In the first place, the applications of this tool, on collected data relative to the

growth of farm animals, put in evidence its extrapolation capability which is a real
improvement over existing predictive tools. As it is illustrated in Figure 1, in the
application presented in Section 4, our tool was trained on a short training period to
link the inputs and the outputs. Yet, it can accurately predict the outputs from the
inputs outside the range of the Training Data. This is the peculiarity of our approach:
the model learns synthetic dynamics linking the inputs and the outputs by fitting
parameter-dependent evolution equations. Once the parameters fitted, those dynamics
can be applied outside and even far from the Training Data range.

This extrapolation capability permits to reduce the amount of data to collect and
thus to reduce the costs relative to the experiments and the data management. It also
permits to extend the validity period of the prediction provided by the tool. Hence,
when it will come to Data Assimilation issues, in perspective with what explained above,
the correction of the prediction via the use of data could be less frequent and thus the
computational costs could be lower.

Weight

Time

Training 
period

Application 
period

Figure 1: Schematization of the extrapolation capability of the developed tool

The second contribution of our exploration is the development of a concept between
the reality and the model (Figure 2). In most cases, the objective of a mathematical
model is to translate the reality, adopting a higher or lower abstraction level. In our
approach, a differentiation between the reality and our model is made. Indeed, the used
support of reflection is not directly the real animal, but an Avatar which conceptually
and essentially outlines the global dynamics occurring in the animal body. A large
number of physico-chemical phenomena occur in the animal body in response to the
ingestion or the injection of molecules. They lead, some time later, to the change
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of biological variables. This supply of molecules and those biological variables can be
monitored and recorded to generate Input and Output data. We assumed that this kind
of Inputs and Outputs can be linked by a dynamical model which is a mathematical
translation of the Avatar. Therefore, we designed the PDE system mathematically
translating our assumption and describing the convection, the diffusion and the action
of an overall information flow.

Reality

● Animal body
● Blood
● Molecules
● Nutrients
● Enzyme
● Hormones 
● Organs
● Muscles
● ...

● Ingestion of nutrient
● Injection of molecules
● Rumination
● Blood circulation
● Nervous circulation
● Digestion
● Fermentation
● Absorption 
● Assimilation
● Metabolism
● ...

Avatar

● Information flows

● Convection
● Diffusion
● Fixation
● Delay
● Usage
● Saturation

Components

Processes

Model

● Mathematical functions

● Parameter-dependent 
evolution equations

● Convection operators
● Diffusion operators
● Delay operators
● Integral operators
● Transfer functions 

Figure 2: Schematization of the different sets considered in our approach and their own
components and processes.

Thirdly, the application of our approach on real data showed that our tool can ac-
curately link biological-related Inputs and Outputs, even if it is fitted on few, scattered
and noisy data.

Data-Model Coupling is so far essentially used in the fields of meteorology (see
[27]), hydrology (see [28],[29] and [30]), biogeochemistry (see [31], [32], [33] and [34])
and oceanography (see [35]). The successful use of a Data-Model Coupling approach
to treat biological issues can be also considered as a contribution of this paper.

In this paper, we will show that the use of a short and relevant PDE system in a
fitting process leads to the construction of an efficient predictive tool having a low data
dependency and a high information extraction capability.

This tool can be used to predict the evolution of biological variables according to
the ingestions and the injections of molecules in the animal body. The objective of the
application presented in this paper was to predict the growth of two groups of animals
of a specific species, according to their initial weight and their feeding behavior. But
the genericity and the parsimony of our tool might ensure its suitability to predict other
performance indicators relative to other farm species.
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This low data dependency and this high information extraction capability allow the
use of few data to fit our tool. Therefore it can be used to reduce the costs relative
to experiments, data collection, and data storage. Furthermore, in comparison with
the existing predictive tools, these capabilities also make our tool more suitable to ef-
ficiently perform Data Assimilation, even if the frequency of data collection and the
quality of the collected data are low.

To summarize, in our approach we distinguished different dimensions. As it is il-
lustrated by Figure 3, there is the Reality in which there are Intakes and Injections
inducing complex biological processes in the animal body. Some Sensors extract in-
formation from this Reality which is stored in databases made of Inputs and Outputs.
Since the model is not directly assimilable to the reality, the inflows and the outflows
of the model are also not directly assimilable to the input and the output data. The
Inputs have to be translated by a mathematical function into Entries, that are pieces
of information integrated into the Mathematical Model and that induce the generation
of Outcomes, also linked to the Outputs extracted from the Reality by a mathematical
function.

Figure 3: Articulation of the different elements of ourcapabilities exploration

As it can be noticed in Figure 3, our exploration relies on the relationship between
several diverse elements such as the Real Animal, the Avatar and the Mathematical
Model. The Algorithm comes out of the discretization of the Mathematical Model, e.g.
the PDE system which mathematically translates what takes place in the Avatar. This
system of PDEs contains parameters corresponding to biological-like factors that can
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be learned from a database. The Program corresponds to the code that manages
this learning step. It uses an iterative training process during which an optimization
algorithm finds the values of the parameters that minimize the difference between the
measured and the predicted Outputs. The Tool finally corresponds to the Mathematical
Model parameterized with the values of the parameters obtained at the end of the
learning step.

The presence of parameters that can be learned from data in the mathematical
model confers learning ability to the tool based on this model. Using a database, we
obtained a tool able to reconstitute dynamics between inputs and outputs to perform
forecasts and extrapolations. Hence, the constructed tool can be considered as a Sta-
tistical Learning Tool.

In this paper, we will present our modeling approach, the conception of our tool
and the results of the applications of our approach on fictitious and real data.

After this Introduction, putting this research work in its proper context, we will
detail in Section 2 the conception of the mathematical model and its applicability.

We tested the well-functioning and the capacities of our tool in two different ways.
First, we established a fitting method taking into account the relations existing between
the model parameters and we generated a database to test this fitting method on it.
This first application on mastered data allowed us to verify the ability of our tool to fit
the parameters. Those simulation tests are presented in Section 3. After those tests on
fictitious data, we applied our approach to data collected on a farm and relative to the
feeding behavior and the growth of two groups of animals. The results are presented in
Section 4. This application demonstrated the prediction capability of the tool in real
conditions.

We put in evidence the potential of our tool and the improvement conferred by
it. To do so, we compared the capabilities of our tool with the ones of some Logistic
Models, Mechanistic Models and Machine Learning algorithms. These comparisons will
be detailed in Section 5.

2 Construction and description of the Mathematical
Model

In our approach, particular attention was paid to the construction of the Mathematical
Model embedded in the final predictive tool. Indeed, the designing of this model - that
is a PDE system - was the key element to achieve our objectives of lightness, accuracy
and learning potency.

2.1 Conception of the Mathematical Model

Through the conceptualization of the Avatar, we set up a parsimonious summary of any
biological process. Indeed, we mathematically summarized the global intern dynamics
of the animal via several equations and mathematical operators which we assumed
necessary and sufficient.

We hypothesized that, when a molecule or a group of molecules enter the body of
a living organism, it circulates in the body through a network of vessels containing
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a fluid. It integrates this fluid and uses it as a vector to evolve via convection and
diffusion mechanisms. In the network of vessels, the molecules may be in competition
with other mechanisms which may delay its progression. The circulating molecules may
then be captured and accumulated in an organ or a specific tissue. During its storage,
the molecules can be used and induce a change in some biological variables. Then, we
built the PDE system which mathematically translates the previously set up summary
illustrated by Figure 4.

S

Φb

Φf

< < < <

> > > >
•

Q

Ψ

f

Ξ

u

O

<
r

ω, c

−ω, c

0 1

Prediction\Simulation

Inputs

Entries
OutputsP

Outcomes

Figure 4: Schematization of the Mathematical Model

We modeled our Avatar using variables, densities, and fields that are all unitless
and dimensionless. We also reduced the considered geometrical space to interval [0 ; 1].
We considered a Forward Flow Φf , and a Backward Flow Φb streaming in this one-
dimensional geometrical space. As it was described in the introduction, these flows can
be seen as a very synthetic summary of blood circulation, a circulation in the nervous
system or circulation in the digestive tract, according to the problematic.

The involved Inputs in our tool can correspond to collected data relative to feed
intakes, water intakes, and administered drugs. These Inputs are integrated in the
Mathematical Model via a function Q transforming these Inputs into information in-
flows, called Entries. We modeled that part of the injected information circulates in a
forward direction, via Φf and the rest circulates backward, via Φb. This information
can evolve via convection and diffusion phenomena. We assumed that the circulating
information can be delayed, captured, stored and used to ultimately induce a modifi-
cation in the Outcomes O. These Outcomes correspond to the model outflows. Those
Outcomes are transformed by a mathematical function to be comparable with collected
outputs.
Therefore, Φf(t, x) and Φb(t, x) are, at each instant t, two space densities respectively
associated with a forward flux with a velocity ω and a backward flux with a velocity
−ω.
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The spatial density Φf(t, x) is supposed to be solution to:

∂Φf

∂t
(t, x) + ω

∂Φf

∂x
(t, x)− c

∂

[
χ
∂
[
Φf + Φb

]
∂x

]
∂x

(t, x)

=
1

2
Q(t, x)− fF (x)Φf (t, x)− rΦf (t, x), (1)

Similarly, Φb(t, x) is supposed to be solution to:

∂Φb

∂t
(t, x)− ω∂Φb

∂x
(t, x)− c

∂

[
χ
∂
[
Φf + Φb

]
∂x

]
∂x

(t, x)

=
1

2
Q(t, x)− fF (x)Φb(t, x) + rΦf (t, x), (2)

In these equations, the parameter c is the diffusion velocity of the information. The
space-time density Q, corresponds to an external source of information. The function
F is worth 0 in certain areas of the involved geometrical space and 1 in others. The
area where this function is worth 1 corresponds to the location of the entity capturing
the information. The parameter f determines the rate of fixed information. The pa-
rameter r determines the fraction of the circulating information transferred from the
Forward Flow to the Backward Flow, which induces a delay in the progression of the
information.
The function χ is compactly supported in (0, 1), mainly constant and worthing 1. This
function integrated into the diffusion term makes diffusion vanish at the edges of the do-
main. At each time t, the spatial density Ψ(t, x), associated with the fixed information,
is solution to:

∂Ψ

∂t
(t, x) = fF (x)

[
Φb(t, x) + Φf (t, x)

]
− uΨ(t, x). (3)

The parameter u is the coefficient determining the usage rate of the fixed information.
At each time t, the spatial density Ξ(t, x), associated with the used information, is
solution to:

∂Ξ

∂t
(t, x) = uΨ(t, x). (4)

The parameter Ω corresponds to the area of action of the circulating information on
the Outcome. O(t) is the Outcome of the model, given by:

O(t) =

∫
Ω

Ξ(t, x) dx. (5)

In this mathematical model we imposed :

∀t ∈ (0,+∞), Φf (t, 0) = Φb(t, 0) and Φb(t, 1) = Φf (t, 1) (6)
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These conditions allow the circulating information to move back and forth between the
two edges of the domain.

The initial conditions Φf (0, x), Φb(0, x), Ψ(0, x), Ξ(0, x) and O(0) are given for all
x in (0, 1).

2.2 Applicability of the mathematical model and its different
versions

The previously presented mathematical model made of Equations (1), (2), (3), (4) and
(5) can be used to simulate and predict an accumulative process. Hence, it can be used
to study data relative to a total production over a given period.

The fourth equation of the model is the «usage» equation. This equation deter-
mines the action of the injected information on the variable to predict. Therefore, this
equation has to adapt the different ways in which an intake or an injection may affect
a biological variable.
To model a logistical growth, we added a limiter in this equation. In this case, the
«usage» equation becomes:

∂Ξ

∂t
(t, x) = uΨ(t, x)

(
L−O(t)

L

)
(4b)

With this version of the equation, data related to the change in weight of an animal
can be tackled. This equation is essentially the differential equation of Verhulst [36]:

∂y

∂t
(t) = r y(t)

(
K − y(t)

K

)
(7)

whose structure is equivalent. Indeed, in the case when nothing depends on x, the value
of u is very high and Ω is the whole interval [0 ; 1], Ξ, Ψ and O are very similar. Hence,
Equations (7) and (4b) are essentially the same.

It may be also necessary to model variations to use our tool to treat, for example,
data concerning drug effects. To do so, we have to be able to model an increase or a
decrease in the Outcomes. Since it is the case of most biological variables, we assumed
that these outcomes may vary between an upper and a lower bound. Hence, we built
two other equations: The equation,

∂Ξ

∂t
(t, x) = −

(
Ξ(t, x)− Upp

)
− uΨ(t, x)

(
Ξ(t, x)− Low

)
(4c)

models that the fixed information Ψ orients the Outcomes O toward a state that is
lower than the steady state, and the equation,

∂Ξ

∂t
(t, x) = −uΨ(t, x)

(
Ξ(t, x)− Upp

)
−
(

Ξ(t, x)− Low
)

(4d)

models that the fixed information Ψ orients the Outcomes O toward a state which is
greater than the steady-state. In these two cases, the Outcomes vary between a lower
bound Low and an upper bound Upp.
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The «usage» equation has to be defined a priori according to the variable to predict
and the used inputs.

We expect that the mathematical models made of Equations (1), (2), (3), (5) and
Equations (4), 4b, 4c or 4d are sufficiently generic to be fitted on data relative to all
the different farm species.

2.3 Mesh and discretization of the Mathematical Model

For the discretization of the Mathematical Model, we first used the classical Finite
Difference method, with a given space step, to obtain semi-discrete in space equations.
And, because the Mathematical Model is coded using R software, we used the R-
function Ode.1D developed by Soetaert et al. [37] to manage the temporal discretization
of the semi-discrete equations. This R-function calls upon the fourth-order Runge Kutta
method with a given time step (See [38]).
In this first exploration, to find a compromise between precision and calculation time,
we parameterized the mesh with a time step of 0.001 and a space step of 0.025.

2.4 The model parameters

The system of PDEs contains several parameters : ω, c, r, f , u and L. The diffusion
parameter c is the less influent model parameter. Hence, we set it to 0.001. All the
other parameters are fitted from a database by using an optimization algorithm. To do
so, we used the function directL developed by Johnson [39], which is embedded in R
([40]) and applying the DIRECT algorithm developed by Finkel [41]. This algorithm
searches the optimal values of the parameters, that is the values that minimize the error
associated with the model on a given training database.

A detailed mathematical analysis of the model and its discretization will be per-
formed in an upcoming paper. Nevertheless, we already know that the convection and
diffusion speeds must follow the CFL conditions (See [42] and [43]). Indeed, since we
set the discretization steps (Section 2.3), ω must be smaller than 25 and c must be
smaller than 0.625.

To fit the model we have to specify lower and upper values for each parameter
between which the optimization algorithm will search their optimal values. Therefore,
a comprehensive study of the ranges of values of the different model parameters was
performed and presented in the working paper [44]. We refer to it for the details of this
study.

3 Simulation tests of the learning capability of the
model

The objective of this section is to present the tests by simulation performed to verify
the ability of the tool to learn parameters from noisy biological data. To do so, we
started by generating a fictitious database from the parameterized mathematical model
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made of Equations (1), (2), (3), (4) and (5). Then, we used this database to study
the compensation effects existing between the parameters, to simulate the fitting of the
parameters and then to verify if the model fits the data correctly.

3.1 Generation of a fictitious database

We generated a fictitious database containing 50 individuals, which is 50Output Curves.
The objective was to obtain a database having the same characteristics as a real field
database. To do so, we integrated noise and individual variations in it.

The construction of this fictitious database is presented in Appendix I. We refer to
it for the details.

Figure 13 shows an example of the generated curves without and with noise. We
divided the obtained database into two parts: A Training Database made of 30 curves
and a Test Database made of 20 curves.

In the rest of this section, we supposed that we have an experimental-like database
and a model containing four parameter values to determine: ω, c, r, f and u.

Figure 5: Example of simulated curves without and with noise

3.2 Construction of relations linking some parameters

A study of the compensation effects existing between ω and r and between f and u, put
in evidence the existence of relations existing between these two pairs of parameters.
For example, the relation existing between the parameters f and u can be noticed in
Figure (6).

This study is presented in Appendix II. We refer to it for the details.

We concluded from this study that, using a Nadaraya-Watson kernel regressions
(See [45] and [46]), we obtained a non-parametric relationship linking ω and r in the
form of,

r = m̂ω(ω) + εω, (8)

and another one linking f and u in the form of,

u = m̂f (f) + εf , (9)

where m̂ω and m̂f corresponds to the Nadaraya-Watson estimators and εω and εf are
the residuals.

11



Figure 6: The 3D representation of the value of an error indicator (the Relative Residual
Sum of Squares). This value is calculating according to the values of f and u.

Knowing the relationship existing between ω and r and the one existing between f
and u , it is possible to fit ω and f and then deduce the values of r and u. Hence, these
relations permits to reduce the number of parameters to learn simultaneously and so
facilitate and reinforce the fitting process.

3.3 Parameter fitting and calculation of the model accuracy

We fitted the parameters to the Training Database and then we tested the accuracy of
the obtained model by calculating the error made on the Test Database.

3.3.1 Fitting of ω and f and accuracy of the obtained predictive tool

To perform several fittings we sampled the Training Database: we sampled 20 curves
from the 30 curves of the Training Database and we fitted the parameters to the 20
sampled curves. By proceeding in this manner, we performed 30 fittings of the parame-
ters. To determine the values of ω, r, f and u, we fitted ω and f on the selected curves
of the Training Database and we deduced the values of r and u using Equalities (8) and
(9).

To optimize the parameters, we used the R-function directl to find the values of ω
and f minimizing the function,

fobj(ω, f) =
1

n

n∑
i=1

(
m∑
j=1

(
(yijobs − yijpred(ω, f))

yijobs

)2
)
. (10)

After the 30 fittings of the parameters, we obtained 30 values of ω, r, f and u. We
calculated the average value and the Relative Standard Deviation (RSD) of each pa-
rameter (Table 1). We also looked at the fit of the model calculating from the Training
Database the value of the Determination Coefficient (R2) (Figure 7 and Table 1). The
results show that the model fits the curves of the Training Database well.

To validate the ability of the tool to learn parameters from noisy data, we calculated
the accuracy of the model on the Test Database. To do so, we calculated the Relative
Residual Sum of Square (RRSS) and the Determination Coefficient associated with
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Figure 7: Examples of results given by the predictive tool in comparison with some
training curves.

Table 1: Average and Relative Standard Deviation of the parameters and the Determi-
nation Coefficient calculated on the Training Database.

Parameter Average Relative standard deviation
ω 9.9 0.009
f 920.3 0.001
r 35.6 0.016
u 139.5 0.001
R2 0.97 0.011

each curve contained in the Test Database and we obtained the distributions showed in
Figure 8. The RRSS is low and the Determination Coefficient is high, indicating that
the model fits the curves of the Test Database well.

We compared the R2 and the RRSS associated with the Generator model (R2
Gener

and RRSSGener) - i.e. the model used to generate the fictitious Database - and the R2

and the RRSS associated with the Fitted Model (R2
Fit and RRSSFit) (Figure 8 and

Table 2). RRSSFit is low and this value is very similar to the value of RRSSGener. The
R2

Fit is high and this value is also very similar to the value of R2
Gener. These indicators

thus demonstrate that the model fitting method is highly satisfactory and the error
associated with the adjusted model is limited to the amount of noise and individual
differences initially integrated into the generated database.
Table 2: Comparison between the indicators associated with the Generator Model and
the Fitted Model.

RRSS R2

Generator Model 1082 0.9887
Fitted Model 1119 0.9886
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Figure 8: Distributions of the RRSS and of the R2 coefficient associated with the
Generator Model and the Fitted Model.

4 Application of our Biomimetic Statistical Learning
Tool on field data

In this section, we present an application of our approach to field data. The database we
used is confidential therefore only the dimensionless Inputs and Outputs are presented.

4.1 Objectives of this application on field data

The objective of this application is to build a tool that can predict the logistic growth
of animals according to their initial weights and their intakes all along a given period.

4.2 Adaptation of the basic model

To mimic a logistic behavior, we used Equation (4b) as «usage» equation (Section 2.2).
In this equation, L corresponds to the maximum weight attainable by the animals of
the studied species. Experts have an idea of the value of L. Therefore, during the
model fitting, the value of this parameter was search in a restricted range of values.

Therefore, in this application we used the mathematical model made of Equations
(1), (2), (3), (4b) and (5). This model considered as a growth model contained five
parameters to fit: ω, r, f , u and L.

4.3 The data used

The database we used is made of two parts corresponding to two different groups of
animals monitored during two different periods (Table 3). The first group contained
8 individuals, monitored over a unit-period from t = 0 until t = 1. For this group,
the weight of the animals was measured at t = 0 and at t = 1. The second group
contained 7 individuals, monitored from t = 0 until t = 2.5. For this group the weight
of the animals was measured at t = 0, t = 0.6, t = 1.52 and at t = 2.5. For both
groups, intakes of each individual were recorded over each time-step of 0.16 time-unit.
Therefore, for each individual, information relative to those intakes are periodically
injected in the model with a time-step of 0.16.
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The dataset relative to the first group constitutes our Training Database and the
dataset relative to the second group constitutes our Test Database.

Table 3: Description of the data used.

First group Second group
Number of individuals 8 7

t = 0 t = 0
Output measured at t = 1 t = 0.60

t = 1.52
t = 2.50

Time step of the Entries injections ∆tIn = 0.16 ∆tIn = 0.16

4.4 Parameter fitting

As in Section 3.2 and Appendix II, we built a relationships between some parameters
of the model by applying the same methodology. Using a Nadaraya-Watson kernel
regressions, we obtained a non-parametric relation linking ω and r and another one
linking f and u. Knowing the relationships between these parameters, it is possible to
fit ω and f and then deduce the value of r and u. Therefore in this application we only
fitted ω, f and L and deduced the values of r and u.

The parameters were fitted to the Training Database by minimizing the difference
between the simulated and the real Outputs at time t = 1. Hence, to fit the parameters,
we used the algorithm DIRECT that minimized the function,

fobj(ω, f, L) =
1

n

n∑
i=1

(
(siobs(1)− sjpred(1))

siobs(1)

)2

, (11)

where n is the number of individuals contained in the training database and Oiobs(1)
and Oipred(1) correspond respectively to the values of the observed and the predicted
Outputs values for the ith individual at t = 1.

To performed several fitting procedures. We sampled the Training Database: we
randomly selected 7 individuals from the 8 individuals before each fitting procedure and
we fitted the parameters on the data associated with the selected individuals. Therefore,
we performed 8 fittings and we obtained 8 sets of values of (ω, r, f, u, L).

4.5 Results

We calculated the average and the RSD of each parameter (Table 4). The RSD of
each parameter is low, indicating that our fitting method permitted to identify one
set containing the parameter values that minimize the error associated with the Fitted
Model. The existence of a single optimal set of values of (ω, r, f, u, L) attests to the
identifiability of the model.

We parameterized the model with the average values of the parameters.
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We calculated the error associated with the model on the Training Database. To
do so, we calculated the Average Relative Error (ARE) between the measured and
predicted values of the Output at time t = 1:

ARE(t) =
1

n

n∑
i=1

√(
(siobs(t)− sjpred(t))

siobs(t)

)2

(12)

Table 4: Average values and RSD of the fitted parameters. ARE calculated at time
t = 1 on the Training Database.

Parameter Mean RSD
ω 9.24 0.079
r 17.91 0.14
f 707.01 0.36
u 21.49 0.17
L 1.70 0.009

ARE(1) (%) 1.83 0.013

The ARE value calculated on the Training Database at time t = 1, is worth 1.83%.
This result is satisfactory, but the accuracy of the model must be calculated on a Test
Database to ensure that the model does not overfit the training data.

To do so, we calculated the ARE given by Equation (12), on the Test Database at
time t = 0.6, t = 1.52 and t = 2.5 (Table 5 and Figure 9).

Figure 9: Difference obtained between the measured (+) and predicted (×) values of
the Output variable at different times t for the individuals in the Test Database.

Table 5: Average Relative Error (ARE) calculated on the Test Database at different
instants.

t 0.6 1.52 2.5
ARE(t) (%) 1.3 2.9 1.5

16



4.6 Discussion of the results

The error associated with the model is low on the Test Database. The errors made
before and after time t = 1 remain low. Those results indicate that our tool can be
trained on a very small database to link the inputs and the outputs and then it can
accurately predict the weight of the animals over a period 2.5 times longer than the
training one.
This extrapolation capability, obtained despite the very low quantity of training data,
illustrates that our tools hold high potential for information extraction. As it will be
demonstrated below, this capability distinguishes our approach from other inference
methods.

Moreover, in addition to the information extraction potential, the extrapolation ca-
pability helps to reduce the training-data-dependency of our tool. Indeed, we demon-
strated that our tool can be applied outside the training data range and provide accurate
extrapolations. Hence, we do not need to fit it on data covering the whole curve to
predict and so we can use smaller Training Database. Therefore, this extrapolation
capability permits to reduce the duration of data collection, the duration of in situ
experiments, and thus the computational and the experimental costs.

5 Comparison with existing growth models
According to [16] and [47], the current methods used to simulate and predict logistic
growth processes, involve two main types of models: Phenomenological Models corre-
sponding to «Black Box» models, and Mechanistic Models corresponding to «White
Box» models. In this section, we will compare some models belonging to these two
main categories with the Biomimetic Statistical Learning tool presented in this paper.

5.1 The Phenomenological Models

As defined in [16], the Phenomenological Models include Linear, Multiple Linear and
Nonlinear Regressions, Logistic Models and Neuronal Networks.

5.1.1 Comparison of our Biomimetic Growth Model with Classical Logistic
Growth Models

The models of Gompertz [48],

dN(t)

dt
= aG.N(t). ln

(
KG

N(t)

)
, (13)

and Verhulst [36],

dN(t)

dt
= aV .N(t).

(
1− N(t)

KV

)
, (14)

are two models frequently used to model growth processes (e.g. see [49], [50], [51], [52],
[53] and [54]).
We fitted the parameters of these two models on our Training Database by using the
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same optimization algorithm that we used to fit the Biomimetic Model and by mini-
mizing ARE(1).

To test and compare the accuracy of the different models, we calculated on the Test
Database the Average Relative Accuracy, ARA at different times t :

ARA(t) = 1− ARE(t), (15)

where ARE is given by Equation (12). We used the three parameterized models to
generate the growth curve of the individuals of the Test Database and we compared
the measured and the predicted values at times t = 0.6, t = 1.52 and t = 2.5.
The results contained in Table 6 and the curves of Figures 10 and 11 show that the curves
generated from the Gompertz’s model featured a premature deceleration. However, the
Verhulst’s model is associated with good accuracy over the whole studied period.

The similarity of the results from the Verhulst and the Biomimetic Growth Mod-
els was expected because our model includes an equation assimilable to the Verhulst’s
equation (see Section 2.2). The real advantage of our biomimetic growth model is its
ability to integrate input data. Indeed, the Verhulst equation only takes into account
the initial conditions of the system under study, whereas our model also integrates in-
takes throughout the studied period. The capability to integrate additional information
appears to help refine the results and increase the accuracy of our model. Moreover,
since the Verhulst’s and the Gompertz’s models can not integrate input data over time,
they are not able to perform Data Assimilation, contrary to our tool.

Table 6: Parameter values and ARA(1) calculated on the Training Database.

Model a K ARA(1)
Gompertz aG = 0.412 KG = 0.563 0.978
Verhulst aV = 0.411 KV = 1.563 0.979

Biomimetic 0.981

Figure 10: The ARA calculated on the Test Database at different times t and associated
with different models.
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Figure 11: Plot of the predicted growth curves of two individuals contained in the Test
Database with the different models.

5.1.2 Comparison between the Biomimetic Growth Model and Neural Net-
works

Over the past decade, the use of Machine Learning (ML) algorithms and especially
Neural Networks (NN) has been on the rise [55]. According to some studies ([56], [57],
[58] and [59]), the popularity of these tools can be explained by the ease of their imple-
mentation and the diversity of issues that these algorithms can handle. Nevertheless,
these algorithms are based on relatively simple mathematical models that are cannot
easily take into account complex phenomena, such as delay and saturation. Hence, we
applied different Neural Networks on our Training Database to compare this kind of
ML tool and our Biomimetic Growth Model. We tested six Neural Networks having
different numbers of nodes and hidden layers, taken as inputs the initial weight of each
individual and their periodically recorded intakes (Table 7).

Table 7: The ARA calculated on the Training Database (ARATrain), and on the Test
Database (ARATest), at t = 1, with different Neural Networks. The Neural Network
(k1,...,ki,...,kn) corresponds to a Neural Network containing n hidden layers and the ith
hidden layer contains ki nodes.

Structure ARATrain(1) (%) ARATest(1) (%)
(4) 99.9 78.8
(4,3) 99.8 90.5
(6,5) 99.7 93.4

(4,6,6,3) 99.9 94.8
(5,7,7,7,4) 99.8 95.3
(5,9,9,9,5) 99.9 93

We fitted each tested Neural Network on our Training Database by using the R-
function neuralnet developed by Fritsch et al. [60], and we calculated the accuracy of
those Neural Networks on the Training and on the Test Database.

The results given in Table 7 show that all the tested Neural Network fit the curves
of the Training Database better than the ones of the Test Database. It shows that the
tested Neural Network overfit the training curves, particularly when the structure of
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the studied Neural Networks is composed of too many or too few nodes and hidden
layers. The accuracy of the Neural Networks on the Test Database increases up to a
certain number of nodes and hidden layers and then decreases when the complexity of
the structure continues to increase. On the test database, the highest accuracy value
is reached using a Neural Networks containing 5 hidden layers, but this value is lower
than that obtained using our Biomimetic Model (Table 7 and Figure 10).

Nevertheless, the accuracy of these ML tools is satisfactory and the real advantage
of our Biomimetic tool over Neural Networks is its extrapolation capability. Indeed,
as the Biomimetic Model, the studied Neural Networks were fitted only from the value
of the Output at t = 1. In this case, the fitted classical Neural Networks can only
be used to predict the Output at t = 1. Hence, Neural Networks cannot interpolate
or extrapolate, in contrast to our Biomimetic Model. Therefore, contrary to our tool,
Neural Networks can not be used in a "Biological Small Data" context to reduce the
experimental and computational costs. They are also less suitable to perform Data
Assimilation in this context.

5.2 Mechanistic Growth Models

Mechanistic Growth Models are another kind of tool permitting to gathered biological
inputs to predict the growth of plants or animals. Some models of this type have been
developed in [61], [62], [63] and [64]. These models integrate numerous Inputs, and
not all of which are available in our study. Hence, these models can not be applied
to our database. Therefore, we only compared the structure, the functioning and the
objectives of those Mechanistic Models with our Biomimetic one.

As it is said in [16], [65], [17] and [66], the construction of Mechanistic Growth
Models generally focuses on the biological meaning of the overall model. Therefore,
the construction of the explanatory mechanistic models takes time, requires a large
quantity of zootechnical knowledge and results in complex models. As it is explained
in [67], [17] and [68], these models contain a large number of unknown parameters
and include many factors, forcing the user to enter a large number of Input values,
which are sometimes difficult or costly to obtain. Hence, the complex structure of these
models makes Mechanistic Realistic Models inappropriate for fitting data and Data
Assimilation.

6 Conclusion
To conclude, we built a Biomimetic Statistical Learning tool based on a PDE system
embedding the mathematical expression of biological determinants. This PDE system
contains parameters that can be fitted to data. This PDE system was carefully designed
to have a high learning potency and a great accuracy but also to remain light and
flexible.

In the particular «Biological Small Data» context, the performed applications showed
that this tool has higher accuracy than the existing tools. However, our Biomimetic
Statistical Learning tool distinguishes itself in light of its suitability to perform Data
Assimilation even if the frequency of data collection and the quality of the collected
data are low.
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The extrapolation capability of our tool, coupled with its high learning potency permits
to fit it on a few data but also to accurately applied it outside the range of the training
data. Hence, the quantity of collected data can be reduced as the costs relative to
experiments and data management.

To sum up, our tool can be used to predict health and performance indicators ac-
cording to the ingestion or the injection of molecules in an animal body and to perform
accurate and inexpensive Livestock Data Assimilation .
The pursuit of an optimal combination between the use of data and the use of prior
knowledge via the use of PDEs seems to be an interesting way to build Artificial In-
telligence (AI) tools. Those AI tools could have a strong learning ability and a weak
Training-Data-Dependency.

Nevertheless, the results coming from the Biomimetic Model was obtained from a
certain number of hypotheses. Some Model Selection methods could be applied to select
the structure of the Mathematical Model, permitting to obtain a more satisfying model
in terms of ARE and the number of parameters to learn. This suggested improvement
will be studied in a forthcoming work.
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Appendix I: Generation of the Learning Database
To test the learning capability of the model we generated a Learning Database contain-
ing 50 individuals, that is 50 Output Curves. The objective is to obtain a database
having the same characteristics as a real field database. To do that we integrated into
this fictitious database noise and individual variability.

I.1 Integration of individual variability

The model parameters are constants to determine. Nevertheless, to introduce individual
variability in the generated data, we considered (only in this Section) the parameters
as biological-like factors following a Normal distribution. To simulate individual differ-
ences, we assigned to each parameter a Normal distribution centered on an arbitrarily
chosen value and with a relative variance of 0.005 (See Table 8). From these Nor-
mal probability laws, we generated 50 values of the parameters ω, r, f and u. Their
respective statistical and probabilistic distributions are given in Figure 12.

Figure 12: Distributions of the parameters ω, r, f and u

I.2 Generation of fictitious Inputs

The Inputs integrated into the model correspond to the injected volume (V olQ) and
the moment of the injection (ct). These parameters can take on any value between 0
and 1, therefore we applied a Uniform distribution over the interval [0; 1] to these two
types of Inputs (Table 8).

From the values of the parameters and the fictitious Inputs, we generated 50
Output Curves.
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I.3 Addition of a random noise

Continuing with the objective of obtaining an experimental-like database, we added
noise to the Output Curves. To do so, we added a random component following a
Gaussian distribution centered on 0 and with a variance of 0.05 to the generated curves
(Table 8).

Figure 13 shows some examples of generated curves without and with noise. We
divided the obtained database into two datasets: A Training Database made of 30
curves and a Test Database made of 20 curves.

In the rest of this Section, we assumed that we have an experimental-like database
and a model containing four parameter values to determine.

Table 8: The distributions followed by the parameters and the Inputs.

Parameter Probability law
ω N (10, 0.3125)
r N (35, 1.42)
f N (800, 5.175)
u N (125, 1)

V olQ U(0, 1)
ct U(0, 1)

Noise N (0, 0.05)

Figure 13: Example of simulated curves without and with noise
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Appendix II: Study of the compensation effects existing
between the model parameters
Among the parameters ω, r, f and u, some parameters offset each other.

Velocity ω, can be offset by any delay r, the information undergoes. For example,
a low convection speed associated with a low delay may induce kinetics equivalent to
that induced by a high convection speed associated with a long delay.

The fixation f , and the use of the information u, are also two counterbalanced pro-
cesses. For instance, a high fixation rate followed by a low usage of the information can
induce the same effect on the Outcome as a low fixation rate followed by an important
use of the fixed information.

Therefore, relations exist between the parameters of those two couples. The objec-
tive of this part is to use the fictitious Training Database to study these relations.

II.1 Study of the relationship between ω and r

First, we demonstrated the relationship existing between ω and r by calculating the
error made on the Training Database by the model parametrized with different (ω, r)
pairs. To do so, we ranged the domain ω × r and we calculated the Relative Residual
Sum of Squares (RRSS) (16) associated with the models parametrized with different
tested (ω, r) pairs:

RRSS(ω, r) =
n∑

i=1

(
m∑
j=1

(
(yijobs − yijpred(ω, r))

yijobs

)2
)
, (16)

where n corresponds to the number of individuals contained in the Training Database
and m the number of points on the curves. yijobs and yijpred correspond respectively to
the observed and the predicted value of the jth point of the ith individual. Therefore
RRSS corresponds to the sum of the squared relative differences between the predicted
curves and the initially generated curves.

Figures 14 and 15 give the values of the RRSS according to the values of ω and
r. The existence of a series of equivalent pairs - that is a series of pairs leading to the
same value of RRSS - can be seen in Figure 14(a). There is an area where the RRSS
values are lower (Figure 15), and corresponding to the curve EC1 in Figure 14(b). We
assumed that the optimal (ωOpt,rOpt) pair, inducing the lowest RRSS, belongs to this
curve. Therefore, we set out to determine the equation of the curve EC1.

II.2 Search for the (ωOpt, rOpt) pairs inducing the lowest RRSS

To find the equation of the curve EC1 we sought for different values of ω, the value
of r minimizing the RRSS value. To do that, for each tested value of ω we used
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Figure 14: The value of the RRSS according to ω and r (a: left), and the schema of
the different Equivalent Couples (EC) (b: right)

Figure 15: The 3D representation of the value of the RRSS according to ω and r

the optimization algorithm DIRECT to find the value of r minimizing the objective
function,

fobj(r) =
1

n

n∑
i=1

(
m∑
j=1

(
(yijobs − yijpred(ω, r))

yijobs

)2
)
, (17)

corresponding to the average RRSS.
To obtain several fitted values of r for each tested value of ω, we sampled the

Training Database: we sampled 20 curves from the 30 test curves and we fitted r on
those 20 selected curves. We ultimately obtained three values of r for each tested value
of ω (Figure 16). Using a Nadaraya-Watson kernel regression (See [45] and [46]), we
obtained a non-parametric relationship linking ωOpt and rOpt in the form of:

ropt = m̂(ωopt) + ε, (18)
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where m̂ corresponds to the Nadaraya-Watson estimator.

Figure 16: The Nadaraya-Watson kernel regression linking the (ωOpt, rOpt) parameter
pair.

Knowing the relationship between ωOpt and rOpt, it is possible to deduce one of these
two parameters according to the value of the other parameter. Hence, this relationship
reduces the number of parameters that need to be learned simultaneously.

II.3 Study of the relationship between f and u

There is also a compensation effect between f and u: a high value of f can be compen-
sated by a low value of u, and vice versa.

As above for ω and r, we sought to determine the relationship existing between f
and u to be able to deduce one of these two parameters according to the other one and
further reduce the number of parameters to learn simultaneously.

As above, we ranged the domain f × u and calculates the RRSS of the models
parameterized with different pairs of values for (f, u) (Figures 17 and 18). This study
demonstrates a series of equivalent pairs. There is an area where the RRSS values are
lower (Figure 18) and corresponding to the EC1 curve in Figure 17(a). We assumed
that the optimal (fOpt, uOpt) pair inducing the lowest RRSS, belongs to this curve.
Therefore, we set out to determine the equation of this curve.

II.4 Search for the (fOpt, uOpt) pairs that lead to the lowest RRSS

To find the equation of the curve EC1 associated with the lowest RRSS, we looked for
the value of u minimizing the RRSS value for different given values of f . For each value
of f , we used the optimization algorithm DIRECT to find the value of u minimizing
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Figure 17: The value of the RRSS according to f and u (a) and the schema of the
different Equivalent Couples (EC) (b)

Figure 18: The 3D representation of the value of the RRSS according to f and u

the objective function (19) corresponding to the average RRSS.

fobj(u) =
1

n

n∑
i=1

(
m∑
j=1

(
(yijobs − yijpred(f, u))

yijobs

)2
)
. (19)

As above, to obtain several fitted values of u for each tested value of f , we sampled
the Training Database. At the end of the fitting, we obtained three values of u for
each tested value of f (Figure 19). Using a Nadaraya-Watson kernel regression, we
obtained a non-parametric relationship linking fOpt and uOpt in the form of:

uOpt = m̂(fOpt) + ε, (20)

where m̂ corresponds to the Nadaraya-Watson estimator.
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Figure 19: The Nadaraya-Watson kernel regression linking fOpt and uOpt.

Knowing the relationship existing between fOpt and uOpt, it is possible to deduce
one of these two parameters according to the value of the other parameter. Hence, this
relationship further reduces the number of parameters to learn simultaneously.
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