Oussama Habachi 
email: oussama.habachi@xlim.fr
  
Mohamed-Ali Adjif 
email: mohamed-ali.adjif@xlim.fr
  
Jean-Pierre Cances 
email: jean-pierre.cances@xlim.fr
  
Fast Uplink Grant for NOMA: a Federated Learning based Approach

Keywords: 

Recently, non-orthogonal multiple access (NOMA) technique has emerged and is being considered as a building block of 5G systems and beyond. In this paper, we focus on the resource allocation for NOMA-based systems and we investigate how Machine Type Devices (MTDs) can be arranged into clusters. Specifically, we propose two allocation techniques to enable the integration of massive NOMA-based MTD in the 5G. Firstly, we propose a low-complexity schema where the base station (BS) assigns an MTD to a cluster based on its Channel State Information (CSI) and transmit power in order to ensure that the Successive Interference Cancellation (SIC) can be performed in the uplink as well as the downlink. The proposed technique enable us to allocate an optimal number of MTDs without inter-NOMA-interference (INI), while being of low complexity and communication overhead. In the second framework, we propose a Federated Learning (FL) based-technique using traffic model estimation at the MTD side in order to extend the capacity of the system. In fact, the BS take into account the traffic model of the MTDs in order to use time multiplexing in addition to the power multiplexing to separate MTDs. Then, we propose a synchronization method to allow contending MTDs synchronize their transmissions. Simulation results show that the proposed techniques outperform existing schemes in the literature.

I. INTRODUCTION

Telecommunications have experienced a paradigm shift in the past decades with the advent of Internet or things (IoT). With this new huge market, a lot of interesting challenges have emerged, particularly with the potential inclusion of the IoT world in the future fifth generation of cellular mobile communications (5G) and beyond. Indeed, wireless networks have been supporting unprecedented traffic due to the drastic growth of mobile devices, the development of various applications and the implementation of IoT. Consequently, there has been a drastic increase in the number of connected devices. Unlike the third and fourth generation mobile telecommunication systems, where the challenges arose from the demand of high data rate and low latency, the fifth generation (5G) addressed massive connectivity of less sophisticated autonomous wireless devices that may communicate small amounts of data on a relatively infrequent basis. Hence, the explosively increasing demand for wireless traffic cannot be served anymore using orthogonal multiple access (OMA) systems where users share wireless resources in an orthogonal manner. Indeed, the key challenges of the 5G are the higher spectral efficiency, the low latency and the massive connectivity. The latter challenge is particularly hard to address since OMA techniques are suffering from sever congestion problem because of the limited transmission bandwidth.

Specifically, non-orthogonal multiple access (NOMA) techniques have been considered as a promising solutions to tackle the massive demand for bandwidth. In fact, multiple NOMA users are allowed to access the same sub-carrier at the same time using either power domain multiplexing [START_REF] Liu | Heterogeneous networks with power-domain noma: Coverage, throughput, and power allocation analysis[END_REF], [START_REF] Han | Power division multiplexing[END_REF] or code domain multiplexing [START_REF] Di | Trellis coded modulation for code-domain non-orthogonal multiple access networks[END_REF], [START_REF] Gan | Performance analysis of uplink uncoordinated code-domain noma for sins[END_REF]. Indeed, NOMA requires design of new physical layer and medium access control (MAC) to implement multiple users detection (MUD) technique, such as the successive interference cancellation (SIC), at the receiver side to be able to separate the signals. A plenty of researches have been driven by both academia and industry in order to investigate the design of NOMA technique at the uplink as well as the downlink transmissions. For example, authors of [START_REF] Ali | Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (noma) systems[END_REF], [START_REF] Zhang | Uplink nonorthogonal multiple access in 5g systems[END_REF] and [START_REF] Choi | Noma-based random access with multichannel aloha[END_REF] proposed an uplink PD-NOMA scheme using random access scheme based on the well-known slotted ALOHA protocol. Specifically, we may consider random access scenario and design multiple access techniques based on contention game and online learning algorithm. For example, [START_REF] Choi | Joint channel selection and power control for noma: A multi-armed bandit approach[END_REF] proposed a joint resource allocation and power control for random uplink NOMA based on the well-known Multi-Armed Bandit (MAB). After a training period, users are able to determine autonomously the appropriate channel and power level for uplink transmission. On the other hand, uplink NOMA pre-allocation techniques may be considered. For example, Authors of [START_REF] Jiang | Distributed layered grant-free non-orthogonal multiple access for massive mtc[END_REF] proposed a distributed layered grant-free NOMA framework, in which they divided the cell into different layers based on predetermined inter-layer received power difference to reduce collision probability. In [START_REF] Di | Radio resource allocation for downlink non-orthogonal multiple access (noma) networks using matching theory[END_REF], the resource allocation algorithm and user scheduling has been studied for a downlink NOMA where the base station (BS) jointly allocates channels and transmit power. Although several works have investigated the resource allocation for NOMA, allocating an optimal number of users in NOMA networks without inter-NOMA-interference (INI) is still an open challenge that we propose to address in this paper.

Note that taking into account the traffic model of Machine Type Devices (MTDs) while allocating resources enable to design efficient multiple access techniques for NOMA-based WSN. In this paper, we propose a Federated Learning (FL) approach for resources allocation, where MTDs estimate their traffic model and the BS aggregate the parameters to build a global traffic model. In fact, FL is a machine learning attempting to train a centralized model through training distributed low-complexity machine learning over a large number of users, each with unreliable and relatively slow network connections. At every step, local learning algorithm on the users' side are updated, and users communicate the model update to the central server who aggregates data to obtain a new global model. Note that, by using federated learning, the learning task is distributed between the sensors and the BS in order to allow the BS to allocate efficiently Resource blocks (RBs) and power levels. Indeed, with the FL we take advantage of the computation capacity of the BS to aggregate the global machine learning model and from the distributed low-complexity learning algorithms at the sensors side in order to reduce the data exchange and increase the scalability of the system.

The main contributions of the paper are summarized as follows:

• We investigate the joint channel selection and power control problem in PD-NOMA and we propose two novel frameworks. Both frameworks take advantage of NOMA to enhance the spectral efficiency. • We take into account the traffic model of MTDs in order to enhance the capacity of the NOMA-based system. Indeed, we used a FL where the MTDs estimate their traffic model and transmit the parameters to the BS who aggregates the overall traffic model and allocates to each MTD the appropriate resource block and transmit power. The remainder of the paper is organized as follows. The next section introduces the system model and describes the signals demultiplexing using PD-NOMA. Section III proposes a novel resource allocation NOMA-based schema for uplink and downlink transmissions. In Section IV, we propose a FL based massive resource allocation schema that take into account the traffic model of the MTDs in order to extend the capacity of the system. Before concluding the paper and giving some perspective, we drive in Section V an extensive Matlab-based simulation analysis to illustrate the performance of the proposed techniques.

II. SYSTEM MODEL

Consider a typical uplink NOMA system, depicted in Fig. 1, composed of M MTDs and a BS. The latter is located at the center of the cell and MTDs are uniformly distributed in the disc with radius r. The MTDs are deployed in the coverage disk of the BS according to a homogeneous PPP Φ M with density λ M . Let us focus now on source traffic model for MTDs. We consider that MTDs operate in a regular mode until an event occurs in their environment, where they are triggered into an alarm mode. The event epicenters are represented by a homogeneous PPP Φ E with density λ E in the Euclidean plane. The processes Φ M and Φ E are assumed independent. We choose to use PPPs because typical nodes can be reasonably assumed to be randomly deployed in the plane, in particular since we are targeting a type of transmission that does not directly involve human intervention.

The available bandwidth is divided into K sub-carriers, and each sub-carrier is divided into W RBs of duration τ . We denote by h i the channel response from the BS to user i, which is assumed to be zero-mean circular symmetric complex Gaussian random variable with variance σ 2 . Since we are using non-orthogonal access, we do not request the M and W to be equal. Indeed, a user can use more than one RB, and the latter will be shared by several users.

Let P max be the maximum transmit power for MTDs, and denote by p i,k the power allocation coefficient of user i on the subcarrier k. The channel between the i-th MTD and the BS on the k-th sub-carrier is denoted by

h i,k = g i,k
li , where g i,k and l i denotes respectively the Rayleigh fading and the pathloss. The latter is is modelled by Free-Space path loss model [START_REF] Goldsmith | Wireless Communications[END_REF], i.e.

l i = λ √ G l 5πd
, where G l is the product of the transmit and receive antenna field radiation patterns in the line-of-sight (LOS) direction, and λ is the signal weavelength and d is the distance between MTD and BS. Hence, the received signal on the k-th sub-carrier at the BS is given by:

y k = M i=1 h i,k √ p i,k s i,k + σ (1)
where s i,k is the transmit symbol of the MTD i on the sub-carrier k and σ denotes the additive noise at the BS.

In order to split the received signal, SIC is carried out at the BS.

Throughout the paper, we assume that each user knows its CSI. In time division duplexing (TDD) mode, the BS may send a beacon signal at the beginning of a time slot to synchronize uplink transmissions. This beacon signal can be used as a pilot signal to allow each user to estimate the CSI.

Consider that user i is multiplexed on the kth subcarrier, and the transmitted symbol is modulated onto a spreading sequence s i . Then, the received symbol by BS is expressed as follows:

y = K k=0 M i=1 h i,k √ p i,k s i,k + σ (2) 
The BS applies then the SIC in order to separate the superimposed signals. Hence, there is an interesting question that we need to answer: how to allocate RBs and transmit power to different users in order to make the BS able to separate the signals at the uplink while maximizing the capacity of the system. The same challenge should be addressed at the downlink as well. In the next section, we propose an allocation technique that addresses the aforementioned challenges.

III. FAST MTD ALLOCATION

In this section, we introduce a low-complexity fast uplink model for MTDs in NOMA-based networks, as illustrated in Fig. 2. First, we consider TDD mode, and we assume that the BS sends a beacon signal at the beginning of a time slot to synchronize transmissions. Hence, the time slot is divided into three part: the beacon, the uplink and the downlink phases. This beacon signal can be used as a pilot signal to allow each MTD to estimate his CSI. Then, we consider that W c resource blocks are reserved for the contention. In fact, they are used by MTDs when they first join the cell, or when the actual allocation does not meet the MTD's required QoS. The remaining resource blocks are used for transmission. The BS creates a cluster for each resource block, then it allocate MTDs to one or multiple clusters. The proposed resource allocation schema is depicted as follows:

If the BS fails to decode the MTD's signal, he should retransmit it the next time slot.

• The resource allocation: The MTD resource allocation schema is depicted in Algorithm 1. Once the BS receives the signal of the MTD i, it determines his CSI, selects for him his best channel and the lowest power level and checks if he can be allocated to one of the clusters using this channel by executing the SIC. Otherwise, The BS increases the transmit power of the MTDs until reaching P max . The, the BS selects the second best channel for MTD i and try an allocation. The MTD i is allocated to the first cluster for which the SIC is executed successfully, i.e. the best allocation the BS can afford to him. Then, the MTD allocation is saved in the allocation table of the BS and the corresponding cluster information (CSI and power level of all the MTD in the cluster) are sent back to i. These information are sent to i to enable him performing the SIC at the downlink. An update is sent to all the cluster's members when new MTD joins the cluster. If the BS fails to allocate the MTD to all the clusters, a no-allocation feedback is sent to the MTD i who should wait for a given period before attempting to join the BS again. • The uplink phase: Each MTD who has received an allocation from the BS uses the received transmit power to send his data on the received resource block.

• The downlink phase: The BS sends superimposed signals to all the MTDs in the same cluster. They are able to perform SIC since they have received in the initialization phase the CSI and transmit power of all the MTDs in their cluster. In the next section, we investigate how we can increase the capacity of the NOMA system by taking into account the MTDs' traffic model.

IV. MASSIVE MTD LEARNING-BASED ALLOCATION

In this section, we address the massive MTD allocation challenge where an MTD can join a cluster even if the SIC fails. In fact, we take into account the traffic model of MTDs and we use a FL-based approach in order to allow the BS to allocate MTDs.

A. Traffic model

We consider the trafic model, introduced in [START_REF] Thomsen | A traffic model for machine-type communications using spatial point processes[END_REF], where the state of an MTD evolve between two states, alarm and regular modes, following a Markov Chain, given in Fig. 3, and the state transition matrix is:

P x = 1 -α α 1 -β β (3) 
This Markov chain is ergodic; it has a unique steady state probability vector π x = [π a x ; π r x ], where π a x (π r x ) is the probability of alarm (regular) state.

We assume that the MTD generates a packet in the alarm (resp. regular) state following a Markov process, illustrated in Fig4, and whose the state matrix are given as follows:

P A = 1 -α a α a 1 -β a β a P R = 1 -α r α r 1 -β r β r (4) 
Hence, the probability that an MTD is active is expressed as follows:

π act = β a 1 + β a + α a + β r 1 + β r + α r (5) 

B. Federated-learning algorithm

In this section, we propose an online learning algorithm for massive MTD resource allocation. The proposed algorithm is divides into three step, two of which implemented at the MTD side and one performed by the BS, as illustrated in Algorithm 2. In fact, the traffic model is determined by MTDs who send only their model's parameters to the BS who allocates them both RB and transmit power. Note that learning the traffic model at the MTD side reduces the complexity at the BS side, which increases the scalability of the proposed schema, while having a reasonable complexity to be implemented on low-capacity devices. Moreover, the traffic model learning period is very dependent to the sensed phenomenon, and may be different from an MTD to another one. Thus developing a centralized traffic model learning is very difficult. The joint channel selection and power control is implemented at the BS who has an overall knowledge of the network. Since MTDs are expected to have a relatively long inactivity period, the BS may increase the spectral efficiency by allocating interfering MTDs to the same resources based on their traffic models. Finally, the MTDs use a backoff based algorithm to avoid collisions with other MTDs. The proposed algorithm is explained as follows.

Algorithm 

C. Traffic model learning

We assume that each MTD will monitor his environment in order to learn his traffic model parameters α, β,α a , β a , α r and β r . These parameters are then transmitted to the BS that will aggregate all the MTDs' traffic model. Note that once the MTD is allocated, he has to ensure that the generated traffic is not higher than the one advertised at the BS. Hence, if an MTD want to increase it's traffic, or the learned traffic model was not accurate, he has to start a new allocation request at the BS with the new traffic model.

D. Resource allocation

Once the BS receives the signal of the MTD i, it determines his CSI, selects for him the lowest power level and try to allocate it to one of the clusters. Indeed, it assumes that the MTD is allocated to this cluster using this power level and executes the SIC. If the SIC fail, the BS determine the set of MTDs in collision with the added one. Then, the BS checks whether the sum of activity probabilities, in Eq. ( 5), of MTDs in collision is higher than P rob act-max . If so, the added MTD cannot be allocated to this cluster. If the BS fails to allocate the MTD to all the cluster, it increases his transmit power level and restart the process. If the allocation is successful, the MTD allocation is saved in the allocation table of the BS and the corresponding resource block and transmit power level are sent back to the MTD. The BS sends also the CSI of all the MTDs who are allocated the the same cluster in order to make him able to perform the SIC for the downlink data. An update is sent to all the cluster's members also when new MTD joins the cluster. Otherwise, a no-allocation feedback is sent to the MTD who should wait for a long period before attempting to join the BS again. T s (i), //number of successful transmissions during the history period

D(i)=mod(round(random(2 h-p d ) )),frame_size) else T s = T s ∪ {1}
end end

E. Traffic adaptation

Note that the proposed schema increases the capacity of the system, but may result to INI since MTDs transmitting in a given cluster may face collision. Hence, we design a traffic adaptation technique as depicted in Algorithm 2. The idea here is that the BS do not allocate interfering user to the same cluster if the sum of their activity probabilities is higher than P rob act-max . Thus , if the SIC fails, the colliding MTDs should arrange theirselves in the frame, by adding some delay, in order to be able to transmit in the same cluster. In fact, if an MTD faces a collision when sending its data, he should add a random delay in order to avoid collision with other MTDs in the same cluster, as illustrated in Fig. 5. Note that the user synchronization is not trivial at all since the SIC outcome is a unique feedback for all the MTDs. Indeed, if MTD i fails the SIC, all weaker MTDs will fail the SIC also even if they are well synchronized, and changing their delay as a reaction to the SIC fail may results in another SIC fail in the future. Hence, we propose that only the first MTD who fails the SIC and MTDs colliding with him will change their delays, other MTDs will ignore the SIC fail. The MTDs' synchronization is depicted in Algorithm 3. Note that the set of colliding MTDs can be easily determined, as we can see in Algorithm 4, since the MTDs have the CSI and transmit powers of their cluster's members. Moreover, in order to increase the stability of the proposed technique, we assume that the more the MTDs transmit successfully, the lower the probability they will change the transmission delay after a collision. Indeed, we consider that the new user who joins the cluster should adapt himself to fit within the available time-slots in the frame. Of course, if he fails during several time slots, all the colliding MTDs will have incentive to change their delay in order to enable all the colliding user to fit into the time slot. Note that the MTDs know that there is a way to fit in the frame since the BS do not allocate interfering MTDs to the same cluster if their activity probabilities is higher than P rob act-max , and that MTDs ensure that their generated traffic is coherent with the sent model.

V. SIMULATION RESULTS

In this section, we drive a Matlab-based simulation in order to evaluate the performance of the proposed resource allocation techniques. As a reference schema, we consider Fig. 5. MTDs i and j user the same resource block and have the same received power, but not at the same time slots. In fact, they use different delays in the frame in order to avoid collision: i is ready to transmit at the beginning of the frame and i is ready to transmit at the third time slot. If there are another MTD having πact < 0.2, he can be inserted in the cluster, otherwise, i and j should change their starting delays in order to enable the upcoming MTD to transmit with them.

NM-ALOHA in which NOMA is applied in a slotted Aloha basis. This technique was introduced in [START_REF] Choi | Noma-based random access with multichannel aloha[END_REF], and has been proved efficient compared to OMA techniques. Hence, in this section we compare the two proposed technique with NM-ALOHA.

We have considered a cell of radius 100 m and N = 600 MTDs distributed according tto PPP process of parameter λ M = 0.01. Unless specified elsewhere, the average activity period of an MTD is 26%. We have considered that a frame is composed of 30 time-slots.

A. System capacity

In this section, we variate the number of subchannels from 1 to 10 and we variate the number of MTDs from 1 to 600 and we illustrate the probability of user allocation for Fast uplink access (FUA) and for Massive MTD learningbased allocation (MMA). Here, we do not consider the Aloha-based NOMA (NM-ALOHA), since using the latter all MTDs are allowed to transmit randomly.

As we can see in Figure 6, the system capacity is enhanced by up to 20 times compared to OMA allocation for 200 MTDs and 10 subchannels, and that MMA achieves a better capacity than FUA. Note that the observed capacity enhancement of MMA according to FUA is obtained by taking into account the traffic model of MTDs. Note that with an average activity period of 26%, we may have up to 3 contending MTDs that transmit on the same frame without NOMA interference.

B. Average throughput

Figure 7 illustrates the average throughout for FUA, MMA and NM-ALOHA. We can observe that even if NM-ALOHA enable more user to transmit, FUA and MMA achieve a far better average throughput per user. This result is somehow expected since NOMA interference is avoided in FUA and MMA.

C. Packet loss probability

Finally, we focus on the packet loss probability. As expected, FUA is free of NOMA interferences and therefore there is no packet loss due to NOMA. Moreover, as we can see in Figure 8, after the synchronization period, which is in our case of 20 frames, MMA technique becomes free of NOMA interference while offering enhanced capacity and average throughput.

VI. CONCLUSION

In this paper, we have proposed two novel resource allocation technique in order to jointly allocate channels and transmit power levels in PD-NOMA systems. The first proposed framework allows the BS to allocate the optimal number of user using SIC to separate superimposed signals while ensuring free INI. Moreover, to enable the system to handle more users, we have proposed a novel framework based on a federated learning approach in order to allow the BS and MTDs collaborating to estimate the traffic model and enable massive allocation. We have illustrated, using simulation results, that the learning algorithm converges, and that after a period of adaptation, the system capacity is extended while still being free of INI. Moreover, we have illustrated that taking into account the traffic model enhances significantly the capacity of the system.
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 4 Collision detectiton Data: Cluster CL Result: The set of colliding MTDs CL tmp = {} for m = 1 : length(CL) do if (SIC(CL! = 0) then U = CL(1) else CL = CL\{CL(1)} end end for m = 2 : length(CL) do if (!SIC(U, CL(m)) then CL tmp = CL tmp ∪ {CL(m)} end end return CL tmp

Fig. 6 .

 6 Fig.6. The allocation probability depending on the number of MTDs and the number of channels in the system.

Fig. 7 .

 7 Fig. 7. The average throughput of MTTDs for different N and K.

Fig. 8 .

 8 Fig. 8. The probability of packet loss due to INI.

2

  Massive MTD allocation Initialization: The BS initialize the allocation table CL to 0 |W -Wc|×Cmax , where C max is the maximum cluster size The BS sends a beacon at the beginning of each time slot while (a new MTD i joins the cell) do

	backoff=0
	transmitted=false
	i observes its environment during a training period
	(T t r time slots) and estimates his probability of activ-
	ity π act
	while (!transmitted) do
	i sends his CSI and π act to the BS using one of
	the W c resource blocks
	if (!transmitted) then
	backoff=backoff+1
	wait(round(random(2 backof f )))
	end
	end
	for p = p end
	end
	if sum(T coll .π act )<P rob act-max then
	Send CL(ω, :) to i
	exit the algorithm
	else
	CL(ω, j) = {}
	end
	end
	end
	end
	end
	Send NO_ALLOC to user i

min : p max do for ω = 1 : |W -W c | do Find the first j such as CL(ω, j) = 0 and put CL(ω, j) = {i, CSI, p, π act } if (SIC(CL(ω, :)! = 0) then Send CL(ω, :) to i and exit the algorithm else T coll = CL(length(CL)) for m = 1 : length(CL) do if (!SIC(T coll (1), CL(m)) then T coll = T coll ∪ {CL(m)}

• The contention-based access: When an MTD requests for resource allocation, he should attempt to join the BS through the W c reserved resource blocks by sending his CSI. Note that the contention-based access is only performed the first time the MTD joins the BS or when he fails to meet its QoS requirements.