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FLUCTUATIONS OF LINEAR SPECTRAL STATISTICS OF DEFORMED WIGNER MATRICES

We investigate the fluctuations of linear spectral statistics of a Wigner matrix W N deformed by a deterministic diagonal perturbation D N , around a deterministic equivalent which can be expressed in terms of the free convolution between a semicircular distribution and the empirical spectral measure of D N . We obtain Gaussian fluctuations for test functions in C 7 c pRq (C 2 c pRq for fluctuations around the mean). Furthermore, we provide as a tool a general method inspired from Shcherbina and Johansson to extend the convergence of the bias if there is a bound on the bias of the trace of the resolvent of a random matrix. Finally, we state and prove an asymptotic infinitesimal freeness result for independent GUE matrices together with a family of deterministic matrices, generalizing the main result from [Shl18].

Introduction

The celebrated Wigner's Theorem [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] states that the empirical spectral measure (i.e. the uniform distribution on the eigenvalues) µ WN of a suitably rescaled Hermitian matrix W N with independent entries having mean 0 and variance σ 2 , now known as a Wigner matrix, weakly converges in probability to the semicircular distribution µ σ 2 with density p2πσ 2 q ´1? 4σ 2 ´x2 1 r´2σ;2σs pxq. It is remarkable that the limit distribution is non random and universal, in the sense that it depends on the distribution of the entries only through their variance σ 2 . Hence, for every test function ϕ : R Ñ C in a set including bounded continuous functions and indicator functions of intervals, the linear spectral statistic ş R ϕpxqµ WN pdxq converges in probability to ş R ϕpxqµ σ 2 pdxq. It is then natural to investigate fluctuations of ş R ϕpxqµ WN pdxq around its limit ş R ϕpxqµ σ 2 pdxq. This question has attracted a lot of attention in the past decades. For Wigner matrices with Gaussian entries, results were obtained by a careful analysis of the explicit density of the eigenvalue point process [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF], exploiting its determinantal structure [START_REF] Costin | Gaussian fluctuation in random matrices[END_REF], or by a dynamical approach using stochastic calculus [START_REF] Cabanal-Duvillard | Fluctuations de la loi empirique de grandes matrices aléatoires[END_REF]. For more general entries, the question was first attacked in [START_REF] Khorunzhy | Asymptotic properties of large random matrices with independent entries[END_REF] for particular test functions ϕ z : x Þ Ñ pz ´xq ´1, z P CzR, for which the linear spectral statistic is the Stieltjes transform of µ WN . Recall here the definition of the Stieltjes transform G µ of a Borel probability measure µ on R:

G µ pzq " ż R ϕ z pxqµpdxq, z P CzR.
See also [START_REF] Bai | On the convergence of the spectral empirical process of Wigner matrices[END_REF][START_REF] Bao | CLT for linear spectral statistics of Hermitian Wigner matrices with general moment conditions[END_REF][START_REF] Benaych-Georges | Fluctuations of linear statistics of half-heavy-tailed random matrices[END_REF] for similar investigations. Other approaches, for polynomial test functions using combinatorial arguments in [START_REF] Sinai | Central limit theorem for traces of large random symmetric matrices with independent matrix elements[END_REF] or for test functions with sufficiently fast decaying Fourier transform using Fourier analysis in [START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of the Wigner and the sample covariance random matrices[END_REF][START_REF] Lytova | Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF], have been developed.

It appeared that these fluctuations depend on more moments (up to the fourth) of the entries of the Wigner matrix and on the regularity of the test function. When entries have the same finite fourth moment and the test function has enough regularity, fluctuations are of scale N ´1 and of Gaussian nature. More precisely, the following result is a reformulation of the main result in [START_REF] Bao | CLT for linear spectral statistics of Hermitian Wigner matrices with general moment conditions[END_REF]:

Theorem 1. Let W N be a Wigner matrix satisfying the assumptions (H1), (H2), (H3) in Section 2 below. Then, for analytic ϕ : R Ñ R, the linear spectral statistic ş R ϕpxqµ WN pdxq of W N satisfies the following: N ´żR ϕpxqµ WN pdxq ´żR ϕpxqµ σ 2 pdxq ¯ñ N `b0 pϕq, V 0 pϕq " C 0 pϕ, ϕq ˘, where b 0 and C 0 are uniquely determined by b 0 pϕ z q " ´G1 µ σ 2 pzqG µ σ 2 pzq `s2 ´σ2 `τ 2 G µ σ 2 pzq 2 1 ´τ G µ σ 2 pzq 2 `κG µ σ 2 pzq 2 ˘, z P CzR;

C 0 pϕ z1 , ϕ z2 q " G 1 µ σ 2 pz 1 qG 1 µ σ 2 pz 2 q " s 2 ´σ2 ´τ `2κG µ σ 2 pz 1 qG µ σ 2 pz 2 q `σ2 p1 ´σ2 G µ σ 2 pz 1 qG µ σ 2 pz 2 qq 2 `τ p1 ´τ G µ σ 2 pz 1 qG µ σ 2 pz 2 qq 2 ı , z 1 , z 2 P CzR.

For discontinuous test functions such as indicator functions of intervals, fluctuations are still Gaussian but with different scale, mean and variance [START_REF] Costin | Gaussian fluctuation in random matrices[END_REF][START_REF] Dallaporta | A note on the central limit theorem for the eigen-value counting function of Wigner matrices[END_REF][START_REF] Landon | Applications of mesoscopic CLTs in random matrix theory[END_REF]. Note that the optimal regularity assumption on test functions for Theorem 1 to hold is still an active field of research [START_REF] Bai | CLT for linear spectral statistics of Wigner matrices[END_REF][START_REF] Shcherbina | Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices[END_REF][START_REF] Sosoe | Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices[END_REF][START_REF] Kopel | Regularity Conditions for Convergence of Linear Statistics of GUE[END_REF]. Gaussian fluctuations with different scale, mean and variance also hold for linear spectral statistics of the form ş R ϕ z pxqµ WN pdxq when the entries of the Wigner matrix have an infinite fourth moment ( [START_REF] Benaych-Georges | Fluctuations of linear statistics of half-heavy-tailed random matrices[END_REF]; see also [START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF] for the case of non square integrable entries, in which case Wigner's Theorem fails to hold [START_REF] Ben Arous | The spectrum of heavy tailed random matrices[END_REF]). When entries of the Wigner matrix are not identically distributed in such a way that their variances differ (these matrices are called band matrices or sometimes Wigner matrices with variance profile), fluctuations of linear spectral statistics have also been described (see [START_REF] Adhikari | Linear eigenvalue statistics of random matrices with a variance profile[END_REF] and references therein).

In this paper, we focus on deformed Wigner matrices, i.e. sums X N of a Wigner matrix W N and a deterministic Hermitian matrix D N whose empirical spectral measure ν N weakly converges to a Borel probability measure ν 8 . They were introduced by [START_REF] Porter | Statistical properties of atomic and nuclear spectra[END_REF] as a generalization of Wigner's model for energy levels of nuclei, and had several other applications afterwards. The weak convergence of the empirical spectral measure µ N of X N was first proved by Pastur in [START_REF] Pastur | The spectrum of random matrices[END_REF] (see also [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF]): µ N weakly converges (in probability) towards the unique Borel probability measure ρ on R satisfying the so-called Pastur equation:

(1) G ρ pzq " G ν8 pz ´σ2 G ρ pzqq, z P CzR.

The empirical spectral measure µ N of W N `DN is related via its moments to the noncommutative distribution of pW N , D N q in the noncommutative probability space of random matrices with entries having finite moments of any order pM N pL 8´q , EN ´1 Trq. Under some additional assumptions, W N and D N have been proved in [START_REF] Dykema | On certain free product factors via an extended matrix model[END_REF][START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Mingo | Free probability and Random matrices[END_REF] to be asymptotically free, in the sense of free probability theory (see [START_REF] Voiculescu | of CRM Monograph Series[END_REF] for an introduction to free probability theory). As a consequence, the weak limit ρ of µ N is the distribution of the sum of free selfadjoint noncommutative random variables respectively distributed according to the limiting empirical spectral measures of W N and D N . In other words, ρ is the free additive convolution of the semicircular distribution µ σ 2 and ν 8 . Voiculescu noticed in [Voi93] that the Stieltjes transform of the free additive convolution µ ' ν of two Borel probability measures µ, ν on R is generically subordinated (in the sense of Littlewood) to the Stieltjes transform of ν: there exists an analytic self-map ω : C `Ñ C `of the upper half-plane C `:" tz P C, Iz ą 0u such that G µ'ν pzq " G ν pωpzqq, z P C `. When µ " µ σ 2 is the semicircle distribution with variance σ 2 and ν " ν 8 , then ωpzq " z ´σ2 G ρ pzq and the subordination equation coincides with Pastur equation (1).

The fluctuations of linear spectral statistics of deformed Wigner matrices were studied in [START_REF] Khorunzhy | On a property of strong selfaverageness in Wigner and Wegner ensembles of random matrices[END_REF] in the case of deformed GOE (real Gaussian entries) via the resolvent approach and discussed in [START_REF] Guionnet | Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices[END_REF] in the case of deformed GUE (complex Gaussian entries) via a dynamical approach. See also [START_REF] Su | Fluctuations of deformed Wigner random matrices[END_REF] and [START_REF] Benaych-Georges | Empirical spectral distribution of a matrix under perturbation[END_REF] for related works where W N and D N have different scales. More recently, deformed Wigner matrices with more general entries but for rank one deformations D N were considered, in relation with the free energy of the spherical Sherrington-Kirkpatrick model [START_REF] Baik | Fluctuations of the free energy of the spherical Sherrington-Kirkpatrick model with ferromagnetic interaction[END_REF] or with statistical applications [START_REF] Chung | Weak detection of signal in the spiked Wigner model[END_REF]. During the preparation of this paper, the paper [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF] appeared, dealing with full rank deformations of Wigner matrices; we discuss the differences between [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF] and our work at the end of the Introduction.

In this paper, we will consider deformed Wigner matrices with general entries and deterministic diagonal deformations D N . We study fluctuations of ş R ϕpxqµ N pdxq around a deterministic equivalent ş R ϕpxqρ N pdxq, where the Borel probability measure ρ N is defined, as ρ, by Pastur equation (1), but with pN σ 2 N , ν N q instead of pσ 2 , ν 8 q, and for test functions ϕ in the space H s of all f P L 2 pRq such that }f } Hs :"

´żR p1 `2|t|q 2s | f ptq| 2 dt ¯1{2 ă `8,
for some s ą 0. Our main result in this paper is the following:

Theorem 2. Let X N be the deformed Wigner matrix satisfying assumptions (H1), (H2), (H3), (H4) in Section 2 below.

(1) For real-valued ϕ P H s , s ą 3{2, the linear spectral statistics ş R ϕpxqµ N pdxq of X N satisfies:

N ´żR ϕpxqµ N pdxq ´Er ż R ϕpxqµ N pdxqs ¯ñ N `0, V rϕs " Cpϕ, ϕq ˘,
where the continuous Hermitian bilinear form C : H s ˆHs Ñ C is determined by Cpϕ z1 , ϕ z2 q " Γpz 1 , z 2 q, z 1 , z 2 P CzR (defined in Proposition 8).

(2) For real-valued

ϕ P H s , s ą 13{2, N `Er ş R ϕpxqµ N pdxqs ´şR ϕpxqρ N pdxq ˘ÝÑ N Ñ`8
bpϕq, where the continuous linear form b : H s Ñ C is determined by its restriction to tϕ z : x Þ Ñ pz´xq ´1; z P CzRu (given in Proposition 5).

The Borel probability measure ρ N defined above has a nice interpretation in terms of free probability: it is the free additive convolution of the semicircular distribution µ N σ 2 N and ν N . Theorem 2 also has interpretations in terms of (extensions of) free probability theory, namely higher order freeness (see [START_REF] Mingo | Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces[END_REF][START_REF] Mingo | Second order freeness and fluctuations of random matrices. II. Unitary random matrices[END_REF][START_REF] Collins | Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants[END_REF]) and infinitesimal freeness (see [START_REF] Belinschi | Free probability of type B: analytic interpretation and applications[END_REF]). Indeed, roughly speaking, when one considers normalized traces of mixed words in certain N ˆN random matrices, whereas freeness is related to the large N limit of their expectations (or first cumulants), infinitesimal freeness is related to the 1{N correction in this asymptotic, and higher order freeness is related to the large N asymptotic of their higher cumulants. It is known [START_REF] Collins | Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants[END_REF] that a GUE random matrix W N is asymptotically free of all orders from any deterministic Hermitian matrix D N whose empirical spectral measure converges in moments. It follows that, under these assumptions, the fluctuations of ş R ϕpxqµ N pdxq for polynomial ϕ are Gaussian and their variance may be computed using the R-transform machinery from [START_REF] Collins | Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants[END_REF] (note that Γpz 1 , z 2 q from Proposition 8 with τ " κ " 0 and s 2 " σ 2 indeed coincides with the second-order Cauchy transform that may be computed from the R-transform machinery). Theorem 2 suggests that asymptotic second order freeness still holds between W N and D N when W N is a Wigner matrix satisfying (H1), (H2) and (H3) with τ " κ " 0 and s 2 " σ 2 . Similarly, a random matrix W N whose distribution is invariant under the action (by conjugation) of the orthogonal group is asymptotically real second order free from any deterministic real symmetric matrix D N whose empirical spectral measure converges in moments [START_REF] Mingo | Real second order freeness and Haar orthogonal matrices[END_REF][START_REF] Redelmeier | Real second-order freeness and the asymptotic real second-order freeness of several real matrix models[END_REF]. Theorem 2 suggests that asymptotic real second order freeness still holds between W N and D N when W N is a Wigner matrix satisfying (H1), (H2) and (H3) with s 2 " σ 2 and κ " 0. Another corollary of Theorem 2 is that the bias bpϕq vanishes whenever s 2 " σ 2 , τ " 0 and κ " 0 (this is for instance the case for the deformed GUE). In that case, the mean empirical spectral measure Erµ N s is particularly well approximated by the free additive convolution ρ N of the semicircular distribution µ N σ 2 N and ν N . This suggests that a Wigner matrix satisfying (H1), (H2) and (H3) with s 2 " σ 2 , τ " 0 and κ " 0 is asymptotically infinitesimally free from bounded sequences of deterministic real diagonal matrices D N converging in noncommutative distribution. This was known for the GUE and a family of finite rank deterministic matrices (see [START_REF] Shlyakhtenko | Free probability of type-B and asymptotics of finite-rank perturbations of random matrices[END_REF]); we generalize this result in appendix.

Due to the simple characterization of ρ and ρ N in terms of their Stieltjes transforms, it is natural to prove Theorem 2 first for test functions ϕ z , z P CzR, following the strategy of [START_REF] Bai | On the convergence of the spectral empirical process of Wigner matrices[END_REF]. The linear spectral statistic associated to the test function ϕ z is related to the trace of the resolvent of X N . To deal with resolvents, we will use elementary linear algebra tools, including various consequences of Schur inversion formula. We will then use martingale arguments such as a classical CLT for martingale differences. Then we extend the result to test functions in some H s by a density argument inspired by [START_REF] Shcherbina | Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices[END_REF], justifying the statement made in Theorem 2 that b and V are determined by their restrictions to the linear span of ϕ z , z P CzR.

The recent paper [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF] addresses questions similar to the one studied in this work. Note that [JL19] also considers the case of a random diagonal deformation D N with independent identically distributed diagonal entries, independent from W N ; this case is not strictly in the scope of our work. In the case of a deterministic diagonal deformation, this paper extends results from [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF] by relaxing some of their assumptions. First, the proofs are written for complex Hermitian as well as for real symmetric matrices. We ask the entries of W N to have a finite 4p1`εq moment and, in the complex case, remove the assumption ErW 2 ij s " 0 for i ‰ j. We assume instead that the real and imaginary parts of W ij are uncorrelated. Second, the result is proved under no assumption on the support of the empirical spectral measure of D N (for instance, existence of outlying eigenvalues or disconnected limiting support are allowed): this assumption does not seem necessary because the almost sure (exact) separation of the spectrum of deformed Wigner matrices (see [START_REF] Capitaine | Free convolution with a semicircular distribution and eigenvalues of spiked deformations of Wigner matrices[END_REF]) prevents it from the usual objection to Gaussian fluctuations for matrix models whose limiting empirical spectral measure has disconnected support. Third, it is valid for functions in C 7 c pRq (C 2 c pRq for fluctuations around the mean). Technically, these improvements are obtained by bypassing the use of the precise local law from [START_REF] Lee | Bulk universality for deformed Wigner matrices[END_REF]. Fluctuations are extended to non analytic test functions by a density argument, proved in [START_REF] Shcherbina | Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices[END_REF] and very recently used by [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF] for fluctuations around the mean. We adapt it to study the convergence of bias (Lemma 13 and Proposition 6).

Besides the Introduction, the paper is organized in several other sections. Section 2 introduces the deformed Wigner matrices considered in this work. Section 3 gathers tools from elementary linear algebra, martingale theory, complex analysis and functional analysis used in the proofs. Section 4 is devoted to concentration bounds that are central in our approach. The proof of item (2) of Theorem 2 can be found in Section 5; the proof of item (1) of Theorem 2 is the content of Sections 6 and 7. Two appendices conclude the paper: the first one details the truncation argument allowing to assume that entries of W N are almost surely bounded by a sequence slowly converging to 0; the second one states and proves the free probabilistic interpretation of item p2q of Theorem 2.

Presentation of the model

We consider, on a probability space, a sequence of deformed Wigner matrices

X N :" W N `DN , N ě 1,
where :

(H1) entries tW ij u 1ďiďjďN of the N ˆN Hermitian matrix W N are independent random variables; (H2) off-diagonal entries tW ij u 1ďiăjďN of W N are identically distributed complex random variables such that, for some ε ą 0, C 4 :" sup N ě1 Er| ? N W ij | 4p1`εq s ă `8. We assume that ErW ij s " 0 and that

σ 2 N :" Er|W ij | 2 s ě 0, τ N :" ErW 2 ij s P R, κ N :" Er|W ij | 4 s ´2σ 4 N ´τ 2 N P R satisfy lim N Ñ`8 N σ 2 N " σ 2 ą 0, lim N Ñ`8 N τ N " τ P R, lim N Ñ`8 N 2 κ N " κ P R;
(H3) diagonal entries tW ii u 1ďiďN of W N are identically distributed real random variables such that, for some ε ą 0, C 2 :" sup N ě1 Er| ? N W ii | 2p1`εq s ă `8. We assume that ErW ii s " 0 and that s 2 N :" ErW 2 ii s ě 0 satisfies lim N Ñ`8 N s 2 N " s 2 ě 0; (H4) D N is a N ˆN deterministic real diagonal matrix such that, for some Borel probability measure ν 8 on R,

ν N :" 1 N ÿ λPsppDN q δ λ ñ ν 8 .
In subsections 5.2, 6.1 and 6.3, we will also assume that all entries of W N are almost surely bounded by δ N , where pδ N q N ě1 is a sequence of positive numbers slowly converging to 0 (at rate less than N ´η for any η ą 0); this may be assumed without loss of generality, as shown in Appendix A. We will use the notation m N :"

Er|W ij | 4 s " κ N `2σ 4 N `τ 2 N .
In assumptions (H2) and (H3), we ask the entries to be identically distributed. This assumption does not seem to be necessary for our main result to hold, but leads to a simplification of our truncation-centering argument (see Appendix A). Therefore, for the readability of the paper, we will not pursue the task to relax this assumption. Our assumption τ N P R means that the real and imaginary parts of off-diagonal entries of W N are uncorrelated (but with possibly different variances).

We are interested in the empirical spectral measure µ N of X N , defined by:

µ N :" 1 N ÿ λPsppXN q δ λ .
More precisely, we study the fluctuations of the linear spectral statistic ş R ϕpxqµ N pdxq around its deterministic equivalent ş R ϕpxqρ N pdxq, for functions ϕ : R Ñ R with enough regularity. The linear spectral statistic associated to the test function ϕ z is the normalized trace of R N pzq :" pzI N ´XN q ´1. We will use Schur inversion formula, relating R N pzq to its one-dimensional Schur complements

z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ,
where R pkq is the resolvent of the pN ´1q ˆpN ´1q obtained from X N by deleting the k-th row/column and C pkq k

is the pN ´1q-dimensional vector obtained from the k-th column of W N by deleting its k-th component. Martingales appearing in this paper will be with respect to the filtration pF k :" σpW ij , 1 ď i ď j ď kqq kě1 ; E ďk denotes the conditional expectation on the sigma-field F k and E k the expectation with respect to the k-th column tW ik , 1 ď i ď N u of W N .

Preliminary results

In this section, we gather properties which will be used several times in the sequel.

3.1. Linear algebra. We start this subsection by recalling well-known properties of Schur complement.

Proposition 1 (Schur complement). Let A P M n pCq and its submatrix B obtained by removing its k-th diagonal entry A kk , what remains of its k-th column c and of its k-th row r. Then, if A and B are invertible, A kk ´rB ´1c ‰ 0 and the following formulas hold:

pA ´1q kk " 1 A kk ´rB ´1 c
; TrpA ´1q ´TrpB ´1q " 1 `rB ´2 c A kk ´rB ´1c .

We will apply Proposition 1 to express diagonal entries and trace of the resolvent of the Hermitian matrix X N . The resolvent of a nˆn matrix with complex entries A P M n pCq is the map z Þ Ñ pzI n ´Aq ´1 defined on CzsppAq and satisfying `pzI n ´Aq ´1˘˚" pzI n ´A˚q´1 , z P CzsppAq. It follows that the resolvent of a normal n ˆn matrix takes its values in the set of normal n ˆn matrices. In particular, the resolvent R of a n ˆn Hermitian matrix M is defined on CzR and satisfies:

(2) }Rpzq} ď 1 |Iz| , z P CzR.

The following Lemma is elementary but useful.

Lemma 1 (Resolvent identity). Let M 1 and M 2 be n ˆn Hermitian matrices and denote by R 1 and R 2 their respective resolvents. Then, for all z 1 , z 2 P CzR, R 1 pz 1 q ´R2 pz 2 q " R 1 pz 1 q ´pz 2 ´z1 qI n `M1 ´M2 ¯R2 pz 2 q.

As a consequence, the resolvent R of a n ˆn Hermitian matrix M satisfies:

(3) IψpRpzqq " ´IzψpRpzq ˚Rpzqq, z P CzR,

where ψ : M n pCq Ñ C is any selfadjoint linear functional. Another immediate consequence of Lemma 1 is the following relation between the resolvents R and R pabq of a n ˆn Hermitian matrix M and of the Hermitian matrix M pabq obtained from M by replacing its pa, bq and pb, aq entries by 0:

(4) R pabq pzq ´Rpzq " R pabq pzqp1 ´1 2 δ ab qpM ab E ab `Mab E ba qRpzq.

Lemma 2. Let 1 ď k ď n and A, B P M n pCq. Define C P M n pCq by C ij " ř măk A im B mj , for 1 ď i, j ď n. Then }C} ď }A}}B}. In particular,

|C ij | " ˇˇÿ măk A im B mj ˇˇď }A}}B}, 1 ď i, j ď n; `n ÿ i"1 |C ij | 2 ˘1{2 " ´n ÿ i"1 ˇˇÿ măk A im B mj ˇˇ2 ¯1{2 ď }A}}B}, 1 ď j ď n.
Proof. Remark that C " AP B, where P is the orthogonal projection onto the subspace generated by the first k ´1 vectors of the canonical basis. As }P } ď 1, }C} " }AP B} ď }A}}P }}B} ď }A}}B}.

Lemma 

|λ i ´µi | p ď }ϕ} p Lip n p´1 }M 1 ´M2 } p S p .
3.2. Martingales. The proofs of our variance bounds and of our CLT rely on martingale theory.

Lemma 4. Let pM k q kPN be a square integrable complex martingale. Then

E " ˇˇN ÿ k"1 pM k ´Mk´1 q ˇˇ2 ı " N ÿ k"1 E " ˇˇpM k ´Mk´1 q ˇˇ2 ı .
Note that, if M 0 is deterministic (this will be the case of our martingales in this paper), the left-hand side of the equality stated in the preceding Lemma is Var M N . The following result may be deduced from its version for real-valued martingales (Theorem 35.12 in [START_REF] Billingsley | Probability and measure[END_REF]).

Theorem 3. Suppose that, for all N ě 1, pM pN q k q kPN is a square integrable complex martingale and define, for k ě 1, ∆

pN q k :" M pN q k ´M pN q k´1 . If (5) @ε ą 0, Lpε, N q :" ÿ kě1 Er|∆ pN q k | 2 1 |∆ pN q k |ěε s ÝÑ N Ñ`8 0, (6) V N :" ÿ kě1 E ďk´1 r|∆ pN q k | 2 s ÝÑ N Ñ`8 v ě 0, and (7) 
W N :" ÿ kě1 E ďk´1 rp∆ pN q k q 2 s ÝÑ N Ñ`8 w P C
(convergences in (6) and (7) have to be understood in probability), then When µ " µ v is a semicircular distribution, then ωpzq " z ´vG µ'ν pzq. The subordination map ω is then a conformal map from C `onto a simply connected domain Ω Ă C `, its inverse being the restriction to Ω of H : C `Ñ C defined by Hpzq " z `vG ν pzq; moreover Ω " H ´1pC `q (see [START_REF] Biane | On the free convolution with a semi-circular distribution[END_REF] for these results). We will, by a slight abuse, use the notation ω, Ω and H when v " σ 2 and ν " ν 8 and ω N , Ω N and H N when v " N σ 2 N and ν " ν N . It follows from the continuity of free additive convolution that the sequence of analytic maps pω N q N ě1 converges uniformly on compact sets of C `to ω.

ÿ kě1 ∆ pN q k ñ N Ñ`8 N C p0, v,
3.4. Definition and properties of H s . For s ą 0, define the normed linear space H s of all (real or complex-valued) f P L 2 pRq such that }f } Hs :"

´żR p1 `2|t|q 2s | f ptq| 2 dt ¯1{2 ă `8.
It is proved in [START_REF] Benaych-Georges | Empirical spectral distribution of a matrix under perturbation[END_REF] (Lemma 13) that spantϕ z : x Þ Ñ pz ´xq ´1; z P CzRu is dense in pH s , }} Hs q, for any s ą 0.

Proposition 2 (Sobolev embedding). For s ą 1 2 , there is a continuous injection j of pH s , } ¨}Hs q into pC b , } ¨}8 q, i.e. there exists a constant C s ą 0 such that, for all ϕ P H s ,

}jpϕq} 8 ď C s }ϕ} Hs .
Proof. This is a particular case of Sobolev embedding. We give a simple argument to prove this fact in our situation. As s ą 1 2 , the Fourier transform induces a bounded linear map pH s , } ¨}Hs q Ñ pL 1 pRq X L 2 pRq, } ¨}1 q. Indeed, for ϕ P H s , by Cauchy-Schwarz inequality,

} φ} 1 " ż R p1 `2|t|q s | φptq|p1 `2|t|q ´sdt ď }ϕ} Hs ´żR p1 `2|t|q ´2s dt ¯1{2 .
Therefore, by Fourier inversion formula, one may define a bounded continuous version of ϕ by jpϕq : t Þ Ñ p2πq ´1 ş R φp´ξqe itξ dξ. Moreover, this defines a bounded linear map j : pH s , } ¨}Hs q Ñ pC b pRq, } ¨}8 q: }jpϕq} 8 ď p2πq ´1} φ} 1 ď C s }ϕ} Hs .

Therefore, given a continuous linear functional T on pC b pRq, } ¨}8 q, one may properly define the continuous linear functional (still denoted by) T on pH s , } ¨}Hs q by T pϕq " T pjpϕqq. This is how the linear spectral statistic ş R ϕpxqµ N pdxq is defined for ϕ P H s . Another remarkable and well-known property of H s is that, for s ď k, C k c pRq Ă H s , due to the link between regularity of a function and decreasing at infinity of its Fourier transform. Therefore, item (1) of Theorem 2 is true in particular for functions in C 2 c pRq and item (2) for functions in C 7 c pRq.

Concentration bounds

In this Section, one derives concentration bounds that hold, unless explicitly stated, without assuming the entries of W N to be bounded. 

ď i ď N u.) E " C pkqk R pkq pzqC pkq k ı " E " E k rC pkqk R pkq pzqC pkq k s ı " σ 2 N ErTrpR pkq pzqqs.
Their variance may be deduced from the following Lemma:

Lemma 5. For pN ´1qˆpN ´1q random matrices A, B independent of tW ik , 1 ď i ď N u (for convenience, rows and columns of A, B are indexed by t1, . . . , N uztku), and h P t1, . . . , N u,

E k " E ďh " C pkqk AC pkq k ´σ2 N TrpAq ‰ E ďh " C pkqk BC pkq k ´σ2 N TrpBq ‰ ı " σ 4 N ÿ i,j‰kďh E ďh rA ij sE ďh rB ji s `τ 2 N ÿ i,j‰kďh E ďh rA ij sE ďh rB ij s `κN ÿ i‰kďh E ďh rA ii sE ďh rB ii s.
In particular, with A " R pkq pzq q˚, B " R pkq pzq q , q P t1, 2u, h " N ,

E k " ˇˇC pkqk R pkq pzq q C pkq k ´σ2 N TrpR pkq pzq q q ˇˇ2 ı " σ 4 N TrpR pkq pzq q˚Rpkq pzq q q `τ 2 N TrpR pkq pzq q R pkq pzq q q `κN ÿ i‰k |R pkq pzq q ii | 2 ď m N TrpR pkq pzq q˚Rpkq pzq q q.
Proof of Lemma 5. Since

E ďh rC pkqk AC pkq k ´σ2 N TrpAqs " E ďh " ÿ i‰j‰k W ki W kj A ij `ÿ i‰k p|W ki | 2 ´σ2 N qA ii ı " ÿ i‰j‰kďh W ki W kj E ďh rA ij s `ÿ i‰kďh p|W ki | 2 ´σ2 N qE ďh rA ii s and E ďh rC pkqk BC pkq k ´σ2 N TrpBqs " E ďh " ÿ i 1 ‰j 1 ‰k W ki 1 W kj 1 B i 1 j 1 `ÿ i 1 ‰k p|W ki 1 | 2 ´σ2 N qB i 1 i 1 ı " ÿ i 1 ‰j 1 ‰kďh W ki 1 W kj 1 E ďh rB i 1 j 1 s `ÿ i 1 ‰kďh p|W ki 1 | 2 ´σ2 N qE ďh rB i 1 i 1 s, it follows that E k " E ďh " C pkqk AC pkq k ´σ2 N TrpAq ‰ E ďh " C pkqk BC pkq k ´σ2 N TrpBq ‰ ı " ÿ i‰j‰kďh Er|W ki | 2 sEr|W kj | 2 sE ďh rA ij sE ďh rB ji s `ÿ i‰j‰kďh ErW ki 2 sErW 2 kj sE ďh rA ij sE ďh rB ij s `ÿ i‰kďh E " p|W ki | 2 ´σ2 N q 2 ‰ E ďh rA ii sE ďh rB ii s " σ 4 N ÿ i,j‰kďh E ďh rA ij sE ďh rB ji s `τ 2 N ÿ i,j‰kďh E ďh rA ij sE ďh rB ij s `κN ÿ i‰kďh E ďh rA ii sE ďh rB ii s.
To obtain more general L p concentration bounds for quadratic forms, we will use Lemma 2.7 in [BS98]: Lemma 6. Let p ě 2 and Y " pY 1 , . . . , Y n q be a n-tuple of independent identically distributed standard complex entries with finite 2p-th moment. Then, for all A P M n pCq,

E " |Y ˚AY ´TrpAq| p ‰ ď K p ´`E " |Y 1 | 4 ‰ TrpAA ˚q˘p {2 `E" |Y 1 | 2p ‰ TrppAA ˚qp{2 q ¯.
By independence of the entries of X N , Lemma 6 may be applied to Y " σ ´1 N C pkq k , A " σ 2 N R pkq pzq q , q P t1, 2u and p ě 2. Under the additional assumption that the entries of W N are bounded by δ N , one gets, using (2):

E " |C pkqk R pkq pzq q C pkq k ´σ2 N TrpR pkq pzq q q| p ‰ ď K p |Iz| ´qp `pN m N q p{2 `δ2p´4 N N m N ˘.
If p " 2p1 `εq, one has the following improved bound:

(8) E " |C pkqk R pkq pzq q C pkq k ´σ2 N TrpR pkq pzq q q| 2p1`εq ‰ ď K 2p1`εq |Iz| ´2qp1`εq `pN m N q 1`ε `C4 N ´1´2ε ˘.

Variance bounds.

A key point is to obtain bounds on the variance of the trace TrpR N pzqq of the resolvent R N pzq " pzI N ´XN q ´1 of X N . Recall that E ďk denotes the conditional expectation on the sigma-field σpW ij , 1 ď i ď j ď kq. The random variable TrpR N pzqq being bounded, pE ďk rTrpR N pzqqsq kPN is a square integrable complex martingale, hence, by Lemma 4,

VarrTrpR N pzqqs " E "ˇˇˇN ÿ k"1 pE ďk ´Eďk´1 qrTrpR N pzqqs ˇˇ2 ı " N ÿ k"1 E "ˇˇˇp E ďk ´Eďk´1 qrTrpR N pzqqs ˇˇ2 ı .
By Proposition 1, (9)

TrpR N pzqq ´TrpR pkq pzqq " 1 `Cpkqk R pkq pzq 2 C pkq k z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k .
Hence, applying Lemma 7 below, (10)

| TrpR N pzqq ´TrpR pkq pzqq| ď 1 |Iz| . Lemma 7. ˇˇˇ1 `Cpkqk R pkq pzq 2 C pkq k z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ˇˇˇď 1 |Iz| .
Proof. Using (3) with ψpAq " C pkqk AC pkq k , the proof goes as follows:

ˇˇˇ1 `Cpkqk R pkq pzq 2 C pkq k z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ˇˇˇď |1 `Cpkqk R pkq pzq 2 C pkq k | ˇˇIpz ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k q ˇď 1 `|C pkqk R pkq pzq 2 C pkq k | ˇˇIz ´IC pkqk R pkq pzqC pkq k ˇď 1 `Cpkqk R pkq pzq ˚Rpkq pzqC pkq k ˇˇIz `IzC pkqk R pkq pzq ˚Rpkq pzqC pkq k ˇď 1 |Iz| .
Since R pkq pzq does not involve the k-th row/column of W N , pE ďk ´Eďk´1 qrTrpR pkq pzqqs " 0 and then,

VarrTrpR N pzqqs " N ÿ k"1 E " ˇˇpE ďk ´Eďk´1 qrTrpR N pzqq ´TrpR pkq pzqqs ˇˇ2 ı .
Plugging then (10) in the right-hand side gives a first bound on the variance:

(11) VarrTrpR N pzqqs ď 4N |Iz| 2 .
The same bound holds for VarrTrpR pkq pzqqs. The rest of this subsection is devoted to the following more elaborate bound:

Proposition 3. For z P CzR and 0 ď δ ď 1,

VarrTrpR N pzqqs ď 2 ˆs2 N |Iz| 3´δ `2 m N pN σ 2 N q δ σ 2 N |Iz| 3`δ ˙N ÿ k"1 Er|R N pzq kk | 1`δ s.
In particular, for δ " 0, the bound (also valid for VarrTrpR pkq pzqqs) becomes

VarrTrpR N pzqqs ď 2|Iz| ´4N ps 2 N `2σ ´2 N m N q " Op1q. Proof of Proposition 3. In (9), decompose 1 z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k " 1 z ´Dkk ´σ2 N TrpR pkq pzqq `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq pz ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k qpz ´Dkk ´σ2 N TrpR pkq pzqqq and 1 `Cpkqk R pkq pzq 2 C pkq k " 1 `σ2 N TrpR pkq pzq 2 q `´C pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q to get : (12) TrpR N pzqq " TrpR pkq pzqq `1 `σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq `Ψk ,
where

Ψ k " `1 `Cpkqk R pkq pzq 2 C pkq k ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ˘`z ´Dkk ´σ2 N TrpR pkq pzqq Cpkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq .
Note that now the first two terms of the right-hand side of (12) are not involving the k-th row/column of W N , hence (13) pE ďk ´Eďk´1 q

" TrpR pkq pzqq `1 `σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq ı " 0.
Using Jensen inequality (with respect to E ďk ) after writing

E ďk´1 " E ďk E k , Er|pE ďk ´Eďk´1 qrTrpR N pzqqs| 2 s ď Er|Ψ k ´Ek rΨ k s| 2 s " ErE k r|Ψ k ´Ek rΨ k s| 2 ss ď ErE k r|Ψ k | 2 ss.
We will need the following bound: ˇˇ1

z ´Dkk ´σ2 N TrpR pkq pzqq ˇˇď 1 ˇˇIpz ´Dkk ´σ2 N TrpR pkq pzqqq ˇď 1 ˇˇIz ´σ2 N I TrpR pkq pzqqq ˇď 1 |Iz| `1 `σ2 N TrpR pkq pzq ˚Rpkq pzqq ď min ´1 |Iz| , 1 σ 2 N |Iz| TrpR pkq pzq ˚Rpkq pzqq ¯,
where we have used (3) with n " N ´1 and ψ " Tr. Deduce from Lemma 5 that

E k "ˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ2 ‰ " E k rW 2 kk s `Ek " |C pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq| 2 ‰ ď s 2 N `mN TrpR pkq pzq ˚Rpkq pzqq; E k " ˇˇC pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q ˇˇ2 ı ď m N TrpR pkq pzq 2˚Rpkq pzq 2 q ď m N |Iz| ´2 TrpR pkq pzq ˚Rpkq pzqq.
Hence, for arbitrary 0 ď δ ď 1,

E k "ˇˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq ˇˇ2 ı ď s 2 N `mN TrpR pkq pzq ˚Rpkq pzqq |z ´Dkk ´σ2 N TrpR pkq pzqq| 1´δ ˇˇE k rz ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k s ˇˇ1`δ ď `s2 N |Iz| 1´δ `mN pN |Iz| ´2q δ pσ 2 N |Iz|q 1´δ ˘Ek r|R N pzq kk | 1`δ s, by Jensen inequality applied to function x Þ Ñ |x| ´1´δ . Similarly, E k "ˇˇˇCpkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq ˇˇ2 ı ď m N |Iz| ´2pN |Iz| ´2q δ pσ 2 N |Iz|q 1´δ E k r|R N pzq kk | 1`δ s.
It follows that

E k r|Ψ k | 2 s ď 2 ˆs2 N |Iz| 3´δ `2 m N pN σ 2 N q δ σ 2 N |Iz| 3`δ ˙Ek r|R N pzq kk | 1`δ s,
and we are done. 4.3. Concentration of diagonal entries of the resolvent. For z P CzR,

R N pzq kk " Rpzq kk `Rpzq kk R N pzq kk pW kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqsq, where Rpzq :" `pz ´σ2 N ErTrpR N pzqqsqI N ´DN ˘´1 .
This equality is obtained by applying, with n " 1, the following Lemma, which is easily proved by induction from Proposition 1.

Lemma 8.

R N pzq kk " ř n i"1 Rpzq i kk ´Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ¯i´1 `Rpzq n kk Rpzq kk ´Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ¯n.
Observe that

E "ˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ˇˇ2 ‰ " ErW 2 kk s`E "ˇˇC pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ2 ‰ `σ4 N `VarrTrpR pkq pzqqs`ˇˇErTrpR pkq pzqq´TrpR N pzqqs ˇˇ2 ˘.
By Lemma 5, (11) and ( 10),

(14) Er|W kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs| 2 s ď s 2 N `N m N |Iz| ´2`p3N `1qσ 4 N |Iz| ´2 "
OpN ´1q, and then,

Er|R N pzq kk ´Rpzq kk | 2 s ď |Iz| ´4ps 2 N `N m N |Iz| ´2 `p3N `1qσ 4 N |Iz| ´2q " OpN ´1q, uniformly in k. Similarly, uniformly in 1 ď i ‰ k ď N , Er|R pkq pzq ii ´Ą R pkq pzq ii | 2 s " OpN ´1q, where Ą R pkq pzq :" ´`z ´σ2 N ErTr R pkq pzqs ˘IN´1 ´Dpkq N ¯´1 ,
and D pkq N is the pN ´1q ˆpN ´1q obtained from D N by deleting the k-th row/column (for convenience, rows and columns of D pkq N are indexed by t1, . . . , N uztku). Notice that, by (10),

| Ą R pkq pzq ii ´Rpzq ii | ď σ 2 N |Iz| ´2Er| Tr R pkq pzq ´Tr R N pzq|s ď σ 2 N |Iz| ´3. Finally, (15) Er|R pkq pzq ii ´Rpzq ii | 2 s " OpN ´1q,
uniformly in 1 ď i ‰ k ď N . The relations

Approximate subordination relations. From the equation

ErG µN pzqs " E " 1 N TrpR N pzqq ı " 1 N N ÿ k"1 ErR N pzq kk s " 1 N N ÿ k"1 Rpzq kk `OpN ´1{2 q " G νN `z ´N σ 2 N ErG µN pzqs ˘`OpN ´1{2 q,
ErG µN pzqs " G νN `z ´N σ 2 N ErG µN pzqs ˘`OpN ´1{2 q, z P CzR,
ErR N pzq kk s " ppz ´N σ 2 N ErG µN pzqsqI N ´DN q ´1 kk `OpN ´1{2 q, z P CzR, may be interpreted as approximate subordination relations for the sum of W N and D N at the level of scalars and of operators, respectively. The formula ωN pzq :" z ´N σ 2 N ErG µN pzqs " z ´σ2 N ErTrpR N pzqqs, z P CzR, defines an approximate subordination function ωN : CzR Ñ C inducing an analytic self-map of C `such that piyq ´1 ωN piyq ÝÑ 1 when y ÝÑ `8. It follows from Pastur's Theorem that the sequence of analytic maps pω N q N ě1 converges uniformly on compact sets of CzR to ω.

Analysis of bias

This Section is devoted to the analysis of the bias of the linear spectral statistic ş R ϕpxqµ N pdxq with respect to its deterministic equivalent ş R ϕpxqρ N pdxq. More precisely, to prove that b N pϕq :" N ´Er ż R ϕpxqµ N pdxqs ´żR ϕpxqρ N pdxq converges to some limit bpϕq, we first establish this convergence for ϕ P L 1 :" spantϕ z : x Þ Ñ pz ´xq ´1; z P CzRu and then extend this convergence to more general test functions ϕ. To this last purpose, one will need a bound on b N pϕq, that we deduce from a bound on β N pzq :" b N pϕ z q.

5.1. Bound on the bias of Stieltjes transform. In this subsection, we derive the following bound on β N pzq, which will be true without any boundedness assumption on the entries of W N :

Proposition 4. There is a polynomial P N of degree 5 with bounded coefficients such that, for z P CzR,

|β N pzq| ď N ´1P N p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 .
This will follow from a bound on βN pzq :" ErTr R N pzqs ´Tr Rpzq.

Lemma 9. There is a polynomial PN of degree 3 with bounded coefficients such that, for z P CzR,

| βN pzq| ď N ´1 PN p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 .
Proof of Lemma 9. The strategy is to control for each k the difference between ErR N pzq kk s and Rpzq kk , uniformly in k. First of all, R N pzq kk ´Rpzq kk is expanded thanks to Lemma 8 up to order n " 2. For z P CzR,

R N pzq kk ´Rpzq kk " Rpzq 2 kk `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs Ȓpzq 2 kk Rpzq kk `Wkk `Cpkqk R pkq pzqC pkq k
´σ2 N ErTrpR N pzqqs ˘2. Then, using (10) and ( 14),

|ErR N pzq kk s ´Rpzq kk | ď σ 2 N | Rpzq kk | 2 Er| TrpR pkq pzqq ´TrpR N pzqq|s `| Rpzq kk | 2 E " ˇˇRpzq kk ˇˇˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ˇˇ2 ı ď σ 2 N |Iz| | Rpzq kk | 2 `´s 2 N |Iz| `N m N `p3N `1qσ 4 N |Iz| 3 ¯| Rpzq kk | 2 .
Summing on k yields

| βN pzq| ď N ´1´N σ 2 N `N s 2 N |Iz| `N 2 m N `N p3N `1qσ 4 N |Iz| 3 ¯N ÿ k"1 | Rpzq kk | 2 .
The assumptions on σ N , s N and m N conclude the proof.

We are ready for the proof of Proposition 4.

Proof of Proposition 4. We borrow a trick from [START_REF] Haagerup | A new application of random matrices: ExtpC red pF 2 qq is not a group[END_REF]. Define z 1 " H N pω N pzqq. Observe then that z 1 ´z " ´σ2 N βN pzq. On the one hand, if

σ 2 N N ´1 PN p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 ě |Iz| 2 ,
or equivalently

1 ď 2σ 2 N N ´1|I z| ´1 PN p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 ,
then it is straightforward to get

|β N pzq| ď 2N |Iz| ´1 ď N ´14N σ 2 N |Iz| ´2 PN p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 .
On the other hand, if

σ 2 N N ´1 PN p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 ď |Iz| 2 ,
one has, using the bound we obtained on βN pzq:

|Iz 1 ´Iz| ď |z 1 ´z| " σ 2 N | βN pzq| ď |Iz| 2 ,
therefore z 1 P C `, or equivalently ωN pzq P Ω N , and consequently ω N pz 1 q " ωN pzq. It follows that

β N pzq ´β N pzq " N `GνN pω N pzqq ´GνN pω N pzqq " N `GνN pω N pz 1 qq ´GνN pω N pzqq " N `GρN pz 1 q ´GρN pzq " N pz ´z1 q ż R ρ N pdxq pz 1 ´xqpz ´xq " N σ 2 N βN pzq ż R ρ N pdxq pz 1 ´xqpz ´xq .
Hence,

|β N pzq| ď p1 `2N σ 2 N |Iz| ´2q| βN pzq| ď N ´1p1 `2N σ 2 N |Iz| ´2q PN p|Iz| ´1q N ÿ k"1 | Rpzq kk | 2 ,
which concludes the proof.

5.2. Equivalent of the bias of the Stieltjes transform. The aim of this section is to show that β N pzq converges and to compute its limit βpzq. Note that, in this subsection, the entries of W N are supposed to be bounded by δ N .

Proposition 5. For z P CzR,

β N pzq ÝÑ N Ñ`8 βpzq :" ´ω2 pzq 2ω 1 pzq 2 " s 2 ´σ2 ´τ σ 2 `τ σ 2 ω 1 pzq τ σ 2 `p1 ´τ σ 2 qω 1 pzq `κ σ 4 p1 ´1 ω 1 pzq q ı .
Remark that, in the non deformed case, ν 8 " δ 0 , ρ " µ σ 2 and ωpzq " z ´σ2 G µ σ 2 pzq " G µ σ 2 pzq ´1. In this case, βpzq coincides with b 0 pϕ z q in Theorem 1.

We deduce Proposition 5 from the following Lemma stating the convergence of βN pzq:

Lemma 10. For z P CzR,

βN pzq ÝÑ N Ñ`8 βpzq :" ´ω2 pzq 2ω 1 pzq 3 " s 2 ´σ2 ´τ σ 2 `τ σ 2 ω 1 pzq τ σ 2 `p1 ´τ σ 2 qω 1 pzq `κ σ 4 p1 ´1 ω 1 pzq q ı .
Proof. The conclusion is obtained by controlling for each k the difference between ErR N pzq kk s and Rpzq kk , uniformly in k. This time, R N pzq kk ´Rpzq kk is expanded using Lemma 8 up to order n " 3: for z P CzR,

R N pzq kk ´Rpzq kk " Rpzq 2 kk `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs Ȓpzq 3 kk `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ˘2 `Rpzq 3 kk Rpzq kk `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ˘3
. By (12), the expectation of the first parenthesis writes:

E " W kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ‰ " σ 2 N ErTrpR pkq pzqq ´TrpR N pzqqs " ´σ2 N E " 1 `σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq `Ψk ‰ " ´σ2 N Rpzq kk `1 `σ2 N ErTrpR pkq pzq 2 qs ˘`OpN ´3{2 q,
uniformly in k.

Applying Lemma 5, the expectation of the second parenthesis becomes:

E "`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ˘2‰ " ErW 2 kk s `E"`C pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˘2‰ `σ4 N `E" pTrpR pkq pzqq ´ErTrpR pkq pzqqsq 2 ‰ `E" TrpR pkq pzqq ´TrpR N pzqq ‰ 2 " s 2 N `σ4 N ErTrpR pkq pzq 2 qs `τ 2 N ErTrp t R pkq pzqR pkq pzqqs `κN ÿ i‰k ErR pkq pzq 2 ii s `σ4 N E
" pTrpR pkq pzqq ´ErTrpR pkq pzqqsq 2 ‰ `σ4 N ErTrpR pkq pzqq ´TrpR N pzqqs 2 . Note that the last two terms are OpN ´2q, uniformly in k.

To bound the third parenthesis, we will make use of Lemma 6 and (10):

E "ˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N ErTrpR N pzqqs ˇˇ3 ‰ ď 16 `Er|W kk | 3 s `E"ˇˇC pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ3 ‰ `σ6 N `Er| TrpR pkq pzqq ´ErTrpR pkq pzqqs| 3 s `Er| TrpR pkq pzqq ´TrpR N pzqq|s 3 ˘ď 16δ N s 2 N `16K 3 |Iz| ´3ppN m N q 3{2 `δ2 N N m N q `32N σ 6
N |Iz| ´1 VarrTrpR pkq pzqqs `16σ 6 N |Iz| ´3 " opN ´1q, uniformly in k. Hence, using the bound from Proposition 3, ( 16)

ErR N pzq kk s ´Rpzq kk ´Rpzq 3 kk ´s2 N ´σ2 N `τ 2 N ErTrp t R pkq pzqR pkq pzqqs `κN ÿ i‰k E " R pkq pzq 2 ii ‰ ¯" opN ´1q,
uniformly in k.

We will now deal with the term ErTrp t R pkq pzqR pkq pzqqs:

Lemma 11. For z P CzR, for large enough N , ErTrp t R pkq pzqR pkq pzqqs "

ř i‰k Rpzq 2 ii 1 ´τN ř i‰k Rpzq 2 ii `OpN δ N q,
uniformly in k.

We first check that the right-hand side is well-defined:

Lemma 12. For any compact subset K of CzR,

lim sup N Ñ`8 sup z1,z2PK sup |wi,N |ďσ 2 N N ÿ i"1 |w i,N || Rpz 1 q ii Rpz 2 q ii | ă 1.
Proof. Note that (we follow the proof of Corollary 3.35 in [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF])

N ÿ i"1 |w i,N || Rpz 1 q ii Rpz 2 q ii | ď N σ 2 N 2N N ÿ i"1 ´| Rpz 1 q ii | 2 `| Rpz 2 q ii | 2 ď N σ 2 N 2 ´żR dν N pxq |ω N pz 1 q ´x| 2 `żR dν N pxq |ω N pz 2 q ´x| 2 ¯. Since sup zPK N σ 2 N ż R dν N pxq |ω N pzq ´x| 2 " sup zPK N σ 2 N ´IG νN pω N pzqq I ωN pzq " sup zPK ´N σ 2 N IErG µN pzqs Iz ´N σ 2 N IErG µN pzqs `OpN ´1{2 q,
Thus, by Pastur's Theorem,

lim sup N Ñ`8 sup z1,z2PK sup |wi,N |ďσ 2 N N ÿ i"1 |w i,N || Rpz 1 q ii Rpz 2 q ii | ď sup zPK ´σ2 IErG ρ pzqs Iz ´σ2 IErG ρ pzqs ă 1.
Proof of Lemma 11. Using the fact that R pkq pzq is the inverse of zI N ´1 ´M pkq yields the following:

pz ´Dii qE " pR pkq pzq t R pkq pzqq ii ‰ " E " R pkq pzq ii ‰ `ÿ j‰k E " W ij pR pkq pzq t R pkq pzqq ji ‰ .
Decompose R pkq pzq (apply (4) twice) in order to remove the dependence with W ij :

R pkq pzq " R pkijq pzq `Rpkijq pzqp1 ´1 2 δ ij qpW ij E ij `Wij E ji qR pkijq pzq ``R pkijq pzqp1 ´1 2 δ ij qpW ij E ij `Wij E ji q ˘2R pkq pzq, (17) 
so that, for each j ‰ k, E " W ij pR pkq pzq t R pkq pzqq ji ‰ is the sum of nine terms. The only contributing terms are

E " W ij `Rpkijq pzq t `Rpkijq pzqp1 ´1 2 δ ij qpW ij E ij `Wij E ji qR pkijq pzq ˘˘ji ‰ and E " W ij ´Rpkijq pzqp1 ´1 2 δ ij qpW ij E ij `Wij E ji qR pkijq pzq t R pkijq pzq ¯ji ı .
Indeed, by independence of W ij and R pkijq pzq, the term E " W ij pR pkijq pzq t R pkijq pzqq ji ‰ vanishes. The six other terms may be bounded by C|Iz| ´l´1 Er|W ij | l s, for l P t3, 4, 5u and C ą 0 a numerical constant which does not depend on k, and are therefore Opδ N N ´1q, uniformly in i, j, k. When i ‰ j, the first contributing term is equal to

E " W ij `Rpkijq pzq t R pkijq pzqpW ij E ji `Wij E ij q t R pkijq pzq ˘ji ‰ " τ N E "`R pkijq pzq t R pkijq pzq ˘jj R pkijq pzq ii ‰ `σ2 N E "`R pkijq pzq t R pkijq pzq ˘ji R pkijq pzq ij ‰ . ( 18 
)
Similarly, the second one is

(19) τ N E " R pkijq pzq ji `Rpkijq pzq t R pkijq pzq ˘ji ‰ `σ2 N E " R pkijq pzq jj `Rpkijq pzq t R pkijq pzq ˘ii ‰ .
When i " j, the first and second contributing terms become

s 2 N E "`R pkiiq pzq t R pkiiq pzq ˘ii R pkiiq pzq ii ‰ .
Note that, by (4), (20) }R pkilq pzq ´Rpkq pzq} " }R pkilq pzqp1 ´1 2 δ il qpW il E il `Wil E li qR pkq pzq} ď 2δ N |Iz| ´2.

Therefore, for any p and q, ˇˇR pkijq pzq pq ´Rpkq pzq pq ˇˇď 2δ N |Iz| ´2, and ˇˇpR pkijq pzq t R pkijq pzqq pq ´pR pkq pzq t R pkq pzqq pq ˇˇď 4δ N |Iz| ´3.

As a consequence, uniformly in i, k,

ÿ j‰k E " W ij pR pkq pzq t R pkq pzqq ji ‰ " τ N ErTr `Rpkq pzq t R pkq pzq ˘Rpkq pzq ii s `σ2 N E "`R pkq pzqR pkq pzq t R pkq pzq ˘ii ‰ `τN E "`t R pkq pzqR pkq pzq t R pkq pzq ˘ii ‰ `σ2 N ErTrpR pkq pzqqpR pkq pzq t R pkq pzqq ii s `Opδ N q. Hence, uniformly in i, k, pz ´σ2 N ErTrpR N pzqqs ´Dii qErpR pkq pzq t R pkq pzqq ii ‰ " ErR pkq pzq ii s `τN E " Tr `Rpkq pzq t R pkq pzq ˘Rpkq pzq ii ‰ `σ2 N E "`R pkq pzqR pkq pzq t R pkq pzq ˘ii ‰ `τN E "`t R pkq pzqR pkq pzq t R pkq pzq ˘ii ‰ `Opδ N q.
Note that the last two terms are OpN ´1q, uniformly in i, k. Moreover, it is known from (15) that R pkq pzq ii may be replaced by Rpzq ii at cost no more than OpN ´1{2 q. Therefore it follows

ErpR pkq pzq t R pkq pzqq ii s ´τN Rpzq 2 ii ErTrpR pkq pzq t R pkq pzqqs " Rpzq 2 ii `Opδ N q, uniformly in i, k. Then, uniformly in k, `1 ´τN ÿ i‰k Rpzq 2 ii ˘ErTrpR pkq pzq t R pkq pzqqs "

ÿ i‰k Rpzq 2 ii `OpN δ N q.
By Lemma 12, for N large enough, one may invert 1 ´τN ř i‰k Rpzq 2 ii which is bounded away from 0, uniformly in k, which concludes the proof. Now going back to the formula (16), we need to control the term ř i‰k ErR pkq pzq 2 ii s. We use again the fact (see (15)) that R pkq pzq ii may be replaced by Rpzq ii at cost no more than OpN ´1{2 q, uniformly in k. Therefore, uniformly in k, ÿ i‰k ErR pkq pzq 2 ii s "

ÿ i‰k Rpzq 2 ii `OpN 1{2 q.
The bias can now be computed entirely, from (16).

ErR N pzq kk s " Rpzq kk `Rpzq

3 kk ´s2 N ´σ2 N `τ 2 N ř i‰k Rpzq 2 ii 1 ´τN ř i‰k Rpzq 2 ii `κN ÿ i‰k Rpzq 2 ii ¯`opN ´1q,
where the opN ´1q term is uniform in k. Then

βN pzq " N ÿ k"1 Rpzq 3 kk " s 2 N ´σ2 N `τ 2 N ř i‰k Rpzq 2 ii 1 ´τN ř i‰k Rpzq 2 ii `κN ÿ i‰k Rpzq 2 ii ı `op1q ÝÑ N Ñ`8 ż R dν 8 pxq pωpzq ´xq 3 " s 2 ´σ2 `τ 2 ş R dν8pxq pωpzq´xq 2 1 ´τ ş R dν8pxq pωpzq´xq 2 `κ ż R dν 8 pxq pωpzq ´xq 2 ı " ´ω2 pzq 2ω 1 pzq 3 " s 2 ´σ2 ´τ σ 2 `τ σ 2 ω 1 pzq τ σ 2 `p1 ´τ σ 2 qω 1 pzq `κ σ 4 p1 ´1 ω 1 pzq q ı .
Proof of Proposition 5. The difference between β N pzq and βN pzq is

β N pzq ´β N pzq " N `GνN pω N pzqq ´GνN pω N pzqq " N `ωN pzq ´ω N pzq ˘żR dν N pxq pω N pzq ´xqpω N pzq ´xq " N σ 2 N β N pzq ż R dν N pxq pω N pzq ´xqpω N pzq ´xq .
Hence,

β N pzq " `1 ´N σ 2 N ż R dν N pxq pω N pzq ´xqpω N pzq ´xq ˘´1 βN pzq ÝÑ N Ñ`8 `1 ´σ2 ż R dν 8 pxq pωpzq ´xq 2 ˘´1 βpzq " βpzq H 1 pωpzqq " ω 1 pzq βpzq.
The limiting bias is therefore:

βpzq " ´ω2 pzq 2ω 1 pzq 2 " s 2 ´σ2 ´τ σ 2 `τ σ 2 ω 1 pzq τ σ 2 `p1 ´τ σ 2 qω 1 pzq `κ σ 4 p1 ´1 ω 1 pzq q ı .
5.3. Bias of linear spectral statistics of deformed generalized Wigner matrices. The preceding subsection proves that b N pϕ z q " β N pzq converges to bpϕ z q :" βpzq. The purpose of this subsection is to extend this convergence result to ϕ in a larger class of functions. We extend the convergence of b N pϕq to ϕ P H s for some s ą 0 by a strategy similar to Shcherbina's one for the fluctuations.

Lemma 13. Let pL, } }q be a normed vector space and pb N q N ě1 be a sequence of linear forms on L.

Assume that:

' there exists C ą 0 such that for any ϕ P L and large enough N ě 1, one has Proof. For ϕ P L 1 , by letting N tend to `8 in |b N pϕq| ď C}ϕ}, one obtains that |bpϕq| ď C}ϕ}: b is a continuous linear form on L 1 . Since L 1 is dense in L, b can be uniquely extended into a continuous linear form on L. Note that |bpϕq| ď C}ϕ} is true for all ϕ P L. Let ϕ P L and ε ą 0. By density, there exists ϕ 1 P L 1 such that }ϕ ´ϕ1 } ď ε. By linearity, for large enough N ě 1,

|b N pϕq ´bpϕq| ď 2Cε `|b N pϕ 1 q ´bpϕ 1 q|. But b N pϕ 1 q ÝÑ N Ñ`8
bpϕ 1 q and therefore b N pϕq ÝÑ N Ñ`8 bpϕq.

Here

L 1 " spantϕ z : x Þ Ñ pz ´xq ´1; z P CzRu.
Recall from Section 3.4 that it is dense in the normed vector space L " H s , s ą 0.

Proposition 6. Suppose s ą 1 2 . Then, for all ϕ P H s ,

|b N pϕq| ď }ϕ} Hs 2π 3{2 Γp2sq 1{2 ˆż `8 0 e ´yy 2s´1 ż R |β N px `iyq| 2 dxdy ˙1{2 .
This proposition provides a bound on |b N pϕq| for ϕ P H s of the expected form C}ϕ} Hs , where C can be written as an integral of β N px `iyq.

Proof. Set µ 1 N :" N pErµ N s ´ρN q. It is a signed measure, which writes as the difference of two finite positive measures. In what follows, set α N ptq " ş R e ´itx dµ 1 N pxq. Remark that α N : R Ñ C is a bounded continuous function. Then, for ϕ P S, 

|b N pϕq| " 1 2π ˇˇˇż R φp´tqα N ptqdt ˇˇ" 1 2π ˇˇˇż R p1 `2|t|q s φp´tqp1 `2|t|q ´sα N ptqdt ˇˇď 1 2π ˆżR p1 `2|t|q 2s | φptq| 2 dt ż R p1 `

¯1{2

.

It remains to prove that β N p¨`iyq P L 2 with Fourier transform

{ β N p¨`iyqptq " ´2iπα N ptqe ´ty ½ p0,`8q ptq. ż R |β N px `iyq| 2 dx " ż R ˇˇż R dµ 1 N ptq x `iy ´t ˇˇ2dx ď ż R ´żR d|µ 1 N |ptq |x `iy ´t| ¯2dx where |µ 1 N | " N pErµ N s `ρN q ď 4N 2 ż R ´żR 1 |x `iy ´t| d|µ 1 N |ptq 2N ¯2dx ď 4N 2 ż R ż R 1 |x `iy ´t| 2 d|µ 1 N |ptq 2N dx by Jensen inequality ď 2N ż R ż R dx px ´tq 2 `y2 d|µ 1 N |ptq by Fubini-Tonelli theorem ď 4N 2 ż R dx x 2 `y2 ă `8.

Therefore {

β N p¨`iyq exists in L 2 . Set f pξq " ´2iπe ´yξ α N pξq½ p0,`8q pξq for ξ P R. As α N is bounded on R, f P L 1 X L 2 . We compute its Fourier transform. For x P R,

f pxq " ´2iπ ż R e ´yξ α N pξq½ p0,`8q pξqe ´ixξ dξ " ´2iπ ż `8 0 e ´yξ ż R e ´itξ dµ 1 N ptqe ´ixξ dξ " ´2iπ ż R ż `8 0 e ´py`ipt`xqqξ dξdµ 1 N ptq " ´2iπ ż R dµ 1 N ptq y `ipt `xq " 2π ż R dµ 1 N ptq ´x `iy ´t " 2πβ N p´x `iyq.
Hence β N p¨`iyq " 1 2π f p´¨q and finally { β N p¨`iyq " f in L 2 , which concludes.

Notice that Rkk is the Stieltjes transform of a probability measure μk . Hence, for y ą 0 and p ě 1, by Jensen inequality and Fubini theorem, ż

R | Rpx `iyq kk | p dx " ż R ˇˇż R dμ k ptq x `iy ´t ˇˇpdx ď ż R ż R dμ k ptq |x `iy ´t| p dx ď ż R ż R dx `px ´tq 2 `y2 ˘p{2 dμ k ptq ď y 1´p ż R ż R du p1 `u2 q p{2 dμ k ptq ď y 1´p ż R du p1 `u2 q p{2 .
It follows, by Proposition 4 and Cauchy-Schwarz inequality, that ż

R |β N px `iyq| 2 dx ď N ´2|P N py ´1q| 2 ż R ´N ÿ k"1 | Rpx `iyq kk | 2 ¯2dx ď N ´1|P N py ´1q| 2 N ÿ k"1 ż R | Rpx `iyq kk | 4 dx ď y ´3|P N py ´1q| 2 ż R du p1 `u2 q 2 .
Then, as soon as s ą 13{2 (recall that P N is of degree 5 with bounded coefficients). Therefore, for s ą 13{2, b may be extended to H s and b N pϕq converges to bpϕq for every ϕ P H s .

|b N pϕq| ď }ϕ} Hs 2π 3{2 Γp2sq 1{2

Fluctuations of the Stieltjes transform of the spectral measure of deformed Wigner matrices

Let

N N pϕq :" ÿ λPsppXN q ϕpλq " N ż R ϕpxqµ N pdxq.
We have seen previously in Section 4.2 that pVar N N pϕqq N ě1 is bounded for ϕ P L 1 " spantϕ z : x Þ Ñ pz xq ´1; z P CzRu. In this section, we will give a proof of the convergence in finite-dimensional distributions of the complex process pN N pϕq ´ErN N pϕqs, ϕ P L 1 q to a centred complex Gaussian process, based on Theorem 3. 6.1. Reduction of the problem. One has to prove that, for a fixed ϕ P L 1 , N N pϕq ´ErN N pϕqs converges in distribution to a complex Gaussian variable Z " N C p0, V rϕs, W rϕsq. Notice that

N N pϕq ´ErN N pϕqs " N ÿ k"1 pE ďk ´Eďk´1 qrN N pϕqs.
The random variable N N pϕq being bounded, pE ďk rN N pϕqsq kě1 is a square integrable complex martingale, hence pE ďk rN N pϕqs ´Eďk´1 rN N pϕqsq kě1 is a martingale difference. Our strategy is to apply the central limit theorem for sums of martingale differences. More precisely, we will decompose pE ďk ´Eďk´1 qrN N pϕqs in two parts and apply Theorem 3 to the first part.

Proposition 7. For 1 ď k ď N , pE ďk ´Eďk´1 qrN N pϕqs " ∆ pN q k `εpNq k ,
where ∆ pN q k is a linear combination of E ďk r´B Bz φ pN q k pzqs, z P CzR, with φ pN q k pzq :"

W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2
N TrpR pkq pzqq , z P CzR,

and ř N k"1 ε pN q k ÝÑ N Ñ`8
0 in probability.

Proof. For z P CzR, decomposing further the first term of Ψ k in (12) yields:

`1 `Cpkqk R pkq pzq 2 C pkq k ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ˘`z ´Dkk ´σ2 N TrpR pkq pzqq " `1 `σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 `εpNq k,1 pzq `εpNq k,2 pzq `εpNq k,3 pzq,
where

ε pN q k,1 pzq :" `1 `σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˘2 `z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ˘`z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 , ε pN q k,2 pzq :" `Cpkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˘2 `z ´Wkk ´Dkk ´Cpkqk R pkq pzqC pkq k ˘`z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 , ε pN q k,3 pzq :" `Cpkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 .

It follows that

TrpR N pzqq " TrpR pkq pzqq `1 `σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq ``1 `σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 `Cpkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq `εpNq k,1 pzq `εpNq k,2 pzq `εpNq k,3 pzq.
Recall (from (13)) that

pE ďk ´Eďk´1 q " TrpR pkq pzqq `1 `σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq ı " 0.
By integrating first with respect to the k-th column of W N , one has that

E ďk´1 " `1 `σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 ı " 0; E ďk´1 " C pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq ı " 0. Observe now that `1 `σ2 N TrpR pkq pzq 2 q ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq ˘2 `Cpkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq " ´B Bz W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq z ´Dkk ´σ2 N TrpR pkq pzqq " ´B Bz φ pN q k pzq.
Finally,

pE ďk ´Eďk´1 qrN N pϕqs " ∆ pN q k `εpNq k ,
where ∆ pN q k and ε pN q k may be written as linear combinations respectively of E ďk r´B Bz φ pN q k pzqs, z P CzR, and pE ďk ´Eďk´1 qrε pN q k,1 pzq `εpNq k,2 pzq `εpNq k,3 pzqs, z P CzR. It remains to prove that

ř N k"1 ε pN q k ÝÑ N Ñ`8 0 in
probability. This is the object of next lemma (assuming that the entries of W N are bounded by δ N ).

Lemma 14. › › › ÿ kě1 ε pN q k › › › L 2 ÝÑ N Ñ`8 0.
Proof. It follows from Lemma 7 and Lemma 6 that:

E " |ε pN q k,1 pzq| 2 ‰ ď |Iz| ´6E "ˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ4 ‰ ď 2 3 |Iz| ´6`E rW 4 kk s `Er|C pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq| 4 s ď 2 3 |Iz| ´6`δ 2 N s 2 N `K4 |Iz| ´4`p N m N q 2 `δ4 N N m N ˘˘.
Therefore, Er|ε pN q k,1 pzq| 2 s " opN ´1q, uniformly in k. Since by Lemma 6

E "ˇˇC pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q ˇˇ4 ‰ ď K 4 |Iz| ´8`p N m N q 2 `δ4 N N m N ˘, and 
E "ˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ8 ‰ ď 2 7 `E" |W kk | 8 ‰ `E"ˇˇC pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ8 ‰ď 2 7 `δ6 N s 2 N `K8 |Iz| ´8`p N m N q 4 `δ12 N N m N ˘˘,
one obtains by Cauchy-Schwarz inequality that Er|ε pN q k,2 pzq| 2 s " opN ´1q, uniformly in k. Similarly,

E "ˇˇC pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q ˇˇ4 ‰ ď K 4 |Iz| ´8`p N m N q 2 `δ4 N N m N ȃnd E "ˇˇW kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ4 ‰ ď 2 3 `E" |W kk | 4 ‰ `E"ˇˇC pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq ˇˇ4 ‰ď 2 3 ´δ2 N s 2 N `K4 |Iz| ´4`p N m N q 2 `δ4 N N m N ˘īmply that Er|ε pN q
k,3 pzq| 2 s " opN ´1q, uniformly in k.

By Lemma 4 and Jensen inequality,

E "ˇˇN ÿ k"1 pE ďk ´Eďk´1 q " ε pN q k,1 pzq `εpNq k,2 pzq `εpNq k,3 pzq ‰ˇˇ2‰ " N ÿ k"1 E "ˇˇp E ďk ´Eďk´1 q " ε pN q k,1 pzq `εpNq k,2 pzq `εpNq k,3 pzq ‰ˇˇ2‰ ď N ÿ k"1 6 3 ÿ j"1 `E"ˇˇp E ďk´1 " ε pN q k,j pzq ‰ˇˇ2‰ `E"ˇˇp E ďk " ε pN q k,j pzq ‰ˇˇ2‰ď 12 N ÿ k"1 E "ˇˇε pN q k,1 pzq ˇˇ2 `ˇε pN q k,2 pzq ˇˇ2 `ˇε pN q k,3 pzq ˇˇ2 ‰ " op1q.
Finally, by triangle inequality,

› › › ÿ kě1 ε pN q k › › › L 2 " op1q.
As announced at the beginning of the Section, the strategy is now to apply Theorem 3 to ∆ pN q k . 6.2. Verification of Lyapounov condition. To check condition (5), one first uses Markov inequality to get, for p " 2p1 `εq ą 2:

Lpε, N q ď ε 2´p N ÿ k"1 }∆ pN q k } p L p .
It is therefore sufficient to prove that ( 22) }∆ pN q k } L p " OpN ´1 2 q, uniformly in k. By triangle inequality, it is sufficient to have

sup 1ďkďN › › ›Eďk " ´B Bz φ pN q k pzq ‰ › › › L p " OpN ´1 2 q,
uniformly in k. By Jensen and triangular inequalities and Lemma 7, for

1 ď k ď N , › › ›Eďk " ´B Bz φ pN q k pzq ‰ › › › L p ď › › › › p1 `σ2 N TrpR pkq pzq 2 qqpW kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqqq pz ´Dkk ´σ2 N TrpR pkq pzqqq 2 › › › › L p `› › › › C pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q z ´Dkk ´σ2 N TrpR pkq pzqq › › › › L p ď |Iz| ´2`} W kk } L p `}C pkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq} L p |Iz| ´1› › C pkqk R pkq pzq 2 C pkq k ´σ2 N TrpR pkq pzq 2 q › › L p .
One deduces (22) because of the assumption }W kk } L p ď C 1{p 2 N ´1{2 and of the improved bound (8) (recall that p " 2p1 `εq):

› › C pkqk R pkq pzq q C pkq k ´σ2 N TrpR pkq pzq q q › › L p ď K 1{p p |Iz| ´q ´pN m N q p{2 `C4 N ´1´2ε ¯1{p .
6.3. Convergence of the hook process. By bilinearity, the verification of conditions (6) and ( 7) is equivalent to the convergence in probability of the hook process:

Γ N pz 1 , z 2 q :" N ÿ k"1 E ďk´1 " E ďk " B Bz φ pN q k pz 1 q ‰ E ďk " B Bz φ pN q k pz 2 q ‰ ı , z 1 , z 2 P CzR.
Proposition 8. For all z 1 , z 2 P CzR

Γ N pz 1 , z 2 q ÝÑ N Ñ`8
Γpz 1 , z 2 q in probability, where

Γpz 1 , z 2 q :" B 2 Bz 1 Bz 2 " ps 2 ´σ2 ´τ q ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq `κ 2 ´żR ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯2 ´log ´1 ´σ2 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯´log ´1 ´τ ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯ " B 2 Bz 1 Bz 2 " s 2 ´σ2 ´τ σ 2 ´1 ´z1 ´z2 ωpz 1 q ´ωpz 2 q ¯`κ 2σ 4 ´1 ´z1 ´z2 ωpz 1 q ´ωpz 2 q ¯2 `log ´ωpz 1 q ´ωpz 2 q z 1 ´z2 ¯´log ´1 ´τ σ 2 ´1 ´z1 ´z2 ωpz 1 q ´ωpz 2 q ¯¯ .
Remark that, in the non deformed case, ν 8 " δ 0 , ρ " µ σ 2 and ωpzq " z ´σ2 G µ σ 2 pzq " G µ σ 2 pzq ´1. In this case, Γpz 1 , z 2 q coincides with C 0 pϕ z1 , ϕ z2 q in Theorem 1.

In what follows, we focus on the convergence of

γ N pz 1 , z 2 q :" N ÿ k"1 E ďk´1 " E ďk " φ pN q k pz 1 q ‰ E ďk " φ pN q k pz 2 q ‰ ı .
This will be enough to establish the convergence of the hook process, as explained in Subsection 6.3.5.

Lemma 15. N ÿ k"1 " E ďk´1 rE ďk rφ pN q k pz 1 qsE ďk rφ pN q k pz 2 qss ´Rpz 1 q kk Rpz 2 q kk ´s2 N `Eďk´1 rE ďk rC pkqk R pkq pz 1 qC pkq k ´σ2 N TrpR pkq pz 1 qqsE ďk rC pkqk R pkq pz 2 qC pkq k ´σ2 N TrpR pkq pz 2 qqss ¯* ÝÑ N Ñ`8 0 in probability. Proof. Define ε pN q k,4 pzq :" φ pN q k pzq ´Rpzq kk `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq " σ 2 N pTrpR pkq pzqq ´ErTrpR N pzqqs ˘`W kk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqqq `z ´Dkk ´σ2 N TrpR pkq pzqq ˘`z ´Dkk ´σ2 N ErTrpR N pzqqs ˘.
Remark from (11) that it satisfies

E " |E ďk rε pN q k,4 pzqs| 2 ‰ ď σ 4 N |Iz| 4 ´s2 N `N |Iz| 2 pσ 4 N `τ 2 N `κN q ¯Er| TrpR pkq pzqq ´ErTrpR N pzqqs| 2 ‰ ď σ 4 N |Iz| 4 `s2 N `N |Iz| 2 pσ 4 N `τ 2 N `κN q ˘`VarrTrpR pkq pzqqs `ˇE rTrpR pkq pzqq ´TrpR N pzqqs ˇˇ2 ď σ 4 N |Iz| 4 `s2 N `N |Iz| 2 pσ 4 N `τ 2 N `κN q ˘`4N |Iz| 2 `1 |Iz| 2 ˘" OpN ´2q,
uniformly in k (see the comment following Proposition 3). Furthermore, from Lemma 5,

Er|φ pN q k pzq| 2 s ď |Iz| ´2ps 2 N `N m N |Iz| ´2q,
and

Er| Rpzq kk `Wkk `Cpkqk R pkq pzqC pkq k ´σ2 N TrpR pkq pzqq| 2 s ď |Iz| ´2ps 2 N `N m N |Iz| ´2q. Remark now that N ÿ k"1 " E ďk´1 rE ďk rφ pN q k pz 1 qsE ďk rφ pN q k pz 2 qss ´Rpz 1 q kk Rpz 2 q kk ´s2 N `Eďk´1 rE ďk rC pkqk R pkq pz 1 qC pkq k ´σ2 N TrpR pkq pz 1 qqsE ďk rC pkqk R pkq pz 2 qC pkq k ´σ2 N TrpR pkq pz 2 qqss ¯* " N ÿ k"1 " E ďk´1 rE ďk rε pN q k,4 pz 1 qsE ďk rφ pN q k pz 2 qss `Rpz 1 q kk E ďk´1 rE ďk " W kk `Cpkqk R pkq pz 1 qC pkq k ´σ2 N TrpR pkq pz 1 qq ‰ E ďk rε pN q k,4 pz 2 qs ‰ * .
By triangle inequality, the L 1 norm of this expression is bounded by

" N ÿ k"1 " Er ˇˇE ďk rε pN q k,4 pz 1 qsφ pN q k pz 2 qs ˇĚr| Rpz 1 q kk `Wkk `Cpkqk R pkq pz 1 qC pkq k ´σ2 N TrpR pkq pz 1 qq ˘Eďk rε pN q k,4 pz 2 qs ˇˇs * .
Using Cauchy-Schwarz inequality yields that this L 1 norm is OpN ´1{2 q. Therefore, this term goes to 0 in probability.

Recall that, by Lemma 5:

s 2 N `Eďk´1 " E ďk " C pkqk R pkq pz 1 qC pkq k ´σ2 N TrpR pkq pz 1 qq ‰ E ďk " C pkqk R pkq pz 2 qC pkq k ´σ2 N TrpR pkq pz 2 qq ‰ ı " s 2 N `σ4 N ÿ i,jăk E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s `τ 2 N ÿ i,jăk
E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s `κN ÿ iăk E ďk´1 rR pkq pz 1 q ii sE ďk´1 rR pkq pz 2 q ii s.

Therefore, what remains to study is the sum of four terms. They will be studied separately in the following paragraphs. The first and the fourth terms are studied very easily, whereas the second and third ones need quite long computations, making repeated use of linear algebra properties which were collected in Section 3. These second and third terms are very similar.

6.3.1. Contribution of the first term. Notice that

1 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk " ż R ν N pdxq pω N pz 1 q ´xqpω N pz 2 q ´xq ÝÑ N Ñ`8 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq .
Hence,

s 2 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk ÝÑ N Ñ`8 s 2 ż R
ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq . 6.3.2. Contribution of the second term. The second term writes as follows.

σ 4 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk ÿ i,jăk E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s.

To handle it, use first the definition of the resolvent R pkq pz 1 q.

pz 1 ´Dii qR pkq pz 1 q ij " δ ij `ÿ l‰k W il R pkq pz 1 q lj .
We want to remove the dependence between W il and R pkq pz 1 q, using (4). Plug now the following expression

pz 1 ´Dii qR pkq pz 1 q ij " δ ij `ÿ l‰k ! W il R pkilq pz 1 q lj `p1 ´1 2 δ il q ´W 2 il R pkilq pz 1 q li R pkq pz 1 q lj `|W il | 2 R pkilq pz 1 q ll R pkq pz 1 q ij ¯),
to get pz 1 ´Dii qE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s "

δ ij E ďk´1 rR pkq pz 2 q ji s `ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `ÿ l‰k p1 ´1 2 δ il qE ďk´1 rW 2 il R pkilq pz 1 q li R pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `ÿ l‰k p1 ´1 2 δ il qE ďk´1 r|W il | 2 R pkilq pz 1 q ll R pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s.
Remark that R pkq pz 1 q ij E ďk´1 rR pkq pz 2 q ji s appears in the last term of the right-hand side. Heuristically, imagine that in this last term |W il | 2 , l ‰ i, is close to its expectation σ 2 N and R pkilq pz 1 q ll « ErR N pz 1 q ll s. The whole term is therefore close to σ 2 N ErTrpR N pz 1 qqsE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s. To make this argument rigorous, subtract σ 2 N ErTrpR N pz 1 qqsE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s to get:

pω N pz 1 q ´Dii qE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s " δ ij E ďk´1 rR pkq pz 2 q ji s `ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `ÿ l‰k p1 ´1 2 δ il qE ďk´1 rW 2 il R pkilq pz 1 q li R pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `Eďk´1 r ÿ l‰k p1 ´1 2 δ il qp|W il | 2 R pkilq pz 1 q ll ´σ2 N ErR N pz 1 q ll sqR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s ´σ2 N 2 ErR N pz 1 q ii sE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s ´σ2 N ErR N pz 1 q kk sE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s.

As Rpz 1 q ii " pω N pz 1 q ´Dii q ´1, E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s " δ ij Rpz 1 q ii E ďk´1 rR pkq pz 2 q ji s `Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `ÿ l‰k p1 ´1 2 δ il q Rpz 1 q ii E ďk´1 rW 2 il R pkilq pz 1 q li R pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `Eďk´1 r ÿ l‰k p1 ´1 2 δ il q Rpz 1 q ii p|W il | 2 R pkilq pz 1 q ll ´σ2 N ErR N pz 1 q ll sqR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s ´σ2 N 2 Rpz 1 q ii ErR N pz 1 q ii sE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s ´σ2 N Rpz 1 q ii ErR N pz 1 q kk sE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s.

It may be seen that the last four terms of the right-hand side will not asymptotically contribute. This is the object of next Lemma whose proof is postponed to the end of the paragraph.

Lemma 16. ÿ i,jăk E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s " ÿ iăk Rpz 1 q ii E ďk´1 rR pkq pz 2 q ii s `ÿ i,jăk Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s `εpNq k,5 ,

with σ 4 N ř N k"1 Rpz 1 q kk Rpz 2 q kk ε pN q k,5 ÝÑ N Ñ`8
0 in probability.

It remains to analyze the first two terms of the right-hand side. Let us focus on the second one. Use again (4) to remove the dependence between W il and R pkq pz 2 q. ÿ i,jăk

Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ji s " ÿ i,jăk

Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji s `ÿ i,jăk Rpz 1 q ii ÿ lăk p1 ´1 2 δ il qW 2 il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji R pkq pz 2 q li s `ÿ i,jăk Rpz 1 q ii ÿ lăk p1 ´1 2 δ il q|W il | 2 E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q jl R pkq pz 2 q ii s.

Heuristically, consider that |W il | 2 , i ‰ l, is close to its expectation σ 2 N , R pkq pz 2 q ii « Rpz 2 q ii and replace R pkilq by R pkq . Then the last term of the right-hand side becomes

σ 2 N ´ÿ iăk
Rpz 1 q ii Rpz 2 q ii ¯´ÿ l,jăk E ďk´1 rR pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q jl s ¯.

Subtract this quantity to both sides of equation in Lemma 16. This yields the following Lemma, whose proof is postponed to the end of the paragraph.

Lemma 17. p1 ´σ2 N ÿ iăk Rpz 1 q ii Rpz 2 q ii q ÿ i,jăk E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s " ÿ iăk Rpz 1 q ii E ďk´1 rR pkq pz 2 q ii s `εpNq k,6 ,

with σ 4 N ř N k"1 Rpz 1 q kk Rpz 2 q kk ε pN q k,6 ÝÑ N Ñ`8
0 in probability.

We are ready now to derive the contribution of this whole second term.

Proposition 9. The following convergence holds in probability:

σ 4 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk ÿ i,jăk

E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s ÝÑ N Ñ`8 ´log ´1 ´σ2 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯´σ 2 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq .
Proof. We follow Section B.5.3 of [START_REF] Ji | Gaussian fluctuations for linear spectral statistics of deformed Wigner matrices[END_REF]. Set

f j,k,N ptq :" σ 2 N Rpz 1 q jj Rpz 2 q jj 1 ´σ2 N ř iăk Rpz 1 q ii Rpz 2 q ii ´tσ 2 N Rpz 1 q kk Rpz 2 q kk .
From Lemma 12, for large enough N , f j,k,N is well-defined and bounded on r0; 1s, uniformly in j, k, by Cσ 2 N . Moreover, E ďk´1 rR pkq pzq ii s´Rpzq ii ÝÑ N Ñ`8 0 in L 2 , uniformly in i, k (because of Jensen inequality).

Therefore, Lemma 17 yields the following:

σ 2 N ÿ i,jăk
E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s "

ÿ iăk f i,k,N p0q `εpNq k,7 , with E N :" σ 2 N ř N k"1 Rpz 1 q kk Rpz 2 q kk ε pN q k,7 ÝÑ N Ñ`8 0 in probability.
As a consequence,

σ 4 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk ÿ i,jăk E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s "

N ÿ k"1 σ 2 N Rpz 1 q kk Rpz 2 q kk σ 2 N ř iăk Rpz 1 q ii Rpz 2 q ii 1 ´σ2 N ř iăk Rpz 1 q ii Rpz 2 q ii `EN " N ÿ k"1 f k,k,N p0q ´σ2 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk `EN .

For t P r0; 1s, |f k,k,N p0q ´fk,k,N ptq| " |tf k,k,N p0qf k,k,N ptq| ď C 2 σ 4 N .
Integrating with respect to t P r0; 1s and summing on k, one obtains:

ˇˇN ÿ k"1 f k,k,N p0q `logp1 ´σ2 N N ÿ i"1 Rpz 1 q ii Rpz 2 q ii q ˇˇď C 2 N σ 4 N .
Finally,

σ 4 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk ÿ i,jăk

E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s ÝÑ N Ñ`8 ´log ´1 ´σ2 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯´σ 2 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq .
It remains to prove Lemma 16 and Lemma 17.

Proof of Lemma 16. Recall that

ε pN q k,5 " ÿ i,jăk ÿ l‰k p1
´1 2 δ il q Rpz 1 q ii E ďk´1 rW 2 il R pkilq pz 1 q li R pkq pz 1 q lj E ďk´1 rR pkq pz 2 q ji ss `ÿ i,jăk E ďk´1 r ÿ l‰k p1 ´1 2 δ il q Rpz 1 q ii ´|W il | 2 R pkilq pz 1 q ll ´σ2 N ErR N pz 1 q ll s ¯Rpkq pz 1 q ij E ďk´1 rR pkq pz 2 q ji ss ´σ2

N 2 ÿ i,jăk
Rpz 1 q ii ErR N pz 1 q ii sE ďk´1 rR pkq pz 1 q ij E ďk´1 rR pkq pz 2 q ji ss ´σ2

N ÿ i,jăk
Rpz 1 q ii ErR N pz 1 q kk sE ďk´1 rR pkq pz 1 q ij E ďk´1 rR pkq pz 2 q ji ss.

It writes as a sum of four terms, which will be denoted by

a pN q k , b pN q k , c pN q k and d pN q
k . From Lemma 2, note that, in all terms, ˇˇÿ jăk R pkq pz 1 q ij E ďk´1 rR pkq pz 2 q ji s ˇˇď }R pkq pz 1 q}}E ďk´1 rR pkq pz 2 qs} ď

1 |Iz 1 Iz 2 | . Therefore, ˇˇσ 4 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk d pN q k ˇˇď σ 6 N |Iz 1 Iz 2 | N ÿ k"1 | Rpz 1 q kk || Rpz 2 q kk | ÿ iăk | Rpz 1 q ii ||ErR N pz 1 q kk s| ď N 2 σ 6 N |Iz 1 | 4 |Iz 2 | 2 .
As a consequence, ˇˇσ 4

N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk d pN q k ˇˇÝÑ N Ñ`8 0 in probability. |Iz 1 | 2 |Iz 2 | 2 E "ˇˇˇN ÿ k"1 ÿ iăk ˇˇÿ l‰k p1 ´1 2 δ il q `|W il | 2 ´σ2 N ˘ErRpz 1 q ll s ˇˇˇˇ2 ı 1{2 ď N 2 σ 4 N |Iz 1 | 3 |Iz 2 | 2 `δ2 N s 2 N ´2σ 2 N s 2 N `σ4 N `pN ´2qpm N ´σ4 N q ˘1{2 " OpN ´1{2 q.
As a consequence, σ 4

N ř N k"1 Rpz 1 q kk Rpz 2 q kk b pN q k ÝÑ N Ñ`8
0 in probability, and

ε pN q k,5 ÝÑ N Ñ`8 0 in probability.
Proof of Lemma 17. Remark that

ε pN q k,6 " ε pN q k,5
`ÿ i,jăk Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji s `ÿ i,jăk Rpz 1 q ii ÿ lăk p1 ´1 2 δ il qW 2 il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji R pkq pz 2 q li s `ÿ i,jăk Rpz 1 q ii ÿ lăk ˆp1 ´1 2 δ il q|W il | 2 E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q jl R pkq pz 2 q ii s ´σ2 N E ďk´1 rR pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q jl s Rpz 2 q ii :"

ε pN q k,5 `epNq k `f pN q k `gpNq k .
We focus on e pN q k . Its L 2 norm is bounded by:

1 |Iz 1 | ÿ iăk } ÿ lăk W il ÿ jăk E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji s} L 2 .
Develop the square of the l-sum: the sum of squares is bounded by

σ 2 N ÿ lăk,l‰i E " ˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji s ˇˇ2 ı `s2 N E
" ˇˇÿ jăk E ďk´1 rR pkiiq pz 1 q ij sE ďk´1 rR pkiiq pz 2 q ji s ˇˇ2 ı .

Recall that }R pkq pzq ´Rpkilq pzq} ď 2δ N |Iz| ´2. Replacing R pkilq by R pkq yields the following.

ÿ lăk E " ˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji s ˇˇ2 ı ď 3 ÿ lăk E " ˇˇÿ jăk R pkq pz 1 q lj E ďk´1 rR pkq pz 2 q ji s ˇˇ2 ı `OpN δ N q " OpN δ N q,
uniformly in k, using Lemma 2. Then the sum of squares is Opδ N q, uniformly in k.

It remains to control the sum of the cross terms ErW il W il 1 α il α il 1 s, where α il " ÿ jăk E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ji s.

Following Bai and Silverstein [BS10], we replace R pkil 1 q and R pkilq by R pkil 1 ilq :

α il " ÿ jăk E ďk´1 rR pkilil 1 q pz 1 q lj sE ďk´1 rR pkilil 1 q pz 2 q ji s `ÿ jăk E ďk´1 " R pkilq pz 1 q lj ´Rpkilil 1 q pz 1 q lj ‰ E ďk´1 rR pkilq pz 2 q ji s `ÿ jăk E ďk´1 rR pkilil 1 q pz 1 q lj sE ďk´1 " R pkilq pz 2 q ji ´Rpkilil 1 q pz 2 q ji ‰ :" α ill 1 `βill 1 `γill 1 .

Note that, due to independence properties, the sum vanishes when α il is replaced by α ill 1 or when α il 1 is replaced by α ill 1 . It remains to control the four error terms: ErW il W il 1 β ill 1 β il 1 l s, ErW il W il 1 β ill 1 γ il 1 l s, ErW il W il 1 γ ill 1 β il 1 l s and ErW il W il 1 γ ill 1 γ il 1 l s. The resolvent identity yields (note that we can remove one E ďk´1 ):

ErW il W il 1 β ill 1 β il 1 l s " p1 ´1 2 δ il qp1 ´1 2 δ il 1 q " E " |W il | 2 |W il 1 | 2 R pkilil 1 q pz 1 q li ÿ jăk R pkilq pz 1 q l 1 j E ďk´1 rR pkilq pz 2 q ji s ˆRpkil 1 ilq pz 1 q l 1 i ÿ j 1 ăk R pkil 1 q pz 1 q lj 1 E ďk´1 rR pkil 1 q pz 2 q j 1 i s ı `E" W 2 il |W il 1 | 2 R pkilil 1 q pz 1 q li ÿ jăk R pkilq pz 1 q l 1 j E ďk´1 rR pkilq pz 2 q ji s ˆRpkil 1 ilq pz 1 q l 1 l ÿ j 1 ăk R pkil 1 q pz 1 q ij 1 E ďk´1 rR pkil 1 q pz 2 q j 1 i s ı `E" |W il | 2 W il 1 2 R pkilil 1 q pz 1 q ll 1 ÿ jăk R pkilq pz 1 q ij E ďk´1 rR pkilq pz 2 q ji s ˆRpkil 1 ilq pz 1 q l 1 i ÿ j 1 ăk R pkil 1 q pz 1 q lj 1 E ďk´1 rR pkil 1 q pz 2 q j 1 i s ı `E" W 2 il W il 1 2 R pkilil 1 q pz 1 q ll 1 ÿ jăk R pkilq pz 1 q ij E ďk´1 rR pkilq pz 2 q ji s ˆRpkil 1 ilq pz 1 q l 1 l ÿ j 1 ăk
R pkil 1 q pz 1 q ij 1 E ďk´1 rR pkil 1 q pz 2 q j 1 i s ı * .

The first term can be bounded as follows:

ˇˇÿ l‰l 1 p1 ´1 2 δ il qp1 ´1 2 δ il 1 qE " |W il | 2 |W il 1 | 2 R pkilil 1 q pz 1 q li ÿ jăk R pkilq pz 1 q l 1 j E ďk´1 rR pkilq pz 2 q ji s ˆRpkil 1 ilq pz 1 q l 1 i ÿ j 1 ăk
R pkil 1 q pz 1 q lj 1 E ďk´1 rR pkil 1 q pz 2 q j 1 i s ıˇˇď

1 |Iz 1 | 2 |Iz 2 | 2 ÿ l‰l 1 Er|W il | 2 |W il 1 | 2 |R pkilil 1 q pz 1 q li ||R pkil 1 ilq pz 1 q l 1 i |s ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 ÿ l‰l 1
Er|R pkilil 1 q pz 1 q li ||R pkil 1 ilq pz 1 q l 1 i |s by independence

ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 ÿ l‰l 1 pEr|R pkq pz 1 q li ||R pkq pz 1 q l 1 i |s `Opδ N qq ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 `E"`ÿ l |R pkq pz 1 q li | ˘2‰ `Opδ N N 2 q ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 `N E " ÿ l |R pkq pz 1 q li | 2 ‰ `Opδ N N 2 q ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 `N |Iz 1 | 2 `Opδ N N 2 q ˘" Opδ N q,
uniformly in k. The three other terms can be treated similarly: they are of order Opδ N q, uniformly in k.

Using again the resolvent identity and very similar computations, the sums over l and l 1 of the other three error terms ErW il W il 1 β ill 1 γ il 1 l s, ErW il W il 1 γ ill 1 β il 1 l s and ErW il W il 1 γ ill 1 γ il 1 l s are proved to be of order Opδ N q, uniformly in k. As a consequence, }e

pN q k } L 2 " OpN δ 1{2 N q, uniformly in k and σ 4 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk e pN q k ÝÑ N Ñ`8 0 in probability. The L 2 norm of σ 4 N ř N k"1 Rpz 1 q kk Rpz 2 q kk f pN q k is bounded by σ 4 N |Iz 1 | 2 |Iz 2 | N ÿ k"1 ÿ iăk E "ˇˇˇÿ lăk p1 ´1 2 δ il qW 2 il ÿ jăk E ďk´1 " E ďk´1 rR pkilq pz 1 q lj sR pkilq pz 2 q ji R pkq pz 2 q li ‰ ˇˇ2 ı 1{2 ,
and then, using Jensen inequality (with respect to E ďk´1 ) and Cauchy-Schwarz inequality (with respect to the l-sum), by

σ 4 N |Iz 1 | 2 |Iz 2 | N ÿ k"1 ÿ iăk E " ÿ lăk |W il | 4 ˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj sR pkilq pz 2 q ji ˇˇ2 ÿ lăk |R pkq pz 2 q li | 2 ı 1{2 .
From Lemma 2, one gets:

N 2 σ 4 N ´δ2 N s 2 N `pN ´2qm N ¯1{2 |Iz 1 | ´3|I z 2 | ´3 " OpN ´1{2 q.
The last term is also negligible. This follows by replacing successively p1 ´1 2 δ il q|W il | 2 , R pkq pz 2 q ii , R pkilq pz 1 q lj , R pkilq pz 2 q jl by σ 2 N , Rpz 2 q ii , R pkq pz 1 q lj , R pkq pz 2 q jl . Indeed, this last term can be written as follows:

σ 4 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk g pN q k " σ 4 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk ÿ i,j,lăk Rpz 1 q ii ˆ"`p 1 ´1 2 δ il q|W il | 2 ´σ2
N ˘Eďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q jl R pkq pz 2 q ii s `σ2 N E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q jl pR pkq pz 2 q ii ´Rpz 2 q ii qs `σ2

N E ďk´1 rR pkilq pz 1 q lj ´Rpkq pz 1 q lj sE ďk´1 rR pkq pz 2 q jl s Rpz 2 q ii `σ2 N E ďk´1 rR pkq pz 1 q lj sE ďk´1 rR pkilq pz 2 q jl ´Rpkq pz 2 q jl s Rpz 2 q ii * :"

h pN q k `ppNq k `qpNq k `rpNq k .
By Minkowski inequality, the L 2 norm of term h pN q k can be bounded as follows:

}h pN q k } 2 ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 N ÿ k"1 ÿ iăk › › ›Eďk´1 " ÿ lăk `p1 ´1 2 δ il q|W il | 2 ´σ2 N ˘ÿ jăk E ďk´1 rR pkilq pz 1 q lj sR pkilq pz 2 q jl ı› › › 2 ď σ 4 N |Iz 1 | 2 |Iz 2 | 2 N ÿ k"1 ÿ iăk E "´ÿ lăk |p1 ´1 2 δ il q|W il | 2 ´σ2 N | ˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj sR pkilq pz 2 q jl ˇˇ¯2 ı 1{2 ď N 2 σ 4 N |Iz 1 | 3 |Iz 2 | 3 ´1 4 δ 2 N s 2 N ´σ2 N s 2 N `σ4 N `pN ´2qpm N ´σ4 N q ¯1{2 " O `N ´1{2 ˘.
The term p pN q k can be bounded as follows (using Lemma 2):

|p pN q k | ď σ 6 N |Iz 1 | 2 |Iz 2 | N ÿ k"1 E ďk´1 " ÿ i,lăk
ˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj sR pkilq pz 2 q jl ˇˇ|R pkq pz 2 q ii ´Rpz 2 q ii | ı

ď σ 6 N |Iz 1 | 3 |Iz 2 | 2 N ÿ k"1 ÿ i,lăk E ďk´1 " |R pkq pz 2 q ii ´Rpz 2 q ii | ı .
Since Er|R pkq pz 2 q ii ´Rpz 2 q ii |s " OpN ´1{2 q uniformly in i, k, the L 1 norm of p pN q k satisfies:

}p pN q k } L 1 " Opσ 6 N N 3 N ´1{2 q " OpN ´1{2 q, uniformly in k.
Using Lemma 2 and (20), ˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj ´Rpkq pz 1 q lj sR pkq pz 2 q jl ˇˇď }E ďk´1 rR pkilq pz 1 q ´Rpkq pz 1 qs}}R pkq pz 2 q} ď 2δ

N |Iz 1 | 2 |Iz 2 | .
Hence, the term q pN q k is bounded by: E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s is very similar to the second one

|q pN q k | ď σ 6 N |Iz 1 Iz 2 | 2 N ÿ k"1 ÿ i,lăk E ďk´1 "ˇˇˇÿ jăk E ďk´1 rR pkilq pz 1 q lj ´Rpkq pz 1 q lj sR pkq pz 2 q jl ˇˇı ď 2δ N σ 6 N N 3 |Iz 1 | 4 |Iz 2 | 3 " Opδ N q, uniformly in k. Similarly, |r pN q k | ď 2δ N σ 6 N N 3 |Iz 1 | 3 |Iz 2 | 4 " Opδ N q,
σ 4 N ÿ i,jăk
E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ji s.

Recall that τ 2 N and σ 4 N are of the same order. Therefore, the only difference lies in the entry of matrix R pkq pz 2 q appearing on the right. As a consequence, all computations which were performed on R pkq pz 1 q ij are still valid here. Thus E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s " δ ij Rpz 1 q ii E ďk´1 rR pkq pz 2 q ij s `ÿ lăk Rpz 1 q ii W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ij s `ÿ l‰k p1 ´1 2 δ il q Rpz 1 q ii E ďk´1 rW 2 il R pkilq pz 1 q li R pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q ij s `Eďk´1 r ÿ l‰k p1 ´1 2 δ il q Rpz 1 q ii p|W il | 2 R pkilq pz 1 q ll ´σ2 N ErRpz 1 q ll sqR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s ´σ2 N 2 Rpz 1 q ii ErRpz 1 q ii sE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s ´σ2 N Rpz 1 q ii ErRpz 1 q kk sE ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s. Similarly to what was done previously, the last four terms will not asymptotically contribute.

Lemma 18. ÿ i,jăk E ďk´1 rR pkq pz 1 q ij sE ďk´1 rR pkq pz 2 q ij s " ÿ iăk Rpz 1 q ii E ďk´1 rR pkq pz 2 q ii s `ÿ i,jăk Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ij s `ε pN q k,5 , with τ 2 N ř N k"1 Rpz 1 q kk Rpz 2 q kk εpNq k,5 ÝÑ N Ñ`8 0 in probability.

The proof of this Lemma is exactly the same as the one of Lemma 16, by considering that R pkq pz 2 q ij " t R pkq pz 2 q ji . We use again the resolvent identity (Lemma 1) to remove the dependence between W il and R pkq pz 2 q. Note however that, compared to what was done in Section 6.3.2, we reverse the roles played by R pkilq pz 2 q and R pkq pz 2 q to get the following. ÿ i,jăk

Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ij s " ÿ i,jăk

Rpz 1 q ii ÿ lăk W il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ij s `ÿ i,jăk Rpz 1 q ii ÿ lăk p1 ´1 2 δ il qW 2 il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ii R pkilq pz 2 q lj s `ÿ i,jăk Rpz 1 q ii ÿ lăk p1 ´1 2 δ il q|W il | 2 E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q il R pkilq pz 2 q ij s.

αil " ÿ jăk E ďk´1 rR pkilil 1 q pz 1 q lj sE ďk´1 rR pkilil 1 q pz 2 q ij s `ÿ jăk E ďk´1 " R pkilq pz 1 q lj ´Rpkilil 1 q pz 1 q lj ‰ E ďk´1 rR pkilq pz 2 q ij s `ÿ jăk E ďk´1 rR pkilil 1 q pz 1 q lj sE ďk´1 " R pkilq pz 2 q ij ´Rpkilil 1 q pz 2 q ij ‰ :" αill 1 `β ill 1 `γ ill 1 .

Note that, due to independence properties, the sum vanishes when αil is replaced by αill 1 or when αil 1 is replaced by αill 1 .

Using again the resolvent identity and very similar computations, the sums over l and l 1 of the four error terms ErW il W il 1 βill 1 βil 1 l s, ErW il W il 1 βill 1 γil 1 l s, ErW il W il 1 γill 1 βil 1 l s and ErW il W il 1 γill 1 γil 1 l s are proved to be of order Opδ N q, uniformly in k. As a consequence, }ẽ pN q k } L 2 " OpN δ 1{2 N q, uniformly in k and

τ 2 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk ẽpNq k ÝÑ N Ñ`8 0 in probability.

As in the proof of Lemma 17, the L 2 norm of τ 2 N ř N k"1 Rpz 1 q kk Rpz 2 q kk f pN q k is OpN ´1{2 q. The last term is also negligible. This follows by replacing successively p1 ´1 2 δ il qW 2 il , R pkq pz 2 q ii , R pkilq pz 1 q lj , R pkilq pz 2 q lj by τ N , Rpz 2 q ii , R pkq pz 1 q lj and R pkq pz 2 q lj . Indeed, this last term can be written as follows:

τ 2 N N ÿ k"1 Rpz 1 q kk Rpz 2 q kk gpNq k " τ 2 N N ÿ k"1
Rpz 1 q kk Rpz 2 q kk ÿ i,j,lăk Rpz 1 q ii ˆ""`p 1 ´1 2 δ il ˘W 2 il ´τN qE ďk´1 rR pkilq pz 1 q lj sE ďk´1 " R pkq pz 2 q ii R pkilq pz 2 q lj ‰ `τN E ďk´1 rR pkilq pz 1 q lj sE ďk´1 " pR pkq pz 2 q ii ´Rpz 2 q ii qR pkilq pz 2 q lj ‰ `τN E ďk´1 rR pkilq pz 1 q lj ´Rpkq pz 1 q lj s Rpz 2 q ii E ďk´1 rR pkilq pz 2 q lj s * `τN E ďk´1 rR pkq pz 1 q lj s Rpz 2 q ii E ďk´1 rR pkilq pz 2 q lj ´Rpkq pz 2 q lj s * :" hpNq k `p pN q k `q pN q k `r pN q k . These four terms are proved to be negligible, as in Lemma 17.

As a consequence, τ 2 N ř N k"1 Rpz 1 q kk Rpz 2 q kk εpNq k,6

ÝÑ N Ñ`8 0 in probability.

6.3.4. Contribution of the fourth term. To handle the fourth term, we use that, because of Jensen inequality, Er|E ďk´1 rR pkq pzq ii s ´Rpzq ii | 2 s " op1q, uniformly in i, k, so that κ N ÿ 1ďiăkďN Rpz 1 q kk Rpz 2 q kk E ďk´1 rR pkq pz 1 q ii sE ďk´1 rR pkq pz 2 q ii s " κ N ÿ 1ďiăkďN Rpz 1 q kk Rpz 2 q kk Rpz 1 q ii Rpz 2 q ii `op1q " κ N 2 ´ÿ 1ďiďN Rpz 1 q ii Rpz 2 q ii ¯2 `op1q ÝÑ N Ñ`8 κ 2 ´żR ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯2.

Conclusion. From previous computations, we know that

γ N pz 1 , z 2 q " N ÿ k"1 E ďk´1 " E ďk " φ pN q k pz 1 q ‰ E ďk " φ pN q k pz 2 q ‰ ı ÝÑ N Ñ`8
γpz 1 , z 2 q in probability, where γpz 1 , z 2 q :" ps 2 ´σ2 ´τ q ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq `κ 2 ´żR ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯2 ´log ´1 ´σ2 ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯´log ´1 ´τ ż R ν 8 pdxq pωpz 1 q ´xqpωpz 2 q ´xq ¯.

Recall that a sequence pX N q N ě1 of random variables converges in probability to a random variable X if and only if, from any subsequence extracted from pX N q N ě1 , one can further extract a subsubsequence almost surely converging to X. We will use this criterion twice in the following argument. First, we deduce by diagonal extraction from the convergence in probability above that, given a countable subset of pCzRq 2 , one can extract from any subsequence of γ N a subsubsequence almost surely converging to γ pointwise on this subset. Second, we will use it to reduce the proof of convergence in probability of the sequence pΓ N pz 1 , z 2 qq N ě1 to Γpz 1 , z 2 q for a fixed pz 1 , z 2 q P pCzRq 2 to the proof of the almost sure convergence of some subsequence, which is achieved by a normal family argument and analytic continuation principle.

Fluctuations of linear spectral statistics of deformed Wigner matrices

In the preceding section, a CLT has been established for N N rϕs, when ϕ P L 1 . Recall that L 1 is dense in H s for any s ą 0. For ϕ P H s , following [START_REF] Shcherbina | Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices[END_REF], V N rϕs :" VarrN N pϕqs satisfies: Hs , where C ă `8 as soon as ş `8 0 py 2s´4 `y2s´4´2δ qe ´ydy ă `8. This holds when s ą 3{2 `δ. Therefore, a CLT holds for N N rϕs when ϕ belongs to the set L of real-valued functions in H s , s ą 3{2, as a consequence of the following extension Lemma due to Shcherbina: Theorem 4. [START_REF] Shcherbina | Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices[END_REF] Let pL, } }q be a normed vector space. Assume that:

' there exists C ą 0 such that for any ϕ P L and large enough N ě 1, one has

V N rϕs ď C}ϕ} 2 ,
' there exists a dense linear subspace L 1 Ă L such that a CLT is valid for N N pϕq for all ϕ P L 1 : there exists a continuous quadratic function V : L 1 Ñ R such that, for all ϕ P L 1 , N N pϕq ´ErN N pϕqs ñ N p0, V rϕsq.

Then V admits a unique continuous extension to L and N N pϕq ´ErN N pϕqs ñ N p0, V rϕsq holds for all ϕ P L.

Appendix A. Truncation and centering

In Sections 5.2, 6.1 and 6.3, the convergence of bias and the fluctuations of linear spectral statistics for test functions in L 1 were studied under the hypothesis that the entries of W N are bounded by a sequence δ N slowly converging to 0. Note that this assumption was not needed to extend these results to more general functions. Therefore, this appendix deals only with smooth enough functions. 

4. 1 .

 1 Quadratic forms. Applying Proposition 1 to zI N ´XN leads to expressions involving random quadratic forms C pkqk R pkq pzqC pkq k . It is easy to compute the expectation of such quadratic forms. (Recall that E k denotes the expectation with respect to tW ik , 1

  one deduces that the normal sequence pErG µN sq N ě1 of analytic maps on CzR has for unique accumulation point the Stieltjes transform G ρ of the unique Borel probability measure ρ on R satisfying Pastur equation (1). Hence pErG µN sq N ě1 converges uniformly on compact sets of CzR to G ρ . Using the variance bound (11), one deduces weak convergence (in probability) of µ N towards ρ, or equivalently convergence (in probability) of linear spectral statistics ş R ϕpxqµ N pdxq towards ş R ϕpxqρpdxq for bounded continuous ϕ. This completes a proof of Pastur's Theorem.

  |b N pϕq| ď C}ϕ}, ' there exists a dense linear subspace L 1 Ă L and a linear form b : L 1 Ñ C such that b N pϕq ÝÑ N Ñ`8 bpϕq, for all ϕ P L 1 . Then b admits a unique continuous (linear) extension to L and b N pϕq ÝÑ N Ñ`8 bpϕq holds for all ϕ P L.

  For bounded measurable ϕ, b N pϕq " ş R ϕdµ 1 N .The restriction D N of b N to the Schwartz space S is a tempered distribution. Its Fourier transform DN is also a tempered distribution defined byx DN , f y " xD N , f y " 1 2πx DN , f p´¨qy, f P S.

eeďe

  ´y y 2s´4 |P N py ´1q| 2 ´y y 2s´4 |P N py ´1q| 2 dy ¯1{2 C}ϕ} Hs , ´yy 2s´4 |P N py ´1q| 2 dy ¯1{2 ă `8

  uniformly in k. As δ N ÝÑ Contribution of the third term. The third term

V N rϕs ď Cpsq}ϕ} 2 Hs

 2 y ´3`δ `2y ´3´δ m N pN σ 2 Er|R N px `iyq kk | 1`δ sdxdy ď C}ϕ} 2

  For a bounded Lipschitz continuous function ϕ : R Ñ C, let N N pϕq :" TrpϕpX N qq " ÿ λPsppXN q ϕpλq " N ż R ϕpxqµ N pdxq.

  3. If ϕ : R Ñ C is Lipschitz continuous, then, for n ˆn Hermitian matrices M 1 , M 2 and p ě 1,| TrpϕpM 1 qq ´TrpϕpM 2 qq| p ď }ϕ} p Lip n p´1 }M 1 ´M2 } p S p ,where }A} S p " `řλPsppAq |λ| p ˘1{p is the Schatten p-norm of the normal matrix A.Proof. Denote by λ 1 ě ¨¨¨ě λ n the eigenvalues of M 1 and µ 1 ě ¨¨¨ě µ n the eigenvalues of M 2 . Then, | TrpϕpM 1 qq ´TrpϕpM 2 qq| ď

	n ÿ i"1	|ϕpλ i q ´ϕpµ i q| ď }ϕ} Lip	n ÿ i"1	|λ i ´µi |.
	Using Hölder and Hoffman-Wielandt inequalities,			
	Lip n p´1 | TrpϕpM 1 qq ´TrpϕpM 2 qq| p ď }ϕ} p	n ÿ i"1	

  wq.3.3.Analytic subordination for free additive convolution. Voiculescu noticed in [Voi93] that the Stieltjes transform of the free additive convolution µ ' ν of two Borel probability measures µ, ν on R is generically subordinated (in the sense of Littlewood) to the Stieltjes transform of ν: there exists an analytic self-map of the upper half-plane ω : C `Ñ C `satisfying piyq ´1ωpiyq ÝÑ 1 when y ÝÑ `8 such that G µ'ν pzq " G ν pωpzqq, z P C `. In fact, the subordination relation holds at the level of operators: if x, y are free selfadjoint noncommutative random variables in a tracial W ˚-probability space, then Eppz1 ´x ´yq ´1q " pωpzq1 ´yq ´1, z P C `, where E is the conditional expectation with respect to the von Neumann subalgebra generated by y[START_REF] Biane | Processes with free increments[END_REF]. Note that these subordination relations hold for z P CzR if ω is analytically continued by Schwarz reflection principle.

  2|t|q ´2s |α N ptq| 2 dt as α N p´tq " ᾱN ptq. Use now that β N p¨`iyq P L 2 with Fourier transform { β N p¨`iyqptq " ´2iπα N ptqe ´ty ½ p0,`8q ptq (this will be proved at the end). Then, applying Parseval identity, ż

	As a consequence, by Fubini-Tonelli theorem, ż R p1 `2|t|q ´2s |α N ptq| 2 dt " Γp2sq 1 " 1 Γp2sq " 2 Γp2sq	ż R ż `8 ż `8 0 0 e ´y y 2s´1 e ´p1`2|t|qy y 2s´1 dy|α N ptq| 2 dt ż R e ´2|t|y |α N ptq| 2 dtdy ż `8 ż `8 0 e ´y y 2s´1 0 e ´2ty |α N ptq| 2 dtdy,
	R	p1 `2|t|q ´2s |α N ptq| 2 dt " "		1 Γp2sq2π 2 1 Γp2sqπ ż `8 ż `8 0 0 e ´yy 2s´1 e ´y y 2s´1 ż R ż R |β N px `iyq| 2 dxdy. | { β N p¨`iyqptq| 2 dtdy
	Consequently, for all ϕ P H s , |b N pϕq| ď	}ϕ} Hs 2π 3{2 Γp2sq 1{2	´ż	`8 0	e ´yy 2s´1	ż R	|β N px `iyq| 2 dxdy
								˙1{2
		ď	1 2π	}ϕ} Hs	ˆżR	p1 `2|t|q ´2s |α N ptq| 2 dt	˙1{2	.
	As α N is bounded and s ą 1 2 , the restriction of b Γp2sqp1 `2|t|q ´2s " ş R p1 `2|t|q ´2s |α N ptq| 2 dt ă `8. We just observed that the norm of 0 ż `8 e ´p1`2|t|qy y 2s´1 dy.

N to S is bounded by ş R p1 `2|t|q ´2s |α N ptq| 2 dt. As S is dense in H s , the norm of b N : H s Ñ C is the same. Remark that
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Similarly,

In order to study the convergence in probability of the first term, we consider its L 2 norm. Indeed, remark that, by Minkowski inequality,

Then, again by Minkowski inequality (sum on i) and by Jensen inequality applied to E ďk´1 ,

Use now Cauchy-Schwarz inequality on the l-sum to get the following.

from Lemma 2. Then,

As a consequence, σ 4

0 in probability.

We turn now to the second term. Note that ř jăk R pkq pz 1 q ij E ďk´1 rR pkq pz 2 q ji s does not involve l. Therefore,

The L 2 norm of the second part goes to zero as N goes to infinity. Indeed, by Minkowski inequality,

by independence. Recall now that E "ˇˇR pkilq pz 1 q ll ´ErRpz 1 q ll s ˇˇ2 ‰ " OpN ´1q, uniformly in i, k, l. As a consequence,

It remains to deal with the first part. We consider its L 2 norm.

N Heuristically, consider that W 2 il is close to its expectation τ N , R pkq pz 2 q ii « Rpz 2 q ii and replace R pkilq pzq by R pkq pzq. Then the second term of the right-hand side becomes

E ďk´1 rR pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q lj s ¯.

Subtract this quantity to both sides of equation in Lemma 18. This yields the following Lemma, whose proof is postponed to the end of the paragraph.

0 in probability.

We are ready now to derive the contribution of the whole third term.

Proposition 10.

The proof is obtained from the proof of Proposition 9 by changing σ 2 N into τ N and σ 2 into τ (recall that τ N and τ are supposed to be real numbers). It remains to prove Lemma 19.

Proof of Lemma 19. Remark that

´1 2 δ il qW 2 il E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkq pz 2 q ii R pkilq pz 2 q lj s ´τN E ďk´1 rR pkq pz 1 q lj sE ďk´1 rR pkq pz 2 q lj s Rpz 2 q ii :"

We proceed as in the proof of Lemma 17. We focus on ẽpNq k . Its L 2 norm is bounded by:

Similarly to what was done for e pN q k in lemma 17, we develop the square of the l-sum. The sum of squares is bounded by OpN δ N q.

In order to control the sum of the cross terms ErW il W il 1 αil αil 1 s, where αil " ÿ jăk E ďk´1 rR pkilq pz 1 q lj sE ďk´1 rR pkilq pz 2 q ij s, we replace R pkil 1 q and R pkilq by R pkil 1 ilq :

In this section, we truncate and center the entries of W N , in order to show that it is sufficient to study the fluctuations of N N pϕq for matrices W N with entries bounded by δ N , where pδ N q N ě1 is a sequence of positive real numbers such that δ N ÝÑ N Ñ`8 0 at rate less than N ´η for any η ą 0.

Define XN " ŴN `DN and XN " WN `DN by

and accordingly NN pϕq :" Trpϕp XN qq.

Note that the entries of W are centred and bounded by δ N . Furthermore, the off-diagonal entries are independent and identically distributed, as well as entries on the diagonal. Observe that, for i ‰ j, 

By Lemma 3,

Therefore, assuming that NN pϕq ´Er NN pϕqs converges to a Gaussian variable yields that N N pϕq ÉrN N pϕqs converges to the same Gaussian variable. Furthermore, if Er NN pϕqs ´N ş R ϕdρ N converges to some limit bpϕq, the same will hold for ErN N pϕqs ´N ş R ϕdρ N . Therefore, for our purposes, we may suppose that the entries of W N are bounded almost surely by δ N .

Appendix B. Asymptotic infinitesimal freeness of GUE and deterministic matrices

Observe that the bias bpϕq in Theorem 2 vanishes whenever s 2 " σ 2 , τ " 0 and κ " 0 (this is for instance the case for the deformed GUE). In that case, the mean empirical spectral measure Erµ N s of W N `DN is particularly well approximated by the free additive convolution ρ N " µ N σ 2 N ' ν N of a semicircular distribution and ν N . It is then natural to ask whether a multivariate generalization of this result holds: in the noncommutative probability space pM N pCq b L 8´, EN ´1 Trq, let pW 1 , . . . , W k q be a k-tuple of independent copies of W N with entries (having finite moments of any order) satisfying (H1), (H2) and (H3) with s 2 " σ 2 , τ " 0 and κ " 0, and pA 1 , . . . , A l q be a l-tuple of bounded deterministic matrices with ˚-distribution ν N ; is the ˚-distribution ξ N of the pk `lq-tuple pW 1 , . . . , W k , A 1 , . . . , A l q well approximated by the free product µ ‹k N σ 2 N ‹ ν N of a semicircular family and ν N ? This was proved for independent standard GUE matrices in the absence of deterministic matrices in [START_REF] Thorbjørnsen | Mixed moments of Voiculescu's Gaussian random matrices[END_REF], and, formulated as an asymptotic infinitesimal freeness result, with finite rank deterministic matrices in [START_REF] Shlyakhtenko | Free probability of type-B and asymptotics of finite-rank perturbations of random matrices[END_REF]. This holds in general; for simplicity, we restrict ourselves to GUE matrices. In other words, we prove asymptotic infinitesimal freeness for independent GUE matrices and a tuple of bounded deterministic matrices converging in ˚-distribution.

Theorem 5. Let pW 1 , . . . , W k q be a k-tuple of independent GUEpN, σ 2 N q matrices (with the assumption σ 2 N " OpN ´1q) and pA 1 , . . . , A l q be a l-tuple of deterministic matrices with ˚-distribution ν N in the noncommutative probability space pM N pCqbL 8´, EN ´1 Trq. Assume that sup N ě1 }A i } ă `8, 1 ď i ď l. Then the ˚-distribution ξ N of the pk`lq-tuple pW 1 , . . . , W k , A 1 , . . . , A l q satisfies: for P P CxX 1 , . . . , X k`l y,

Proof. By linearity, it is sufficient to prove the statement for monomials P and for Hermitian A 1 , . . . , A l . Our proof relies on the combinatorics of free probability, as exposed in Lecture 22 of [START_REF] Nica | Lectures on the combinatorics of free probability[END_REF]; we follow their notations. In particular, N Cpnq denotes the lattice of non-crossing partitions, pκ n q ně1 the sequence of free cumulant functionals, K the Kreweras complementation map, γ the cyclic permutation p1, . . . , nq. Let pA, ϕq be a noncommutative probability space, w 1 , . . . , w k P A free semicircular elements with variance N σ 2 N and pa 1 , . . . , a l q P A l a l-tuple of selfadjoint noncommutative random variables with noncommutative distribution ν N , free from tw 1 , . . . , w k u. It is sufficient to consider non-constant monomial P in w 1 , . . . , w k , a 1 , . . . , a l (resp. W 1 , . . . , W k , A 1 , . . . , A l ) of the form x 1 a 1 ¨¨¨x n a n (resp. X 1 A 1 ¨¨¨X n A n ) with n ě 1, x 1 " w j1 , . . . , x n " w jn (resp. X 1 " W j1 , . . . , X n " W jn ) and a 1 , . . . , a n in the multiplicative semigroup generated by ta 1 , . . . , a l u (resp. A 1 , . . . , A n in the multiplicative semigroup generated by tA 1 , . . . , A l u). For such a monomial P , on the one hand,

where N C E π rX 1 i1i2 , . . . , X n i2n´1i2n sA 1 i2i3 ¨¨¨A n i2ni1 , using Wick formula for the centred complex Gaussian process pX 1 i1i2 , . . . , X n i2n´1i2n q. Denote e t :" pi 2t´1 , i 2t q, e t :" pi 2t , i 2t´1 q and observe that E π rX 1 i1i2 , . . . , X n i2n´1i2n s "

if n is even, π P P pjq 2 pnq and e s " e t , @ts, tu P π, 0 otherwise.

Hence, exchanging sums,

Tr πγ pA 1 , . . . , A n q " ÿ πPP pjq 2 pnq N ´n{2´1`|πγ| pN σ 2 N q n{2 pN ´1 Trq πγ pA 1 , . . . , A n q " ÿ πPN C pjq 2 pnq pN σ 2 N q n{2 pN ´1 Trq Kpπq pA 1 , . . . , A n q `OpN ´2q " pµ ‹k N σ 2 N ‹ ν N qpP q `OpN ´2q,

where we have used the fact that n{2 `1 ´|πγ| is an even nonnegative integer vanishing if and only if the pairing π is non-crossing (see [START_REF] Thorbjørnsen | Mixed moments of Voiculescu's Gaussian random matrices[END_REF]).