
HAL Id: hal-02079750
https://hal.science/hal-02079750v1

Preprint submitted on 27 Mar 2019 (v1), last revised 1 Jan 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An innovating Statistical Learning Tool based on Partial
Differential Equations, intending livestock Data

Assimilation
Hélène Flourent, Emmanuel Frénod, Vincent Sincholle

To cite this version:
Hélène Flourent, Emmanuel Frénod, Vincent Sincholle. An innovating Statistical Learning Tool based
on Partial Differential Equations, intending livestock Data Assimilation. 2019. �hal-02079750v1�

https://hal.science/hal-02079750v1
https://hal.archives-ouvertes.fr


An innovating Statistical Learning Tool based on Partial
Differential Equations, intending livestock Data Assimilation.

Hélène Flourenta,b,∗, Emmanuel Frénodb,c,∗∗, Vincent Sinchollea

aNutriXI, France
bUniversité Bretagne Sud, Laboratoire de Mathématiques de Bretagne Atlantique,UMR CNRS 6205,

Campus de Tohannic, Vannes, France
cSee-d, 6, rue Henri Becquerel - CP 101, 56038 Vannes Cedex, France

Abstract

The realistic modeling intended to quantify precisely some biological mechanisms is a
task requiering a lot of a priori knowledge and generally leading to heavy mathematical
models. On the other hand, the structure of the classical Machine Learning algorithms,
such as Neural Networks, limits their flexibility and the possibility to take into ac-
count the existence of complex underlying phenomena, such as delay, saturation and
accumulation.

The aim of this paper is to reach a compromise between precision, parsimony and
flexibility to design an efficient biomimetic predictive tool extracting knowledge from
livestock data. To achieve this, we build a Mathematical Model based on Partial
Differential Equations (PDE) embarking the mathematical expression of biological de-
terminants.

We made the hypothesis that all the physico-chemical phenomena occurring in an-
imal body can be summarized by the evolution of a global information. Therefore the
developed PDE system describes the evolution and the action of an information circu-
lating in an Avatar of the Real Animal. This Avatar outlines the dynamics of the
biological reactions of animal body in the framework of a specific problem. Each PDE
contains parameters corresponding to biological-like factors which can be learnt from
data by the developed Statistical Learning Tool.

Keywords: Statistical Learning, PDE, Forecasting, Data Assimilation, Model-Data
Coupling, Biological Mathematical Modeling

1. Introduction

According to Vázquez-Cruz et al. (2014), among the existing methods for analyzing
biological data, two approaches can be distinguished. The first one corresponding to a
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realistic modeling, aims at the exact description and quantification of all the biological
processes observed from the injection or the ingestion of a set of molecules until its
action somewhere in a living organism. In the image of the works achieved by Bas-
tianelli and Sauvant (1997) and by Martin and Sauvant (2010a) the construction of
realistic models is a task requiring time and a lot of biological knowledge and generally
leading to models containing a large number of equations and parameters. The in-silico
experiments allowed by this type of models are valuable to describe and explain specific
biological processes through the use of particular Inputs. However, the complex imple-
mentation of these models limits their adaptability and flexibility, in particular when it
comes to processing field data presenting high variability, missing and aberrant values.
The second approach corresponds to «Black Box» models, such as Neural Networks.
As it is explains in Domingos (2012), for a decade the use of Machine Learning (ML)
algorithms and especially Neural Networks (NN) has been on the rise. According to
Gorczyca et al. (2018), Valletta et al. (2017), Ma et al. (2014) and Ip et al. (2018),
the popularity of these tools can be explained by the ease of their implementation and
the diversity of issues which can be dealt with by those algorithms. Nevertheless, these
algorithms are based on relatively simple mathematical models unsuitable to take easily
into account complex phenomena such as delay and saturation. Hence, the tools based
on those types of ML algorithms contain little a priori biological knowledge. Thus, Tan
and Gilbert (2003), Shavlik et al. (1995), Hubbard and Reinhardt (1998) and Dumpala
et al. (2017) explain that it is necessary to learn the parameters of these models from
a lot of data to compensate the absence of biological expertise.

The goal of this paper is to introduce a new paradigm combining those two kinds of
approaches. Our first aim is to build a tool able to link Inputs and Outputs concerning
an animal or a group of farm animals to thereafter perform simulation and forecasting.
The second aim is to be able to interpret and synthesize a more or less continuous data
stream collected in farms, in order to perform Data Assimilation. Renzullo et al. (2008),
Ingalls (2019), Zúñiga et al. (2014), Vázquez-Cruz et al. (2014) and McPhee (2009),
explain that to achieve those objectives, it is necessary to have on hand a mathematical
model which is able to take into account some aspects of the dynamics of the system
under study, corresponding in this study to animal body. In the light of the limits of the
already existing methods for predicting biological responses, we decided to explore an
approach aiming the construction of a tool combining accuracy, parsimony and flexibil-
ity. We designed a biomimetic predictive tool able to deal with the existence of complex
underlying phenomena. To achieve this, we built an advanced Mathematical Model
based on a system of Partial Differential Equations (PDE) embarking the mathematical
expression of various biological phenomena (diffusion, convection, accumulation, satu-
ration, etc.) and depending on parameters carrying the leaning capability of the tool.

After this Introduction, putting this research work in its proper context, we will
detail in the second Section the encountered problems in the field of biological mod-
eling. In this particular context the existing tools are limited and not totally suitable
to achieve the previously presented objectives. Therefore, in the third Section we will
present the Mathematical Model and the built Statistical Learning Tool. In Section
4, we will study the functioning of the Mathematical Model and the ranges of values
of the different involved parameters. To verify the tool capacities, several tests are
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performed. In Section 5 we will present the tests by simulation performed in order to
verify the ability of the model to learn parameters from noisy data. Then, in Section 6,
an application of our approach on field data concerning the growth of animals during a
given period will be presented. This application demonstrates the prediction capability
of the tool in real conditions. In order to have an idea about the real potential of this
new Statistical Learning Tool we compared our biomimetic model with some Logistic
Models, Mechanistic Models and some Machine Learning algorithms such as Neural
Networks. Those comparisons will be detailed in Section 7.

2. Problem description

2.1. Biological modeling: difficulties and challenges
In their review, Dumas et al. (2008) explain that the construction of mathematical

models to tackle livestock production issues, began between 1910 and 1925 with the aim
of predicting and simulating processes by integrating knowledge. Nowadays, according
to Dumas et al. (2008), McPhee (2009) and Vázquez-Cruz et al. (2014), mathematical
modeling remains decisive to simplify, describe and simulate the mechanisms and the
links existing between factors especially in biological field survey. As it can be identified
in McPhee (2009), Puillet et al. (2011), Martin and Sauvant (2010b), Nkrumah et
al. (2007), Nesetrilova (2005) and Basarab et al. (2003), in the agri-food sector, simulate
and predict the effects of nutrition on animal performances are two decisive and strategic
points for breeders and companies to understand how optimize animal efficiency.

Yet, as it is illustrated in Locke et al. (2005) and Qi et al. (2006), databases collected
on living organisms generally contain a large amount of variability. A part of this
variability is related to individual differences. There is also noise, generated by the
measuring instruments and heterogeneity resulting to the lack of continuity over the
various experiments. This variability is in addition to more or less missing and aberrant
values. Moreover, farm data collection comes within an evolving framework. Indeed
Jemila and Priyadharsini (2018), Miekley et al. (2012), Tol and Kamp (2010), Büchel
and Sundrum (2014) and Holman et al. (2011), present some new technologies enable
the monitoring of animals (connected collar, troughs recording the feeding behavior,
connected scales, boluses...). But these are still expensive and their democratization
takes time.

All those elements constrained and guided our modeling approach. As a mater of
fact, the choices we made permit to carry-out simulations and Data Assimilation via a
light and parsimonious tool. This parsimony allows also to quickly adapt our model to
the different farm species studied by the agri-food companies. Our choices also lead to
a tool having a high information extraction potential. This extraction potential aims
to make our tool compatible with the complexity of the studied phenomena coupled
with the current lack of exploitable data, as well as with the big volumes of data which
will result from the evolution of farm data collection.

2.2. Exploration of an intermediate approach: The Model-Data Coupling
The intermediate approach we implemented combines the integration of knowledge

and the usage of data in order to extract complex information from available data.
Therefore our work falls within the Model-Data Coupling theory. Model-Data Coupling
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is essentially used in the fields of meteorology (See Simmons and Hollingsworth (2002)),
hydrology (See Kim and Barros (2002),Crosson et al. (2002) and Mackay et al. (2003)),
biogeochemistry (See Barrett (2002), Barrett et al. (2005), Rayner et al. (2005) and
Sacks et al. (2006)) and oceanography (See Ailliot et al. (2006)). Like biology, these
fields are domains in which it is necessary to take into account certain aspects of the
dynamics of the studied system to perform forecasting. But the system under study
is often complex and its exact modeling would take time and result in a heavy mathe-
matical model. Therefore, as it can seen in Frénod (2017), Rousseau and Nodet (2013),
Sacks et al. (2007) and Wang et al. (2010), the approach consists in building a parsimo-
nious mathematical model, corresponding to a synthetically mathematical translation
of the studied system. Then the parameters contained in this model are optimized
and fitted from data. As in those studies, the construction of our tool is based on an
optimal combination between knowledge - to design a Mathematical Model presenting
the «optimal» degree of complexity - and data - to optimize the model parameters - in
order to obtain a predictive tool which is both accurate, parsimonious and flexible.

To be more specific, we built a Mathematical Model based on a system of PDE
embarking the mathematical expression of various biological phenomena such as dif-
fusion, convection, accumulation, saturation, etc. This Mathematical Model aims at
integrating biological knowledge but it is not intended to describe with precision and
exactitude what is occurring in an animal body. Indeed, the objective is to build a
Biomimetic Statistical Learning Tool able to predict accurately biological responses.
To achieve this target, we want this tool to take into account the global biological dy-
namics occurring in animal body but without necessarily describing all the processes
inducing those responses. Indeed, our exploration is based on the hypothesis that the
synthetic consideration of the biological processes may enable to gain in precision, in
comparison with a classical Machine Learning tool which integrate no a priori knowl-
edge, while keeping a parsimonious and light tool, in comparison with a realistic tool.

Our exploration relies on the articulation of several and diverse elements (Figure 1).
The Real Animal is a complex living organism in which a high number of phys-

ical flows and chemical reactions interact and act. Therefore, our support of reflec-
tion is not directly the Real Animal. The support of reflection used to construct the
Mathematical Model is an Avatar of the Real Animal. This Avatar outlines in the
framework of a specific problem, the dynamics of the biological reactions occurring in
animal body. In the present study we decided to outline all those physico-chemical
phenomena by the circulation, the evolution and the action of a global information.
Therefore, this information synthesis all the phenomena of convection, diffusion, accu-
mulation, saturation and delay, that a set of molecules may undergo in the body of an
animal.
The Mathematical Model mathematically traduces the evolution and the action of a
global information circulating in the Avatar.

Therefore we distinguished different dimensions. There is the Reality in which there
are Intakes and Injections inducing complex biological processes in animal body. Some
Sensors permit to extract from this Reality databases made of Inputs and Outputs.
The Inputs are traduced by a mathematical function in Entries, that are pieces of
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Figure 1: Articulation of the elements of the exploration

information integrated into the Mathematical Model and inducing the generation of
Outcomes, also linked to the Outputs extracted from the Reality by a mathematical
function.
The Mathematical Model has no biological state. Indeed, The Real Animal has a
biological condition induced by the introduction of molecules in its body. Whereas, the
model has no biological condition but a physiological-like condition induced by the inte-
gration of Entries in an involved geometrical space. This mathematical physiological-
like status links the Entries and the Outcomes.

The Algorithm comes out of the discretization of the Mathematical Model, that
is the PDE system mathematically translating what takes place in the Avatar. This
system of PDE contains parameters corresponding to biological-like factors: convection
and diffusion speeds, some saturation levels, the fixation speed, etc. These parameters
can be learnt from a database and by using optimization algorithms. Therefore, the
presence in the Mathematical Model of parameters which can be learnt from data,
confers to the tool based on this model a learning ability. Hence, the constructed tool
is a Statistical Learning Tool.
The Program corresponds to the code permitting to manage the learning of the pa-
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rameter values via an iterative process during which an optimization algorithm permits
to find the values of the parameters minimizing the difference between the measured
and the predicted Outputs.
The Tool finally corresponds to theMathematical Model parametrized with the values
of the parameters obtained at the end of the learning step.

3. Structure and discretization of the Mathematical Model

3.1. Description of the Mathematical Model

We worked under the hypothesis that, when an active or a molecule enters the body
of a living organism, it circulates in the body through a network of vessels containing a
fluid. This element integrates this fluid and uses it as a vector to evolve via convection
and diffusion phenomena. In the network of vessels the element may be in competition
with others which may delay its progression. Then the circulating element may be
caught and accumulated into an organ or a specific tissue. During its storage the
element can be used and induce change in some biological variables.
We can mathematically traduce all those processes through a PDE system which is
illustrated by Figure 2.

Figure 2: Schematization of the Mathematical Model

Concretely, we decided to model our Avatar using variables, densities and fields
that are all unit-less and dimensionless. We also decided to reduce the geometrical
space S relative to the Avatar to interval [0 ; 1]. We considered a Forward Flow Φf ,
and a Backward Flow Φb streaming in this one-dimensional geometrical space. These
flows could be seen as a very synthetic summary of a blood, a nervous or a digestive
circulation. The involved Inputs essentially correspond to collected data concerning
intakes, water intakes and medicine injections. Those Inputs can be included within
the Mathematical Model via a function Q transforming those Inputs into information
inflows, named Entries and injected in the involved geometrical space. A part of
the injected information circulates forward, via Φf and the rest circulates backward,
via Φb. This information evolves via convection and diffusion phenomena. During its
circulation the information can be delayed, caught, stored and used to finally induce a
modification of the Outcome O. This Outcome corresponds to the model prediction or
simulation of a biological variable .
Therefore, to an information d, are associated different elements.

{
Φf (d)

}
(t,x) and
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{
Φb(d)

}
(t,x) are at each instant t two spatial densities respectively associated to a

forward flux with a velocity ωd and a backward flux with a velocity −ωd.
The spacial density

{
Φf (d)

}
(t,x) is supposed to be solution to:

∂
{
Φf (d)

}
∂t

(t,x) + ωd

∂
{
Φf (d)

}
∂x

(t,x)−
∂

[
cdχ

∂
[{

Φf (d)
}

+
{
Φb(d)

}]
∂x

]
∂x

(t,x)

=
1

2

{
Q(d)

}
(t,x)− fd

{
F (d)

}
(x)
{
Φf (d)

}
(t,x)− rd

{
Φf (d)

}
(t,x), (1)

Similarly,
{
Φb(d)

}
(t,x) is supposed to be solution to:

∂
{
Φb(d)

}
∂t

(t,x)− ωd

∂
{
Φb(d)

}
∂x

(t,x)−
∂

[
cdχ

∂
[{

Φf (d)
}

+
{
Φb(d)

}]
∂x

]
∂x

(t,x)

=
1

2

{
Q(d)

}
(t,x)− fd

{
F (d)

}
(x)
{
Φb(d)

}
(t,x) + rd

{
Φf (d)

}
(t,x), (2)

In those equations, the parameter cd is the diffusion velocity of the information. The
space time density

{
Q(d)

}
, corresponds to an external source of information. The

function
{
F (d)

}
is worth 0 in certain area of the involved geometrical space and 1 in

others. The area where this function is worth 1 corresponds to the location of the entity
catching the information. The parameter fd determines the rate of fixed information.
The parameter rd determines the part of the circulating information transferred from
the Forward Flow to the Backward Flow which induces a delay in the progression of
the information. At each instant t, the spatial density

{
Ψ(d)

}
(t,x), associated to the

fixed information, is solution to:

∂
{
Ψ(d)

}
∂t

(t,x) = fd
{
F (d)

}
(x)

[{
Φb(d)

}
(t,x) +

{
Φf (d)

}
(t,x)

]
− ud

{
Ψ(d)

}
(t,x). (3)

The parameter ud is the coefficient determining the usage rate of the fixed information.
At each instant t, the spatial density

{
Ξ(d)

}
(t,x), associated to the used information,

is solution to:

∂
{
Ξ(d)

}
∂t

(t,x) = ud
{
Ψ(d)

}
(t,x). (4)

The parameter Ω(d) corresponds to the action area of the circulating information on
the Outcome.

{
O(d)

}
(t) is the Outcome of the model, given by:

{
O(d)

}
(t) =

∫
Ω(d)

{
Ξ(d)

}
(t,x) dx. (5)

3.2. The «usage» equation
The fourth equation of the model is the «usage» equation. This equation determines

the action of the injected information on the variable to predict. Therefore, this equa-
tion has to adapt the different ways in which an intake or an injection may impact a
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biological variable. Equation (4) models an accumulative phenomenon. Hence it can be
used to tackle data concerning the evolution of a total production over a given period.

To model a limited growth, a limiter is added in this equation. In this case, the
«usage» equation becomes:

∂
{
Ξ(d)

}
∂t

(t,x) = ud
{
Ψ(d)

}
(t,x)

(
Ld −

{
O(d)

}
(t)

Ld

)
(4b)

With this version of the equation, data related to the weight evolution of an animal
can be treated. This equation can be assimilated to the differential equation of Ver-
hulst (1838):

∂y

∂t
(t) = r y(t)

(
K − y(t)

K

)
(6)

whose structure is equivalent. We indeed may notice that in the case when nothing
depends on x, the value of ud is very high and Ω(d) is the whole interval [0 ; 1],

{
Ξ(d)

}
,{

Ψ(d)
}

and
{
O(d)

}
are very close to each other. Hence, Equation (6) and (4b) are

essentially the same.
It could be also necessary to model variations to use our tool to treat data about

drug impacts on a biological variable for example. To do that, we have to be able to
model an increase or a decrease in the Outcome which could variate between an upper
and a lower bound. The equation

∂
{
Ξ(d)

}
∂t

(t,x) = −
({

Ξ(d)
}

(t,x)− Uppd
)
− ud

{
Ψ(d)

}
(t,x)

({
Ξ(d)

}
(t,x)− Lowd

)
(4c)

models that the fixed information
{
Ψ(d)

}
attracts the Outcome

{
O(d)

}
toward a state

which is lower than the steady one, and the equation

∂
{
Ξ(d)

}
∂t

(t,x) = −ud
{
Ψ(d)

}
(t,x)

({
Ξ(d)

}
(t,x)− Uppd

)
−
({

Ξ(d)
}

(t,x)− Lowd

)
(4d)

models that the fixed information
{
Ψ(d)

}
attracts the Outcome

{
O(d)

}
toward a state

which is upper than the steady one. In these two previous cases the Outcome varies
between a lower bound Lowd and an upper bound Uppd.

The «usage» equation has to be defined according to the problematic and the ac-
quired knowledge about the link existing between the Entries and the Outcomes.

3.3. Initial and boundary conditions
The function χ is compactly supported in (0, 1), mainly constant and worthing 1.

This function integrated in the diffusion term permits to make the diffusion vanish at
the edges of the domain.
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We also imposed :

∀t ∈ (0,∞),
{
Φf (d)

}
(t, 0) =

{
Φb(d)

}
(t, 0) and

{
Φb(d)

}
(t, 1) =

{
Φf (d)

}
(t, 1) (7)

Those conditions allows the circulating information to move back and forth between
the two edges of the domain.

The initial conditions
{
Φf (d)

}
(0,x),

{
Φb(d)

}
(0,x),

{
Ψ(d)

}
(0,x),

{
Ξ(d)

}
(0,x) and{

O(d)
}

(0) are given for all x in (0, 1).

3.4. The model parameters
The system of Partial Differential Equations contains several parameters that have

to be learnt. There are ωd, cd, rd, fd and ud. To simplify, in the first studies we fixed
cd at 0.001.

All the other parameters are learnt from a database by using an optimization algo-
rithm permitting to find the parameter values minimizing the error associated to the
model on a training database. To do that we used the function directL developped
by Johnson (2008), which is embedded in R (R Core Team (2014)) and applying the
DIRECT algorithm developped by Finkel (2003).

Among the parameters ωd, rd, fd and ud some parameters offset each other.
The speed impact ωd, may be offset by the delay rd, undergone by the information.

Indeed, a low convection speed associated to a low delay may induce equivalent kinetics
to the one induced by a high convection speed associated to an important delay.

The fixation fd, and the use of the information ud, are also two counterbalanced
processes. Indeed an important fixation followed by a low usage of the information may
induce the same impact on the Outcome as a low fixation followed by an important use
of the fixed information.

The compensation effects existing between the parameters call into question the
identifiability of the model. Indeed, if the parameters counterbalanced each others
there may exist a series of couples (ωdOpt

, rdOpt
) and (fdOpt

, udOpt
) minimizing the error

associated to the model on the Training Database. Therefore some studies of those
compensation effects are introduced in Section 5.3 and the unicity of the set of optimal
parameter values is verified in Section 5.4.

4. Study of the Mathematical Model functioning

To discretize the Mathematical Model we first used the classical Finite Difference
method with a given space step, to obtain semi-discrete in space equations. And,
since the Mathematical Model is coded under the software R, we used the R-function
Ode.1D developped by Soetaert et al. (2010) to manage the discretization in time of
the semi-discrete equations. This R-function calls upon the fourth order Runge Kutta
method with a given time step (See Enright (1989)).

4.1. Mathematical study of the model and its discretization
A detailed mathematical analysis of the model and its discretization will be per-

formed in an upcoming paper. Nevertheless, we already know that since we fixed
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the discretization steps, the convection and diffusion speeds have to respect the CFL
conditions and be not larger than given limits (See Courant et al. (1928) and Weis-
stein (2014)). In this first exploration, in order to find a compromise between precision
and calculation time we decided to parametrize the mesh with a time step of 0.001 and
a space step of 0.025. Therefore ω must be smaller than 25 and c must be smaller than
0.625.

We also already observed some properties of the model that we briefly describe in
the forthcoming paragraphs.

4.2. Study of the ranges of values of the parameters
Before starting the learning of the parameters, we have to specify for each parameter

a lower and an upper values between which the optimization algorithm will search the
value minimizing the error associated to the model.

We already know that all the parameters are positive, hence the lower bound of the
different ranges of values is zero.

We also know that ω and c have to respect the CFL conditions. Therefore the upper
bound of these parameters are worth respectively 25 and 0.625 (See Section 4.1).

Then, a saturation effect of the impact of the parameters rd, fd and ud on the
model is observed. A comprehensive study of this phenomenon and its components was
performed in the working paper Flourent (2019). We refer to it for the details of this
study of which we give only a few elements in the present paper. Figure 3 illustrates
what can be observed when several Output Curves, O(t) are generated by setting the
value of all the parameters but one. The modulated parameter is fd, ud or rd. The color
gradient applied to the curves is associated to the value of the studied parameter: The
higher the value of the modulated parameter, the darker the Output Curve generated
from the parameterized model. Therefore, Figure 3 shows that when the value of one of
these three parameters increases, the evolution of the Output Curve profile slows down,
settles down and then does not evolve anymore. Therefore, for each parameter there
exists a saturation level beyond which the parameter does not influence the model
anymore. Indeed the range of values of each of these parameters corresponds to an
interval from 0 to the saturation level of the impact of this parameter on the model.

Figure 3: Saturation of the impact of the parameters on the model

To know for each parameter the value of this saturation level we calculated an
indicator of the evolution speed of the Output Curve profile according to the value of
the studied parameter. When this indicator becomes very low that means the profile of
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the Output Curve hardly evolves anymore and that the saturation level of the studied
parameter is achieved. See Flourent (2019) for further details.

Therefore, from the built saturation indicator and the CFL conditions, we estab-
lished the ranges of values of all the parameters. They are given in Table 1.

Table 1: The ranges of values of the different parameters.

Parameter Range of values
ω [0; 25]
c [0; 0.625]
u [0; 200]
r [0; 284]
f [0; 1035]

5. Simulation tests of the learning capability of the model

The objective of this Section is to present the tests by simulation, performed to verify
the ability of the tool to learn parameters from noisy biological data. To do that we
started by generating a fictitious database from our parametrizedMathematical Model.
Then we used this database to study the compensation effects existing between the
parameters. Finally we simulated the learning of the parameters from the fictitious
data and verified if the fitting of the model was done correctly.

5.1. Generation of a Learning Database
In order to test the learning capability of the model we generated a Learning

Database containing 50 individuals, that is 50 Output Curves. The objective is to
obtain a database having the same characteristics as a real field database. To do that
we integrated in this fictitious database noise and individual variability.

5.2. Integration of individual variability
The model parameters are constants to determine. Nevertheless, in order to intro-

duce individual variability in the generated data, we considered -only in this Section-
the parameters as biological-like factors following a Normal distribution. Indeed, to
simulate individual differences we assigned to each parameter a Normal distribution
centered in an arbitrarily chosen value and with a relative variance of 0.005 (See Table
2). From those Normal probability laws we generated 50 values of the parameters ωd,
rd, fd and ud. Their respective statistical and probabilistic distributions are drawn in
Figure 4.

5.2.1. Generation of fictitious Inputs
The Inputs integrated in the model correspond to the injected volume (V olQ) and

the moment of the injection (ct). These parameters can take any values between 0 and
1, therefore we applied to these two types of Inputs an Uniform distribution over the
interval [0; 1] (Table 2).

From the values of the parameters and the fictitious Inputs, we generated 50
Output Curves.
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Figure 4: Distributions of the parameters ω, r, f and u

5.2.2. Addition of a random noise
Still with the objective of obtaining an experimental-like database, we add noise to

the Output Curves. To do that we add to the generated curves a random component
following a Gaussian distribution centered in 0 and with a variance of 0.05 (Table 2).

Figure 5 shows some examples of generated curves without and with noise. We
divided the obtained database into two datasets: A Training Database made of 30
curves and a Test Database made of 20 curves.

In the rest of this Section, we supposed that we have an experimental-like database
and a model containing four parameter values to determine.

Table 2: The distributions followed by the parameters and the Inputs.

Parameter Probability law
ω N (10, 0.3125)
r N (35, 1.42)
f N (800, 5.175)
u N (125, 1)

V olQ U(0, 1)
ct U(0, 1)

Noise N (0, 0.05)

5.3. Study of the compensation effects
The couples (ωd, rd) and (fd, ud) are two couples of counterbalanced parameters.

Therefore, relations exist between the parameters of those two couples. The objective
of this part is to use the fictitious Training Database to study those relations.
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Figure 5: Example of simulated curves without and with noise

5.3.1. Study of the relation existing between ω and r
As a first step, we decided to put in evidence the relation existing between ωd and

rd by calculating the error made on the Training Database by the model parametrized
with different couples (ωd, rd). To do that we ranged the domain ωd × rd and we
calculated the Relative Residual Sum of Squares (RRSS) (8) associated to the models
parametrized with different tested couples (ωd, rd):

RRSS(ωd, rd) =
n∑

i=1

(
m∑
j=1

(
(yijobs − yijpred(ωd, rd))

yijobs

)2
)
, (8)

where n corresponds to the number of individuals contained in the Training Database
and m the number of points on the curves. yijobs and yijpred correspond respectively to
the observed and the predicted value of the jth point of the ith individual. Therefore
RRSS corresponds to the sum of the squared relative differences between the predicted
curves and the initially generated curves.

Figures 6 and 7 represent the values of the RRSS according to the values of ωd and
rd. The existence of a series of equivalent couples - that is a series of couples inducing
the same value of RRSS - can be seen in Figure 6(a). There is an area where the RRSS
are lower (Figure 7) and corresponding to the curve EC1 of Figure 6(b). We took for
granted that the optimal couple (ωdOpt

,rdOpt
) inducing the lowest RRSS, belongs to this

curve. Therefore we sought the equation of the curve EC1.

5.3.2. Search of the couples (ωdOpt
, rdOpt

) inducing the lowest RRSS
To find the equation of the curve EC1 we sought for different values of ωd, the value

of rd minimizing the RRSS value. To do that, for each tested value of ωd we used
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Figure 6: The value of the RRSS according to ω and r (a), and the schema of the different Equivalent
Couples (EC) (b)

Figure 7: The 3D representation of the value of the RRSS according to ω and r

the optimization algorithm DIRECT to find the value of rd minimizing the objective
function,

fobj(r) =
1

n

n∑
i=1

(
m∑
j=1

(
(yijobs − yijpred(ω, r))

yijobs

)2
)

(9)

corresponding to the average RRSS.
In order to have several fitted values of rd for each tested value of ωd we performed a

sampling of the Training Database. Indeed, for each fitting we sampled 20 curves from
30 and we fitted rd on those 20 selected curves. At the end of the fitting we obtained
three values of rd for each tested value of ωd (Figure 8). Thanks to a Nadaraya-
Watson kernel regression (See Nadaraya (1964) and Watson (1964)), we obtained a
non-parametric relation linking ωdOpt

and rdOpt
in the form of:

ropt = m̂(ωopt) + ε, (10)

where m̂ corresponds to the Nadaraya-Watson estimator.
Knowing the relation existing between ωdOpt

and rdOpt
, it is possible to deduce one

of these two parameters according to the value of the other one. Hence, this relation
permits to reduce the number of parameters to simultaneously learn.
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Figure 8: The Nadaraya-Watson kernel regression linking the couples (ωdOpt
, rdOpt

).

5.3.3. Study of the relation between the parameters fd and ud
There also exists a compensation effect between fd and ud: a high value of fd can

be compensated by a low value of ud, and the contrary.
As previously for ωd and rd, we sought the relation existing between fd and ud in

order to be able to deduce one of these two parameters according to the other one and
further reduce the number of parameters to simultaneously learn.

As previously we range the domain fd × ud and we calculate the RRSS of the
models parameterized with different couples (fd, ud) (Figures 9 and 10). This study
puts in evidence a series of equivalent couples. There is an area where the RRSS are
lower (Figure 10) and corresponding to the curve EC1 of the Figure 9(a). We took
for granted that the optimal couple (fdOpt

, udOpt
) inducing the lowest RRSS, belongs to

this curve. Therefore we sought the equation of this curve.

5.3.4. Search of the couples (fdOpt
, udOpt

) inducing the lowest RRSS
To find the equation of the curve EC1 associated to the lowest RRSS, we sought

for different values of fd the value of ud minimizing the RRSS value. For each value of
fd we used the optimization algorithm DIRECT to find the value of ud minimizing the
objective function (11) corresponding to the average RRSS.

fobj(u) =
1

n

n∑
i=1

(
m∑
j=1

(
(yijobs − yijpred(f, u))

yijobs

)2
)

(11)

As previously, in order to have several fitted values of ud for each tested values
of fd we performed a sampling of the Training Database. At the end of the fitting
we obtained three values of ud for each tested values of fd (Figure 11). Thanks to a
Nadaraya-Watson kernel regression, we obtained a non-parametric relation linking fdOpt
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Figure 9: The value of the RRSS according to f and u (a) and the schema of the different Equivalent
Couples (EC) (b)

Figure 10: The 3D representation of the value of the RRSS according to f and u

and udOpt
in the form of:

udOpt
= m̂(fdOpt

) + ε, (12)

where m̂ corresponds to the Nadaraya-Watson estimator.
Knowing the relation existing between fdOpt

and udOpt
, it is possible to deduce one

of these two parameters according to the value of the other one. Hence, this relation
permits to further reduce the number of parameters to simultaneously learn.

5.4. Fitting of the parameters and calculation of the model accuracy
We fitted the parameters from the Training Database and then we tested the

accuracy of the obtained model by calculating the error made on the Test Database.

5.4.1. Fitting of ωd and fd:
In order to perform several fittings from different datasets, we performed a sampling

of the Training Database: From the 30 curves of the Training Database we sampled
20 curves and we fitted the parameters from the 20 sampled curves. By proceeding in
this manner, we performed 30 fittings. In order to determine the values of ωd, rd, fd
and ud we fitted ωd and fd on the selected curves of the Training Database and then
we deduced the values of rd and ud.
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Figure 11: The Nadaraya-Watson kernel regression linking fdOpt
and udOpt

.

To optimize the parameters we used the algorithm DIRECT permitting us to find
the couple (ωd, fd) minimizing the objective function (13).

fobj(ω, f) =
1

n

n∑
i=1

(
m∑
j=1

(
(yijobs − yijpred(ω, f))

yijobs

)2
)

(13)

After 200 iterations we obtained the values of ωd and fd and deduced the values of rd
and ud.

After the 30 fittings we obtained 30 values of the parameters ωd, rd, fd and ud
(Figure 13). We calculated the mean and the Relative Standard Deviation (RSD) of
each parameter (Table 3). We also looked at the fit of the model (Figure 13) and we
calculated from the Training Database the value of the Determination Coefficient (R2)
of the obtained model (Table 3). We noticed that the Determination Coefficient is high,
that mean that the model fits well the curves of the Training Database.

Table 3: Average and Relative Standard Deviation of the parameters and the Determination Coefficient
calculated on the Training Database.

Parameter Average Relative standard deviation
ω 9.9 0.009
f 920.3 0.001
r 35.6 0.016
u 139.5 0.001
R2 0.97 0.011
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Figure 12: Distributions of the parameters obtain after the learning step

Figure 13: Examples of results

5.4.2. The model accuracy:
To validate the capability of the tool to learn parameters from noisy data, we cal-

culated the accuracy of the model on the Test Database. To do that we calculated
the RRSS and the Determination Coefficient associated to each curve contained in the
Test Database and we obtained the distributions of those indicators (Figure 14). The
RRSS is low and the Determination Coefficient is high. Hence, the model fits the
curves of the Test Database well.

We compared the R2 (R2
Gener) and the RRSS (RRSSGener) associated to the Gen-

erator model - that is the model used to generate the Learning Database - and the R2

(R2
Fit) and the RRSS (RRSSFit) associated to the Fitted Modele (Figure 14 and Table

4). RRSSFit is low and this value is very close to the value of RRSSGener. The R2
Fit is

high and this value is also very close to the value of R2
Gener. Therefore, those indicators

show that the fitting of the model is well done and the error associated to the adjusted
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model is limited to the amount of noise and individual differences innitially integrated
into the generated database.

Figure 14: Distributions of the RRSS and of the R2 coefficient associated to the Generator Model
and the Fitted Model.

Table 4: Comparison between the indicators associated to the Generator Model and the Fitted Model.

RRSS R2

Generator Model 1082 0.9887
Fitted Model 1119 0.9886

6. Application of the Statistical Learning Tool on field data

In this Section we will present an application of our approach on field data. The
used database is confidential therefore only the dimensionless Inputs and Outputs are
presented in this Section.

6.1. Objectives of this application on field data
The objective of this application is to build a tool able to predict the evolution of a

logistical growth process according to an initial state and intakes.
Adaptations of the base model were done to make it adapted to the evolution of the

variable to predict.

6.2. Adaptation of the model
In order to mimic a logistic behavior, we chose to use as «usage» equation, Equation

(4b) containing a limiter. In this equation Ld corresponds to the maximum value of the
variable to predict. Experts have an idea of the maximum standard value reachable by
this variable. Therefore, during the fitting, the value of Ld minimizing the error of the
model is sought in a restricted range of values.

In total there are five parameters to fit: ωd, rd, fd, ud and Ld.
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6.3. The used data
The used database is made of two parts corresponding to two different individual

groups monitored during two different periods (Table 5). The first group contained 8
individuals, monitored over a unit-period from t = 0 until t = 1. For this group the
variable to predict was measured at t = 0 and at t = 1. The second group contained 7
individuals, monitored from t = 0 until t = 2.5. For this group the variable to predict
was measured at t = 0, t = 0.6, t = 1.52 and at t = 2.5. For the two groups, intakes of
each individual are recorded over each time-step of 0.16 time-unit. Therefore, for each
individual, an information relative to those intakes is periodically injected in the model
with a time step of 0.16.

The dataset concerning the first group constitutes our Training Database and
the dataset concerning the second group constitutes our Test Database. The objec-
tive is to fit the parameters on the Training Database and test the accuracy of the
Fitted Modele on the Test Database.

Table 5: Descritpion of the used data.

First group Second group
Number of individuals 8 7

t = 0 t = 0
Output measured at t = 1 t = 0.60

t = 1.52
t = 2.50

Time step of the Entries injections ∆tIn = 0.16 ∆tIn = 0.16

6.4. Study of the relations existing between the model parameters
As in Section 5.3 we analyzed the relations existing between the model parameters

by applying the same methodology on the field Training Database.

6.4.1. Study of the relations existing between ωd and rd
As in Section 5.3.1 we sought the relation existing between ωd and rd. We sought

for several values of ωd, the value of rd minimizing the error of the model on the
Training Database. To do that we used the algorithm DIRECT.

Thanks to a Nadaraya-Watson kernel regression, we obtained a non-parametric re-
gression linking ωdOpt

and rdOpt
(Figure 15).

Knowing the relation existing between those two parameters, it is possible to deduce
one according to the value of the other one.

6.4.2. Study of the relations existing between fd and ud
As in Section 5.3.3 we sought the relation existing between fd and ud. We sought

for several values of fd, the value of ud minimizing the error of the model on the
Training Database. To do that we used the algorithm DIRECT.

As prevously, thanks to a Nadaraya-Watson kernel regression, we obtained a non-
parametric regression linking fdOpt

and udOpt
(Figure 15).

Knowing the relation existing between those two parameters, it is possible to deduce
one according to the value of the other one.
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Figure 15: The Nadaraya-Watson kernel regression linking the couples (ωdOpt
, rdOpt

) (left) and the
one linking the couples (fdOpt

,udOpt
).

6.5. Fitting of the parameters
We only fitted ωd, fd and Ld and deduced the values of rd and ud.
The parameters are fitted on the Training Database by minimizing the difference

between the simulated and the real Outputs at the instant t = 1. To fit the parameters
we used the algorithm DIRECT minimizing the following objective function:

fobj(ωd, rd, fd, ud, Ld) =
1

n

n∑
i=1

(
(siobs(1)− sjpred(1))

siobs(1)

)2

, (14)

where n is the number of individuals and Oiobs(1) and Oipred(1) correspond respectively
to the value of the observed and the predicted Output value for the ith individual at
t = 1.

To test the stability of the set of values of the parameters minimizing the error of
the model on the Training Database, we performed several fittings. To do that we
sampled the Training Database: before each fitting we randomly selected 7 individuals
from 8 and we fitted the parameters on the data associated to the selected individuals.
Therefore we performed 8 fittings and we obtained 8 sets of values of (ωd, rd, fd, ud, Ld).

6.6. Results
We calculated the average and the Relative Standard Deviation (RSD) of each pa-

rameter (Table 6). The RSD of each parameter is low. This means that our fitting
method permits to identify one set containing the parameter values minimizing the
error associated to the Fitted Modele. The existence of a single optimal set of values
of (ωd, rd, fd, ud, Ld) attests of the identifiability of the model.

We parametrized the model with the average values of the parameters.
We calculated the error associated to the model on the Training Database. To do

that we calculated the Average Relative Error (ARE) between the measured and the
predicted value of the Output at the instant t = 1 (15).
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ARE(t) =
1

n

n∑
i=1

√(
(siobs(t)− sjpred(1))

siobs(t)

)2

(15)

Table 6: Average values and Relative Standard Deviation (RSD) of the adjusted parameters. ARE
calculated at the instant t = 1 on the Training Database.

Parameter Mean RSD
ω 9.24 0.079
r 17.91 0.14
f 707.01 0.36
u 21.49 0.17
Ld 1.70 0.009

ARE(1) (%) 1.83 0.013

The ARE value calculated at the instant t = 1, on the Training Database is worth
1.83%. It is a satisfying result but the accuracy of the model has to be calculated on a
Test Database to assert that the model does not overfit the training data.

To do that we calculated the ARE on the Test Database at the instants t = 0.6,
t = 1.52 and t = 2.5 (Table 7 and Figure 16).

Figure 16: Difference obtained between measured (+) and the predicted (×) values of the Output
variable at different instant t for the individuals of the Test Database.

Table 7: Average Relative Error (ARE) calculated on the Test Database at different instants.

t 0.6 1.52 2.5
ARE(t) (%) 1.3 2.9 1.5

6.7. Discussion of the results
The error associated to the model is low on the Test Database. We also noticed

that the error made before and beyond the t = 1 remains low. This result shows that
the model is able to learn dynamics on a certain period and to remain pertinent on a
period 2.5 times longer than the training period. Therefore the model has an interpo-
lation and an extrapolation capability.
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7. Comparison with existing growth models

According to Vázquez-Cruz et al. (2014) and Guzmán-Cruz et al. (2011), among
the existing methods to simulate and predict logistical growth processes, two types of
models are distinguished: The Phenomenological Models corresponding to the «Black
Box» models, and the Mechanistic Models corresponding to the «White Box» models.
In this Section we will compare some models belonging to these two types of models
with the Biomimetic Model introduced in this paper.

7.1. The Phenomenological Models
As defined in Vázquez-Cruz et al. (2014), the Phenomenological Models are «Black

Box» models corresponding to direct descriptions of the data. This type of models
comprise Linear, Multiple Linear and Nonlinear Regressions, but also Logistic Models
and Neuronal Networks. We chose to compare our Biomimetic Model with Logistic
Models and Neuronal Networks.

7.1.1. Comparison between the Biomimetic Growth Model with Classical Logistic Growth
Models

The models of Gompertz (1825),

dN(t)

dt
= aG.N(t). ln

(
KG

N(t)

)
, (16)

and Verhulst (1838),

dN(t)

dt
= aV .N(t).

(
1− N(t)

KV

)
, (17)

are two models usually used to model growth processes (See for example: Winsor (1932),
Sakomura et al. (2005), Buyse et al. (2004), Robertson (1916), Robertson (1923) and
Román-Román and Torres-Ruiz (2012)). The models built by Gompertz and Verhulst
are based on the hypothesis that growth processes are bounded respectively by KG
and KV .

We fitted the parameters of the Gompertz’s and the Verhulst’s models on our
Training Database by using the same optimization algorithm that we used to fit the
Biomimetic Model. As the Biomimetic one, those two classical models are fitted by
minimizing ARE(1).

On the Training Database, the Biomimetic Model is associated to the highest
accuracy (Table 8), but the accuracy of the different models is globally similar on this
dataset.

To test and compare the accuracy of the different models we calculated on the
Test Database the Average Relative Accuracy, ARA (18) at different s t.
To do that we used the three parametrized model to generate the growth curve of each
individual contained in the Test Database and we compared the measured and the
predicted values at t = 0.6, t = 1.52, t = 2.5.
The results contained in Table 8 and the curves of Figures 17 and 18 show that the

23



curves generated from the Gompertz’s model featured a too quick slow-down. However,
the Verhulst’s model is associated to a good accuracy over the whole studied period.

The similarity between the results coming from the model of Verhulst and the
Biomimetic Growth Model was expected. Indeed, an equation assimilable to the Ver-
hulst’s equation is integrated in our model (See Section 3.2). The real advantage of
the biomimetic growth model is its Data Assimilation capability. Indeed the Verhulst’s
equation only takes into account the initial conditions of the system under study. Our
model takes into account the initial conditions but it also integrates Inputs all along the
studied period. The integration of additional information appears to allow the refining
of the results and the increase in the accuracy of the model.

ARA = 1− ARE (18)

Table 8: Parameters values and ARA(1) calculated on the Training Database.

Model a K ARA(1)
Gompertz aG = 0.412 KG = 0.563 0.978
Verhulst aV = 0.411 KV = 1.563 0.979

Biomimetic 0.981

Table 9: The ARA calculated on the Test Database at different instants associated to different models.

t Verhulst Gompertz Biomimetic
0.6 0.985 0.980 0.986
1.52 0.968 0.937 0.971
2.5 0.979 0.923 0.985

Figure 17: Predicted growth curves of each individual contained in the Test Database from different
models.
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Figure 18: Plot of the predicted growth curves of two individuals contained in the Test Database with
the different models.

7.1.2. Comparison between the Biomimetic Growth Model and Neural Networks
We applied different Neural Networks on our Training Database in order to compare

the capacities of this kind of ML tools and the ones of our Biomimetic Growth Model.
We tested six Neural Networks having different numbers of nodes and hidden layers
(Table 10) and taken as Inputs the initial state of each individual and their periodically
recorded intakes.

Table 10: The ARA calculated on the Train Database (ARATrain), and on the Test Database
(ARATest), at t = 1, with different Neural Networks. The Neural Network (k1,...,ki,...,kn) corresponds
to a NN containing n hidden layers and the ith hidden layer contains ki nodes.

Structure ARATrain(1) (%) ARATest(1) (%)
(4) 99.9 78.8

(4, 3) 99.8 90.5
(6, 5) 99.7 93.4

(4, 6, 6, 3) 99.9 94.8
(5, 7, 7, 7, 4) 99.8 95.3
(5, 9, 9, 9, 5) 99.9 93

We fitted each tested Neural Network on our Training Database by using the R-
function neuralnet developped by Fritsch et al. (2012), and we calculated the accuracy
of those Neural Networks on the Training and on the Test Database.

The results contained into Table 10 show that all the tested NN fit very well the
curves of the Training Database, but less the curves of the Test Database. So those
NN overfit the training curves and even more when the structure of the studied NN is
made of too much or too little nodes and hidden layers. Indeed, we noticed that the
accuracy of the NN on the Test Database increase until a certain number of nodes and
hidden layers and then decrease when the complexity of the structure still increases.
The higher accuracy value is reached by using a NN containing 5 hidden layers but it
is less high than the one obtained by using the Biomimetic Model (Table 10).

Therefore in the framework of the study of a globally well known process with few
available data, the NN overfit the training curves and remain less accurate than the
built Biomimetic Model.
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Nevertheless the accuracy of those ML tools is satisfying and the real advantage of
the Biomimetic Model over the NN does not correspond to its prediction capability.
Indeed, as the Biomimetic Model, the studied NN are fitted only from the value of the
Output at t = 1. In this case, the fitted classical NN can only be used to predict the
Output at t = 1. Hence, the NN do not have interpolation or extrapolation capacities,
contrary to the Biomimetic Model.

7.2. The Mechanistic Growth Models
Some Mechanistic specific and complex Growth Models have been developed by

Bastianelli et al. (1996), Mach and Kristkova (2010), Brun-Lafleur et al. (2013) and
Zúñiga et al. (2014). Those models integrate numerous Inputs and some of them are
not available in our study. Hence, those models can not be applied on our database.
Therefore we just compared the structure, the functioning and the objectives of the
Mechanistic Explanatory Models and the Biomimetic Model.

As for the Biomimetic Model the goal of these kind of models is to integrate existing
knowledge in a mathematical model, but more with the purpose to build realistic and
explanatory model than to perform Data Assimilation. Indeed, as it is said in Vázquez-
Cruz et al. (2014), Tedeschi et al. (2005), Bastianelli and Sauvant (1997) and Beever
et al. (1991), those Mechanistic Growth Models remain abstractions of the reality,
but those models are used to perform quantitative analysis, in the framework of very
specific process studies. So the construction of those models is generally focused on the
biological meaning of the global model. This objective explains the need to take into
account the dynamics of the system under study with higher precision.

Therefore the construction of the explanatory mechanistic models takes time, needs
a lot of zootechnical knowledge and results in complex models. As it is explained in
Wallach et al. (2001), Bastianelli and Sauvant (1997) and Emmans (1995), those models
contain a large number of unknown parameters and take into account a lot of factors,
forcing the user to enter a large number of Input values sometimes difficult or costly to
obtain. Hence, the complex structure of those models makes the Mechanistic Realistic
Model not really suitable to perform Data Fitting and Data Assimilation.

Therefore, the structure of those two types of models are very different but pertinent
in the light of the respective objectives of those modeling methods.

8. Conclusion

To conclude, we can say that we built a Biomimetic Statistical Learning Tool
based on a PDE system, embarking the mathematical expression of biological deter-
minants. The performed tests and the application on field data showed that this tool
is associated to a satisfying accuracy.

The comparison of our Biomimetic Model with existing models showed that the
structure and the functionning of the tested models are very different but appropriate
and suitable for their respective objectives and fields of application. In the context of
developing tools to simulate and predict biological phenomena from very few data, the
built Biomimetic Statistical Learning Tool is the most accurate. But this tool really
stands out from the existing tools by an interpolation and an extrapolation capacities
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and also by its flexibility and its Data Assimilation capability.

Nevertheless the results coming from the Biomimetic Model was obtained from a
certain number of hypothesis. Some Model Selection methods could be applied in order
to select the Mathematical Model structure permitting to obtain a more satisfying
model in terms of ARE and number of parameters to learn.
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of Statistics, Series A, pp. 359–372.

Weisstein, E. W. (2014). “Courant-friedrichs-lewy condition”. In: Wolfram MathWorld–
A Wolfram Web Resource.

Winsor, C. P. (1932). “The Gompertz Curve as a Growth Curve”. In: Proceedings of
the National Academy of Sciences 18.1, pp. 1–8. issn: 0027-8424. doi: 10.1073/
pnas.18.1.1. eprint: https://www.pnas.org/content/18/1/1.full.pdf. url:
https://www.pnas.org/content/18/1/1.

Zúñiga, E. C. T., I. L. L. Cruz, and A. R. García (2014). “Parameter estimation for
crop growth model using evolutionary and bio-inspired algorithms”. In: Applied Soft
Computing 23, pp. 474 –482. issn: 1568-4946. doi: https://doi.org/10.1016/
j.asoc.2014.06.023. url: http://www.sciencedirect.com/science/article/
pii/S156849461400297X.

32

https://doi.org/10.1007/978-3-319-03880-3_2
https://doi.org/10.1007/978-3-319-03880-3_2
https://doi.org/10.1007/978-3-319-03880-3_2
https://ci.nii.ac.jp/naid/10015246307/en/
https://ci.nii.ac.jp/naid/10015246307/en/
https://doi.org/10.1073/pnas.18.1.1
https://doi.org/10.1073/pnas.18.1.1
https://www.pnas.org/content/18/1/1.full.pdf
https://www.pnas.org/content/18/1/1
https://doi.org/https://doi.org/10.1016/j.asoc.2014.06.023
https://doi.org/https://doi.org/10.1016/j.asoc.2014.06.023
http://www.sciencedirect.com/science/article/pii/S156849461400297X
http://www.sciencedirect.com/science/article/pii/S156849461400297X

	Introduction
	Problem description
	Biological modeling: difficulties and challenges
	Exploration of an intermediate approach: The Model-Data Coupling

	Structure and discretization of the Mathematical Model
	Description of the Mathematical Model
	The <<usage>> equation
	Initial and boundary conditions
	The model parameters

	Study of the Mathematical Model functioning
	Mathematical study of the model and its discretization
	Study of the ranges of values of the parameters

	Simulation tests of the learning capability of the model
	Generation of a Learning Database
	Integration of individual variability
	Generation of fictitious Inputs
	Addition of a random noise

	Study of the compensation effects
	Study of the relation existing between  and r
	Search of the couples (dOpt,rdOpt) inducing the lowest RRSS
	Study of the relation between the parameters fd and ud
	Search of the couples (fdOpt, udOpt) inducing the lowest RRSS

	Fitting of the parameters and calculation of the model accuracy
	Fitting of d and fd:
	The model accuracy:


	Application of the Statistical Learning Tool on field data
	Objectives of this application on field data
	Adaptation of the model
	The used data
	Study of the relations existing between the model parameters
	Study of the relations existing between d and rd 
	Study of the relations existing between fd and ud

	Fitting of the parameters
	Results
	Discussion of the results

	Comparison with existing growth models
	The Phenomenological Models
	Comparison between the Biomimetic Growth Model with Classical Logistic Growth Models
	Comparison between the Biomimetic Growth Model and Neural Networks

	The Mechanistic Growth Models

	Conclusion

