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Abstract 

When entering tissues, monocytes can differentiate into cells that share morphological and 

functional features with either dendritic cells (DC) or macrophages. Monocyte-derived DC 

have been observed in humans at mucosal tissues and in inflammatory settings, where they 

are usually referred to as « inflammatory DC ». In this chapter, we review recent studies on 

the characterization of these cells in humans. We also discuss nomenclature and examine the 

criteria defining in vivo-differentiated human mo-DC.  
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1. Introduction 

Monocytes have long been used as precursor cells for the in vitro generation of human 

dendritic cells (DC) [1]. However, it has become clear that, in vivo, most DC derive from a 

specific precursor, termed pre-DC, distinct from monocytes [2-8]. The physiological 

relevance of monocytes as DC precursors was demonstrated in the mouse in a Leishmania 

infection model in which monocytes could differentiate in vivo into cells that shared 

phenotypic and functional features with DC [9]. Numerous subsequent studies in mice have 
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shown that DC can differentiate in vivo from monocytes in various inflammatory settings, 

including infections and models of auto-immune diseases [10, 11]. Because they arise during 

inflammation, these in vivo-differentiated monocyte-derived DC (mo-DC) were initially 

termed « inflammatory DC ». However, this term can be misleading as it implies that mo-DC 

are « inflammatory » by essence. Yet, mo-DC can be found in mice in the absence of 

inflammation at mucosal sites, such as the intestine and the skin [12-14], and in skeletal 

muscles [15].  

In the classification of DC lineages based on ontogeny [16], mo-DC represent a 

separate DC subset. Importantly, monocytes can also differentiate into macrophages, which 

are distinct from “resident” macrophages derived from embryonic precursors [17] (figure 1). 

Whether mo-DC are fundamentally distinct from monocyte-derived macrophages (mo-Mac), 

and how to distinguish these two populations has been controversial. In this chapter, we will 

cover in vivo-differentiated human mo-DC, both generated in the steady-state (referred to as 

« steady-state mo-DC ») and arising during inflammation (referred to as « inflammatory mo-

DC »). We will also discuss recent data on the molecular requirements for mo-DC versus mo-

Mac differentiation.  

 

2. Definition of human in vivo-differentiated mo-DC 

2.1 Identification of human inflammatory mo-DC 

« Inflammatory dendritic epidermal cells » (IDEC) were first described in the skin of 

atopic dermatitis patients [18]. These cells were absent from healthy skin and characterized by 

a surface phenotype distinct from that of Langerhans cells. Subsequently, IDEC were also 

identified in the skin of psoriasis patients [19]. Another study reported in the skin of psoriasis 

patients the presence of a population of « inflammatory dermal DC », phenotypically distinct 

from the dermal DC found in healthy skin [20]. Whether these inflammatory DC represented 



 3

an activated form of classical DC or were related to monocytes was not investigated at the 

time. 

Several lines of evidence suggest that in humans, as in mice, monocytes recruited to 

inflammatory sites can differentiate into DC. Radio-labelled autologous monocytes are 

recruited to the gut in inflammatory bowel disease patients [21] and monocyte numbers are 

increased in the intestine of Crohn’s disease and ulcerative colitis patients compared to 

healthy donors [22]. Influx of monocytes were also observed in cantharidin-induced skin 

blisters [23], in the peritoneum of patients with dialysis-related peritonitis [24] and in the 

nasal mucosa of subjects with induced allergic rhinitis [25]. In the latter study, monocytes 

were recruited in the nasal mucosa within hours after allergen challenge while a new 

population of DC appeared after 3 days, consistent with the potential differentiation of 

monocytes into mo-DC. Moreover, we have identified in synovial fluid from rheumatoid 

arthritis patients and in peritoneal ascites from cancer patients a population of « inflammatory 

DC » with a phenotype different from that of classical blood DC [26]. We showed by 

transcriptomic analysis that these cells represent a distinct DC subset and share gene 

signatures with in vitro-generated monocyte-derived cells, supporting the idea that these 

inflammatory DC are more closely related to monocytes than to classical DC [26, 27]. 

Finally, mo-DC have been evidenced in human lung and colorectal tumors, based on their 

phenotypic similarity with tumor-associated mo-DC in mice tumor models [28]. 

Collectively, these results support the notion that monocytes recruited to inflammatory 

sites can differentiate in situ into mo-DC in humans.   

 

2.2 Defining features of in vivo-differentiated mo-DC 

DC have been traditionnally defined based on 1) their distinctive morphology, with the 

presence of dendrites ; 2) their superior ability to activate naive T cells ; 3) their capacity to 
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migrate to lymph nodes. In addition, distinct DC subtypes can be defined based on their 

ontogeny and their requirement for distinct transcription factors [16]. However, because these 

properties can be difficult to investigate in humans, most studies rely on the differential 

expression of phenotypic markers to distinguish DC from other myeloid cells, and DC subsets 

from one another.  

 Human inflammatory mo-DC are HLA-DR+CD11c+ cells that express markers found 

on classical DC such as CD1c, CD1a, CD1b, FcεRI, as well as molecules that are also 

expressed by macrophages including CD206, CD14 and CD11b [19, 25, 26, 28, 29]. By 

contrast, they lack the macrophage markers CD16 and CD163 [26] [28]. Inflammatory mo-

DC can also be distinguished from macrophages by their morphology (figure 2) and their 

capacity to stimulate T cell proliferation [20, 26].  

 

2.3 Molecular ontogeny of mo-DC  

The relationship of mo-DC to monocytes is suggested by their expression of CCR2, a 

chemokine receptor essential for monocyte recruitment into peripheral tissues [30]. However, 

this is not an absolute marker of monocyte-derived cells, as a CCR2+ DC population from 

mouse intestine has been shown to derive from pre-DC [31]. 

The ontogeny of human DC is usually inferred from the analysis of gene patterns and 

specific transcription factors, but can also be analyzed using in vitro differentiation models [6, 

7, 16]. Inflammatory mo-DC from ascites express a unique combination of transcription 

factors that are either shared with classical DC (IRF4, BATF3, ZBTB46) or with 

macrophages (EGR1, EGR2), but they do not express MAFB which is restricted to 

macrophages [26]. Using a novel model of human monocyte differentiation, we have recently 

shown that MAFB controls monocyte differentiation into mo-Mac, while IRF4, BLIMP-1 and 

Aryl Hydrocarbon Receptor (AHR) are essential for monocyte differentiation into mo-DC 
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[27]. Moreover, patients suffering from systemic juvenile idiopathic arthritis underexpress 

AHR in their monocytes, which are biaised towards mo-Mac differentiation [32].  

Precursors of human classical DC have been shown to be pre-committed to either 

lineage at an early stage [8]. By contrast, single-cell RNA-seq analysis of human CD14+ 

monocytes has revealed that monocytes do not contain two populations that would be pre-

committed to differentiate into mo-DC versus mo-Mac [27]. Rather, blood CD14+ monocytes 

are programmed to spontaneously differentiate into blood CD16+ monocytes [33], unless they 

extravasate into tissues. Monocytes express a partial mo-Mac gene signature, suggesting they 

may possess in tissues a default differentiation pathway into macrophages unless they 

encounter specific cues, such as inflammatory cytokines and AHR ligands [27]. Because their 

differentiation is governed by distinct transcription factors, mo-DC and mo-Mac do not 

represent variations of a highly plastic cell population as previously proposed [16], but rather 

are bona fide cell lineages derived from monocytes (figure 3). 

 

2.4 Slan-DC  

CD16+ cells that express a 6-sulfo LacNAc modification of the P selectin glycoprotein 

ligand 1 (PSGL-1) have been termed « slan-DC » and proposed to represent an inflammatory 

subtype of DC based on their capacity to produce large amounts of TNF-α upon stimulation 

[34].  These cells were initially described in the blood, but can also be found in tissues such as 

the skin of psoriasis patients [35], tumor-draining lymph nodes [36], intestinal lamina propria 

[37], mesenteric lymph nodes and intestinal mucosa of Crohn’s disease patients [38], renal 

carcinoma [39], tonsil [36] and brain lesions of patients with multiple sclerosis [40]. 

Comparative transcriptomic analysis identified slan-DC as a subset of CD16+ monocytes [41, 

42] and showed that they are distinct from the DC lineage [43]. These results are further 

supported by functional analysis showing that slan-DC are poor antigen-presenting cells 
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compared to classical DC [41, 43]. In addition, slan-DC do not express CCR7 [39] and exhibit 

a macrophage morphology in tissues [37]. These observations suggest that slan-DC may be a 

specialized monocyte subset rather than mo-DC.  

 

2.5 A practical key to identify human mo-DC from biological samples 

 Most studies rely on a small number of surface markers to distinguish cell populations. 

Because macrophages, monocytes, mo-DC and classical DC subsets display overlapping 

phenotypes, identifying these different populations in biological samples can be challenging. 

Based on the results discussed above, we propose that several categories of criteria should be 

combined for identifying human in vivo-differentiated mo-DC :  

1) Phenotype. Mo-DC are HLA-DR+CD11c+CD14intCD206+CD1c+ cells. Additional useful 

markers to distinguish them from other myeloid cells are shown in Table 1.  

2) DC Function. Mo-DC possess typical DC functions, including the ability to efficiently 

stimulate naive T cells and the capacity to express CCR7 (potentially enabling their migration 

to lymph nodes). 

3) DC morphology. Mo-DC display a typical DC morphology : they are of small size, possess 

dendrites and lack large cytoplasmic vacuoles (as opposed to macrophages) (figure 2). 

4) Ontogeny. Mo-DC derive from monocytes, which can be assessed by analyzing gene 

signatures or the expression of CCR2. Mo-DC can be distinguished from mo-Mac by the 

expression of specific transcription factors such as IRF4 and AHR, and the absence of MAFB 

expression. 

 

3. Distribution of human mo-DC  

3.1 Human steady-state mo-DC in mucosal tissues  
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Several studies have analyzed the composition of myeloid cells at mucosal sites, 

including cells displaying the phenotype of mo-DC. Lungs of healthy donors comprise a 

population of CD14+CD206+CD1c+CD1a+ cells that express IRF4 [44]. 

CD14+CD206+CD1c+CD163- cells are also present in the broncho-alveolar lavage (BAL) of 

healthy volunteers and express IRF4 and CCR2 [45]. Another study reported the presence of 

CD14+CD1c+CD1a+ DC in the BAL of healthy volunteers and showed that these cells can 

upregulate CCR7 [46]. In addition, transcriptomic analysis indicated that this population 

overexpresses CCR2, CD206 and CD11b [46]. These results suggest that mo-DC are present 

in human lungs at the steady-state.  CD14lowCD206+CD1c+CD1a+FcεRI+CD11b+ cells can 

also be found in the peritoneum as shown through the analysis of dialysate of patients, with or 

without dialysis-induced peritonitis [24]. These cells express CCR2, IRF4 and upregulate 

CCR7 upon activation [24], suggesting they are mo-DC .  

Three main DC populations were identified in the small intestine, including a CD1c+ 

CD11b+ population that was increased in patients with hyperemic mucosa (i.e. with increased 

redness and blood flow, consistent with inflammation) [47]. The transcriptomic signature of 

this population was closer to blood monocytes than to classical blood DC, suggesting they are 

mo-DC.  

Finally, whether mo-DC are present in human skin in the steady-state remains unclear. 

Dermal CD14+ DC were initially proposed to be mo-DC based on their reconstitution by 

donor-derived cells after hematopoietic stem cell transplantation and on their transcriptional 

proximity with blood monocytes [48, 49]. However, this population may be heterogeneous 

and a large proportion of them have been shown to be actually monocyte-derived 

macrophages [50].  

 

3.2 Human mo-DC in cancer 
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Several studies in mouse models have shown that circulating monocytes are recruited 

to tumors and can differentiate at the tumor site [51-53]. It is therefore likely that human 

tumors contain inflammatory mo-DC within the myeloid infiltrate, but this question has been 

little studied. Tumor-associated mo-DC have been identified based on their phenotype in lung 

and colorectal tumors [28]. CD14+CD1c+ cells, which may be mo-DC, have also been 

observed by histology in melanoma skin lesions and colon metastasis [54]. Finally, a single-

cell analysis of lung adenocarcinoma has evidenced that some CD1c+ DC express 

monocyte/macrophage markers (CD14, CCR2, CD206, CD64, CD11b), which could indicate 

the presence of a population of mo-DC [55] . 

 

3.3 Human mo-DC in blood 

 Human mo-DC have been identified in a variety of tissues (Table 2), but whether 

circulating mo-DC are present in the blood remains unclear. Blood CD14+CD1c+CD11b+ 

cells have been described, but these cells do not express CD206 nor CD1a [54]. This 

population is elevated in the blood of melanoma patients compared to healthy donors. 

Comparative transcriptomic analysis showed that this population is closely related to 

monocytes, but whether they are a subpopulation of monocytes or bona fide mo-DC requires 

further investigation.  

In addition, single-cell RNA-seq analysis showed that blood CD1c+ DC comprise two 

distinct subgroups, one of which was termed « inflammatory » [5]. These « inflammatory » 

CD1c+ DC express mRNA for CD14, but not the protein at the cell surface. They can be 

separated from the other CD1c+ DC subgroup by their differential expression of CD163 and 

CD36. Despite being termed « inflammatory », these cells are transcriptionnally closer to 

classical DC rather than to monocytes, and are most likely derived from pre-DC. The 

properties of these two CD1c+ DC populations remain to be characterized.  
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4. Functional properties of in vivo-differentiated mo-DC 

Due to the difficulty of isolating human mo-DC directly from biological samples, 

there is limited data on their functional properties. Human mo-DC efficiently activate CD4 

and CD8 T cells in ex vivo assays [20, 24, 26]. Peritoneal mo-DC secrete IL-6, TNF-α, IL1-β 

and IL-12p70 upon ex vivo restimulation [24].  Mo-DC from BAL also secrete TNF-α upon 

restimulation, but their ability to secrete other cytokines was not reported [45]. By contrast, 

inflammatory mo-DC from tumor ascites secrete IL-6, TNF-α, IL1-β without the need for ex 

vivo restimulation, suggesting they are already activated in situ by the inflammatory 

environment [26]. Ascites mo-DC, but not macrophages, also secrete IL-12p70 and IL-23 

upon ex vivo restimulation [26].  

Consistent with their ability to produce IL-23, inflammatory mo-DC from tumor 

ascites and from synovial fluid from rheumatoid arthritis patients are potent inducers of Th17 

polarization ex vivo [26]. Inflammatory mo-DC from the skin of psoriasis patients also induce 

Th17 polarization ex vivo [20]. Because Th17 cells play a major role in tissue damage in these 

diseases, these results suggest that inflammatory mo-DC could be invoved in the pathogenesis 

by fueling the inflammation. Nevertheless, the properties of inflammatory mo-DC will likely 

be influenced by their micro-environment, and their T cell-polarizing ability may be different 

in a Th1- or Th2-driven pathology.  

 

Conclusion and perspectives 

The literature discussed in this chapter indicates that mo-DC are present in vivo in humans 

and represent a bona fide DC subset. Recent technical advances, such as single-cell 

transcriptomic analysis, may reveal mo-DC populations in additionnal tissues or pathological 

situations. A major challenge is to better understand their functional properties and potential 
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role in the physiopathology of inflammatory disorders or cancer. This would pave the way for 

manipulating mo-DC differentiation or function for therapeutic intervention.  
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Figure legends 

Figure 1. Ontogeny of macrophages and dendritic cells. Macrophages and dendritic cells 

(DC) populations can be divided into two categories based on their ontogeny: derived from 

monocytes or from dedicated precursors.  

Figure 2. Morphology of human DC versus macrophages. DC and macrophages from the 

synovial fluid of rheumatoid arthritis patients were isolated and their morphology analyzed 

after cytospin and Giemsa/May-Grünwald staining. Typical DC morphology includes a small 

size, the presence of dendrites and the lack of internal vacuoles. Bar = 10 µm. 

Figure 3. Molecular ontegeny of monocyte-derived cells. In response to external signals 

(cytokines and AHR ligands), monocytes differentiate either into macrophages or dendritic 

cells. Transcription factors governing these two pathways are shown.  
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Table 1. Phenotypic markers for classical DC, mo-DC, monocytes and macrophages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Human tissues in which mo-DC have been identified. 

 

 

 

 

Surface 

markers 

cDC1 cDC2 Macrophage mo-DC CD14+ 

monocytes 

Slan-

DC 

HLA-

DR 

+ + + + + + 

CD11c + + + + + + 

CD1c - + - + - - 

CD1a - Tissue-

dependent 

- + - - 

CD1b - Tissue-

dependent 

- + - - 

CD141 + low low + - - 

CD14 - - + intermediate + - 

CD16 - - Tissue-

dependent 

- -/low + 

CD206 - Tissue-

dependent 

+ + - - 

Clec9A + - - - - - 

CD163 - - Tissue-

dependent 

- - - 

CD11b - Tissue-

dependent 

+ + + + 

MerTK - - + - - - 

FceRI - Tissue-

dependent 

- + - - 

Slan  

(M-

DC8) 

- - - - - + 

Tissue Condition Reference 

BAL healthy [45] 

BAL healthy [46] 

Colorectal tumor cancer [28] 

Intestine healthy [47] 

Lung healthy [44] 

Lung tumor cancer [28] 

Lung tumor cancer [55] 

Melanoma cancer [54] 

Nasal mucosa allergic rhinitis [25] 

Peritoneum healthy [24] 

Peritoneum peritonitis [24] 

Peritoneum tumor ascites [26] 

Skin atopic dermatitis [18] 

Skin psoriasis [19] 

[20] 

Synovial fluid rheumatoid arthritis [26] 










